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Abstract: The work analyzes the properties of handling and bicycle vehicle model motion stationary states manifold 

stability taking into account drift force nonlinear characteristics. Determining single two-axle vehicle nonlinear model 

stationary states and analyzing their stability were based on a graphical method (Y. M. Pevzner, H. Pacejka). It has its 

disadvantages: the absence of evident analytical stability criteria for the entire wheeled vehicle circular stationary states 

manifold. And also the absence of global stability threshold characteristics in the controlled parameter space. The task part 

suggests developing methods for building bifurcation manifold or critical parameters manifold (longitudinal velocity and 

wheel turning angle) with which the divergent loss of stability occurs. Known H. Troger, K. Zeman and Fabio Della Rossaa, 

GiampieroMastinub, Carlo Piccardia results are based on parameter continuation numerical methods which makes the quality 

analysis of drift force nonlinear characteristics impact on the entire stationary states manifold stability conditions more 

difficult. A compelling grapho-analytic approach towards bifurcation manifold building and getting circular stationary states 

analytical stability conditions based on moving from nonlinear drift forces on axles dependencies to their inverse dependence 

is developed in the suggested work. This methodology allows defining dangerous/safe stability threshold conditions in the 

control parameters space. 

Keywords: Non-linear Bicycle Model, Stationary States Manifold, Vehicle Handling, Divergent Stability Loss,  

Parameters Bifurcation Set 

 

1. Introduction 

One of the vehicle dynamic properties important 

characteristics is the property of steering – an ability to 

perform a circular motion with a locus radius of curvature 

fixed value and continuous longitudinal velocity parameter 

growth [1]. Compact analytical formulas (handling equations) 

that determine steering properties of both linear [1, 2, 3] and 

nonlinear models taking into account the non-linearity of side 

slip forces [2, 4, 5, 6, 7] are known for a vehicle bicycle 

model. An important aspect when analyzing handling 

properties which hasn’t been covered before is defining 

conditions for vehicle handling properties change with large 

enough transverse acceleration values, for example, from 

insufficient to excessive. Another relevant problem is 

determining the analytical conditions of the divergent loss of 

stability for the whole variety of vehicle movement circular 

stationary modes and its special case – the task of circular 

stationary modes corresponding to the handling curve 

divergent loss of stability. At present these tasks are solved 

either by using the Pevzner-Pacejkagrapho-analytical method 

[6, 8] with its advantages of simplicity and visualization, and 

disadvantages of missing corresponding analytic and 

quantitative evaluations, or building stability diagrams in the 

control parameters plane is done numerically based on the 

two-parameter continuation method which makes it more 

difficult to analyze the initial reasons causing the stability 

diagram boarders alteration (which is explained with missing 

corresponding analytic evaluations). Thus, the work [9] 
contains a complete enough analysis of a two-axle vehicle 

model phase portrait qualitative changes with an axles side 

slip forces non-linear characteristics variation and two 

control parameters modification complemented with numeric 

bifurcation diagrams building. The mentioned work doesn’t 
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touch upon vehicle handling properties analysis. 

This article deals with handling properties of both linear 

vehicle model and non-linear bicycle model based on further 

development of the Pevsner-Pacejka grapho-analytical 

method complemented by a simple and effective control 

parameters bifurcation multitude building technique [7, 10, 

11, 12] which to our mind can serve as a preliminary analysis 

test of the vehicle movement stationary states entire manifold 

handling and stability characteristics to evaluate various 

design solutions viability. More complete models can 

certainly be obtained involving continuation method 

universal numerical algorithms [13, 14]. 

2. Problem State 

2.1. A vehicle Bicycle Model with Elastic Wheels According 

to I. Rocard 

Let m the mass and J the system central moment of inertia 

in relation to the vertical axis, a, b are vehicle centre of mass 

distances to the front and rear wheel axles [15]. 

 

Figure 1. Vehicle with direct wheel control design model. 

A vehicle bicycle model plane-parallel motion equations 

(1) suggesting constant longitudinal velocity v look as 

follows [6, 16, 17]. 

1 2

1 2

1 2

( ) cos ;
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+ = +
= −

+ − += − =
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ω θ
ω θ
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         (1) 

where, и − a vehicle centre of mass transverse component of 

velocity; ω − an angular velocity in relation to the vertical 

axis; v –a centre of mass longitudinal velocity; 1 2,δ δ − slip 

angles of the front and rear axles. Yi slip forces are defined a 

posteriori and approximately represented with various 

analytic dependencies, for example, bearing a character of a 
2 2 2 1/2( ) (1 / )i i i i i i iY k kδ δ δ φ −= + saturation function. The slip 

force is proportionate to the slip coefficient in linear 

approximation, , 1,2,i i iY k iδ= = suggesting that further on

/i i ik k N= −side slip dimensionless ratio ( iN −axles vertical 

reactions), /i i iY Y N= −dimensionless slip forces. 

A point path radius on a vehicle rolling axis the speed of 

which lies along the rolling axis can be represented as 

follows (emerges out the slip angles definition and R radius 

vector angular velocity definition): 

2 1

,
l

R
θ δ δ

=
+ −

                               (2) 

where, ( 2 1θ δ δ+ − ) is the Ackermann angle. The Ackermann 

angle geometric sense is the angle between radius vectors 

connecting the vehicle front and rear axles centres [1]. 
Therefore, when a vehicle is moving ( l is the distance 

between the front and rear axles)along the R  radius circle 

with various v  velocity parameter values (a center of mass 

longitudinal velocity) the Ackermann angle should remain 

constant: 2 1/ .l R θ δ δ= + −  

Then the front controlled wheels steering angle is defined 

by the following correspondence: 

2 1/ ( ).l Rθ δ δ= − −                           (3) 
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2.2. The Development of Stationary Movement States 

Analysis Grapho-Analytical Method 

A grapho-analytical approach towards the addend defining 

in an expression is suggested below (3). 

A set of equations defining a vehicle bicycle model 

stationary states manifold can be merged into a single 

defining equation [6, 18]. 

1 1 2 2

1 1 2 2

( ) ( )
0,

( ) ( ) 0,

Y b Y av

g l l

Y Y

δ δω

δ δ

− + + =

− =
                 (4) 

2

2 1 2 1( ) ( ),
v

Y
gl

δ δ θ δ δ− = + −                    (5) 

Where, 2 1  ( )Y Y δ δ= − is a curve defined with 

dimensionless dependencies of the slip forces on axles 

(figure 2): 1 1 2 2( ) ( )Y Y Yδ δ= = . 

 

(a) plots of sideslip forces on the front and rear axles, as a function of a slip 

angle 

 

(b) stationary modes, corresponding to the movement of the characteristic 

point of the vehicle along a trajectory with a fixed radius of curvature R 

Figure 2. Plots of a static curve 2 1  ( )= −Y Y δ δ . 

A movable straight line slope ratio is proportionate to the 

square of vehicle centre of mass longitudinal velocity 2 / ,v gl

the controlled wheels steering angle θ defines the straight 

line parallel shift. Model stationary states correspond to the 

movable straight line and stationary curve cross points: the 

cross point Y ordinate defines the centre of mass specific 

side acceleration in the corresponding stationary state; its 

abscissa defines the axles slip angles difference 2 1 ( )δ δ− . A 

path with the same R radius of curvature corresponds to the 

two stationary states with different v velocity parameter value 

and identical Ackermann angle value (figure 4, b), then the 

corresponding cross points ordinates are set with the 
2 /Y v gR= correlation, and the θ parameter value is received 

as a difference between the Ackermann angle /l R and these 

cross points abscissa 2 1 ( )δ δ−
:
 

2 1/ ( ).l Rθ δ δ= − −                         (6) 

The corresponding 2 1 ( )δ δ− difference value with this Y

parameter value is defined with the G( Y ) function inverse to 

the 2 1  ( )Y δ δ− function [12]. 

Let’s separate the 2 1 ( )δ δ− =G( Y ) function building 

stages: the Y 1= Y 1(δ1), Y 2 = Y 2(δ2) dependencies are the 

initial ones, solving them for δi, δ1=F1( Y ), δ2 = F2(Y )are 

found and the required function is found as a difference 

between (δ2 - δ1) = F2( Y ) - F1( Y ) = G( Y ). 

After defining the ( )G Y  function, the handling curve is 

received: 

2 1/ ( ) / ( ),l R l R G Yθ δ δ= − − = −  

which leads to the know handling straight line within the slip 

linear hypothesis: 

( 2 1
2 1

1 2

( )
k k

Y
k k

δ δ −
− = ⋅  ) 

2 1

1 2

/ ( ) / .y

k k
l R a g

k k
θ −

= +  

All the further calculations are performed with

1 23,3; 2,527;k k= = l=5 m; 22,98kpν = m/s; 0,8;1 2= =φ φ
R=30,5 m numeric parameters values, if their values are not 

mentioned deliberately. 

Figure 3 shows the handling straight line and the handling 

curve demonstrating the slip force nonlinear nature influence. 

It’s convenient to further transit from equation (5) to 

equivalent equation (7) moving to inverse functions in the 

left and right equation (5) parts: 

2( ) / .G Y gl v Y θ= ⋅ −                            (7) 
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Figure 3. Steering curve. 

1 – linear sideslip hypothesis ( , 1,2,i i iY k iδ= = ); 

2 – nonlinear sideslip hypothesis ( 2 2 2 1/2
1 2( ) (1 / ) , 0,8i i i i i i iY k kδ δ δ φ φ φ−= + = = ) 

Finding circular stationary states basing on the grapho-

analytical approach using equation (7) suggests knowing two

,θ ν parameters, then the movable straight line slope should 

be calculated, and after defining the cross points with the 

stationary curve G( Y ), the specific side acceleration Y  and

2 1  δ δ− value corresponding to the cross points is found. 

In case of circular stationary states corresponding to the 

fixed R radius of curvature, the building procedure can be 

simplified. Indeed, choosing the current specific side 

acceleration value, 
2v

Y
gR

= , one movable straight line and 

stationary curve cross point if definitely found, G( Y ) (point 

1 in figure 4), then point 2 is defined with (0, -θ ) coordinates 

with a movable straight line running across it. 

 

Figure 4. Illustration for the graph-analytic method of finding the stationary 

modes corresponding to a given value of the Ackerman angle. 

It should be noted that, if
2v

Y
gR

=  is taken as an 

independent argument (with the fixed R value), then equation 

(7) is going to set handling curve (6): 

2
2( ) / / .

v
G Y gl v l R

gR
θ θ= ⋅ − = −  

2.3. To the Analysis of a Two-Axle Vehicle Nonlinear Model 

Handling Properties Changing 

It derives from the handling curve diagram (figure 5) that a 

local minimum should appear in the first plane quarter (Y,

2 1 δ δ− ) for the / ( )l R G Y− function to change vehicle 

handling character from insufficient to excessive. The latter 

is related to the additional inflection points implementation; 

the considerable G( Y )curve inflection points role is going to 

be discussed in the next section. 

In case of slip forces approximation as monotonic 

dependencies bearing the character of saturation curves for a 

model with understeering along the linear approximation 

( 2 1k k> ) a required condition for moving to oversteering is 

1 2φ φ> ; for a model with oversteering ( 2 1k k< ) a required 

condition to move to understeering is 1 2φ φ< (figure 5). 

 

Figure 5. Steering curves when friction coefficient varies in the transverse 

direction on the front axle. 

2.4. The Analysis of Movement Circular Stationary States 

Multifold Divergent Stability Loss; Building a 

Bifurcation Set in a Control Parameters Plane as a 

Two-Value Curve to a Curve ( )G Y  

The stationary curve 2 1δ δ− = ( )G Y and movable straight 

line 2 1δ δ− 2/gl v Y θ= ⋅ − cross points correspond to system 

(1) stationary states. Let’s leave the stability defining 

criterion of the found stationary modes without an exhaustive 

grounding presenting a corresponding practitioner guide only 

[7, 17, 19]: 
(1) A stationary state is stable if a movable plane slope is 

larger than a stationary curve slope in the 

corresponding cross point (it should be noted that this 

criterion is going to change the other way around when 

moving to a graphic representation based on equation 

(5) (see figure 2)). 

(2) Divergent stationary state stability loss occurs only 

with divisible stationary state implementation – upon 

movable and stationary curves touching (figure 6). 

The latter criterion guarantees stationary state stability 

properties saving with its evolving due to control parameters 
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alteration up till the divisible stationary state implementation 

moment. 

2.5. Certain Given Criterion Argumentation 

Stationary states divergent stability loss is pertinent to zero 

eigen value appearing. Therefore, a linear approximation 

system matrix determinant numerically equal to an absolute 

term of a characteristic equation turns into zero. The latter 

fact leads to the conclusion of curves which define the 

stationary states manifold in the corresponding point 

osculation. 

This way, an osculation of movable straight line and curve,

( )G Y , corresponds to v and θ parameters bifurcation 

values, and the entire bifurcation parameters set induces a 

curve reciprocal to ( )G Y [20]. Its parametric representation

( ), ( )Y Yθ θ ν ν= = is [12]: 

( ) ( );

.
( )

Y G Y G Y

gl
v

G Y

θ ′= ⋅ −

=
′

                         (8) 

The reciprocal curve cusps correspond to the initial curve,

( )G Y , inflection points. 

It should be shown that in cases of general position a 

threefold stationary state with 0, kpv vθ = =  corresponds to a

( )G Y  function inflection point at the origin (rectilinear 

motion mode stability loss occurs due to a pair of unstable 

stationary states emerging: with

1/21 2

1 2

0, ( )kp

k k
v v gl

k k
θ ⋅

= = =
−

or a pair of stable states 

appearing). 

 

(а) illustration of stability loss mechanism in a crew model straight steady 

state of movement with oversteer 

 

(b) the corresponding critical set of parameters (the bifurcation set) is a 

typical cross-section features “assembly” 

Figure 6. Divergent stability loss in a straight mode of movement in case of 

one point curve inflection ( )G Y
.
 

In case of slip forces approximation as a monotonic 

dependence (9): 

2 2 2 1/2( ) (1 / ) ,i i i i i i iY k kδ δ δ φ −= +                 (9) 

the first two function expansion terms, 2 1( ) ( )G Yδ δ− = , look 

as: 

1 1 1 2 1 2 31
2 1 2 2 1 12( ) ( ) ( ) ...G Y k k Y k k Yφ φ− − − − − −= − + − + ,   (10) 

and equation (7) is going to be represented as a third 

degree polynomial (11) (defines the stationary states 

manifold within rectilinear motion mode small 

neighbourhood): 

1 1 1 2 1 2 3 21
2 1 2 2 1 12( ) ( ) / .k k Y k k Y gl v Yφ φ θ− − − − − −− + − = ⋅ −   (11) 

Analyzing of equation (11) solutions number within the 

kpv v=  critical velocity small neighbourhood should be done 

(it’s suggested that 1 2k k> , 0θ = ). Equation (11) can be 

viewed as follows with these suggestions: 

2 2 2
2 31 1 2 21

22 2 2
1 1 2 2

/ (1 ) ( ) 0
kp

kp

v k k
gl v Y Y

v k k

φ φ
φ φ

−
⋅ − + =

⋅
, 

Then there are three stationary states (a stable one and two 

unstable ones) there with kpv v< and 2 2
1 1 2 2k kφ φ> , and there 

is one stationary state (unstable) there with kpv v> and 

2 2
1 1 2 2k kφ φ> . If 2 2

1 1 2 2k kφ φ< , then there are three stationary 

states (an unstable one and two stable ones) with kpv v> – the 

case of a pair of stable stationary states emerging. This way, 
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in general position cases ( 2 2
1 1 2 2k kφ φ≠ )with 0, kpv vθ = = a 

threefold stationary state is implemented at the origin; if the 
2 2

1 1 2 2k kφ φ= correlation is valid, it’s necessary to involve 

( )G Y function quintic expansion terms inclusively for 

further analysis. The bifurcation set (more precisely, its part 

within the small enough 0, kpv vθ = = point neighbourhood) 

is obtained as a semi-cubical parabola – a points locus 

consistent with theDiscrim3 ( , vθ ) =0 equation where 

Discrim3 ( , )θ ν is equation (11) discriminant. Control 

parameters matching the rectilinear threefold stationary state

( 0, )kpv vθ = = correspond to a semi-cubical parabola cusp, 

twofold circular stationary states with large enough radius of 

curvature value correspond to the rest of the discriminant 

manifold points. Three stationary states on an equilibrium 

surface correspond to the surface of the system (1) 

equilibrium states which in this case possesses and 

“assembly” feature –a wedge-shaped parameters plane part 

formed with the semi-cubical parabola, one stationary state 

corresponds to the rest of the parameters plane points. An 

expansion of parameter space where additional critical 

parameter sets are possible (matching the 2 2
1 1 2 2k kφ φ=

condition is also necessary along with 0, )kpv vθ = = is 

required to implement a higher rank vehicle symmetrical 

design feature – “a butterfly” (corresponds to the fivefold 

stationary state). 

Figure 7 (b) depicts bifurcation set changes with varying 

1φ  “internal” parameter which is explained by additional 

inflection points appearing on the ( )G Y curve (figure7, а)). 

 

(а) v =18,20,23; φ1=0,79an oversteering vehicle model straight stationary 

mode loss of stability mechanism illustration 

 

(b) φ1=0,79the corresponding critical set of parameters (the bifurcation set) 

represents a typical cross-section features “Butterfly” 

Figure 7. Divergent stability loss in a straight mode of movement in case of 

three points curve inflection ( )G Y . 

Moving to the analysis of circular stationary states 

consistent with handling curve divergent stability loss. As the 

case under studying is a special case of a circular stationary 

state stability loss this gives a possibility to define common 

point (if there are any there) when merging a stability 

(bifurcation set) diagram and a handling curve diagram on 

the same coordinate plane, in other case, divergent stability 

loss is uncharacteristic of stationary states corresponding to 

the handling curve. 

A condition of common handling curve and bifurcation set 

points presence can be presented in an analytical form, this 

way, from the (8) and (6) correlation system (12) follows: 

( ) ( ),G Y Y G Yθ ′= ⋅ −  

( ) / .G Y Y l R′⇒ ⋅ =                        (12) 

/ ( ).l R G Yθ = −  

It can be concluded from the “geometric” stability criterion 

that 1) circular stationary states corresponding to the 

handling curve stability loss relates to the ( ) /G Y Y l R′ ⋅ <
inequation breaking. 

Solving equation (12) for the v parameter a critical 

velocity speed when moving along a circular path with the 

radius of curvature of R=30,5 m: 30,5 13,17Rν +
= = m/s 

(fi1:=0,8); 30,5 13,86Rν +
= = m/s; 30,5 13,44Rν +

= = m/s 

(fi1:=0,79) is obtained. 

With the front axle friction coefficient of fi1:=0,8 an 

instability area corresponding to the handling curve 

(represented as a dashed curve at figure 8) is to the left and 

above its contact point (v=13,17 m/s) with the bifurcation set 
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(continuous curve) in case of fi1:=0,79 an instability interval 

according to the velocity parameter is (13,44 m/s – 14,86 

m/s), an area between two handling curve contact points with 

bifurcation curve (the dashed curve) corresponds to it (figure 

9); a stable motion mode correspond to the rest of the 

handling curve points. 

 

(a) 

 

(b) 

Figure 8. Definition of control parameters in divergent stability loss of 

stationary modes corresponding to the understeer curve using the 

bifurcation diagram. 

 

(a) 

 

(b) 

Figure 9. Definition of control parameters in divergent stability loss of 

stationary modes corresponding to the understeer curve, using the 

bifurcation diagram when φ1 = 0,79 

To conclude with, an additional stationary states pair 

appears (at the bottom contact point) in transverse handling 

curve with bifurcation set intersection points (figure 9) as 

well as it disappears (at the top point) which doesn’t 

influence the main state stability with the fixed Ackermann 

angle, and the main state stability properties divergent change 

occurs at contact points (of non-transverse intersection): at 

the first contact point (the bottom one) – stability is lost; at 

the second (the top one) – stability properties are restored. 

It’s possible to define the corresponding path for which a 

divergent stability loss (or stability properties restoring) 

occurs radius of curvature from the velocity parameters 

values corresponding to divergent stability change set with 

equation (8). Indeed, the critical velocity value is defined as a 

specific side acceleration function, ( )v v Y= , where
2v

Y
gR

= , 

and from this the required dependency is found
2 ( )

( )
v Y

R Y
gY

= . It’s natural to present the ( )R R v=

dependency in a parametric form further on: 

1 2( / ( )) ,

/ ( ) .

v gl G Y

R l G Y Y

′=
′= ⋅

 

A corresponding ( )R R v= dependency diagram (a 

continuous curve consistent with the fi1:=0,8 value) a 

vertical asymptote at the 1/21 2

1 2

( )kp

k k
v v gl

k k

⋅
= =

−
point (figure 

10), an ( )R R v= dependency diagram is represented as a 

dashed line (whenfi1:=0,79), an instability interval for the 

velocity parameter (13,44m/s– 14,86m/s) which co-insides 

with the instability interval received before (figure 9) 

corresponds to the R=30,5m value; a border consisting of 
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discrete points is defined with the maximum specific side 

acceleration value on the handling curve, 

}{max 1 2, ,

2
min= ≤Y

gR
φ φν then 

max
1Rv gRφ≤ . 

 

Figure 10. Dependence of vehicle longitudinal velocity center of mass 

trajectory curvature minimum radius when φ1 = 0,79 – dashed line and 

when φ1 = 0,8 solid line 

As it could be expected, in practice, there is no 

considerable minimum radius of curvature changing because 

of insignificant φ1 parameter varying there. 

When the 1 2 ,k k> 2 2
1 1 2 2k kφ φ< conditions are fulfilled 

(the case of fi1=0,7 is reviewed) a divergent stability loss on 

the handling curve doesn’t occur, if the path radius of 

curvature doesn’t exceed the 183 m value. 

Figure 11 depicts divergent stability loss absence on the 

handling curve with R=100m, R=160m. 

 

(a) R=100 m, 160 m; φ1=0,7, φ2=0,8 

 

(b) 

Figure 11. Analysis of the possible divergent stability loss of the stationary 

modes corresponding to the understeer curve based on the bifurcation 

diagram. 

A critical radius of curvature value of R=183 m is defined 

from figure 12: an ( )R R v= area of divergent stability loss 

(set with a continuous curve). The radius of curvature 

R=183m value corresponds to the divergent instability area 

top, the left instability area border has a vertical asymptote 

of: 

1/21 2

1 2

( )kp

k k
v v gl

k k

⋅
= =

−
. 

 

Figure 12. The smallest possible radii of curvature in case of φ1 = 0,7: inner 

region of a continuous curve corresponds to the area of divergence 

instability; the outer boundary (the discrete curve) is determined by the 

corresponding maximum value of the specific lateral acceleration Y  in 

which the understeer curve is defined 

Minimum possible radii of curvature (figure 12) for the 

case of fi1:=0,7: a continuous curve internal area corresponds 
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to the divergent instability area; the external border (a 

discrete response) is defined with the corresponding Y  

maximum specific side acceleration value(figure11) and 

handling curve defined along. 

Thus, fi1 parameter reducing to 0,7 causes considerable 

minimum possible radii of curvature reducing and a new 

quality – a possibility of quite large radius of curvature 

circular stationary states implementation with velocity values 

matching the 
max

1Rv gRφ≤ condition (the ( )R R v= border is 

represented a discrete response in this case). 

3. The Results of Analyzing 

The results of analyzing a vehicle with front steering axle 

model divergent stability loss are given below. A rear axle 

slip angle is adjusted increasingly at the Kωω  value: 

2 .
u b

K arctg
v

ω
ωδ ω − += +  

Equations (13), (14) correspond to equations (6) and (7) 

accordingly: 

1
2/ ( / ) ( );l R K Y g R G Yωθ = + ⋅ ⋅ −                 (13) 

2( ) / ( / 1) .G Y gl v Y K v lω θ= ⋅ ⋅ ⋅ + −                 (14) 

At figure 13, (а) stationary states manifold divergent 

stability loss diagrams with control ratio values are depicted. 

Handling curves (R=30,5 m) are also represented at figure 

13, (а) – critical velocity values correspond to the contact 

points 30,5 13,17Rv+
= = m/s; 30,5 13,64+

= =Rv m/s; 

30,5 13,85+
= =Rv m/s. 

 

(а) diagrams of divergence buckling 

 

(b) the minimum radius of curvature of the trajectory for different values of 

the longitudinal velocity 

Figure 13. Features of stability and understeer wheeled vehicle model with 

the additional control of the rear axle wheels ( 0; 0,15; 0,25Kω = ). 

Analyzing results received based on the suggested two-

axle vehicle model stability and handling 

researchingapproach points at considerable effectiveness of 

introducing rear axle steering into design, in particular: a 

model with oversteering rectilinear motion critical velocity 

increases considerably; minimum possible motion circular 

stationary states radii of curvature are reduced; a maximum 

possible velocity in circular paths with quite large radii of 

curvature increases; a control ration effective value is within 

the 0,15 0,2Kω = − range. 

4. Conclusions 

A grapho-analytical approach towards two-axle vehicle 

model entire stationary states manifold divergent stability 

loss analyzing based on the ideas of bifurcation analysis is 

revealed in the work. 

The peculiarity of this approach is getting divergent 

stability loss conditions and minimum possible radii of 

curvature corresponding to circular stationary states without 

any previous defining of the stationary states manifold itself. 

This approach is going to be convenient for evaluating the 

advisability of various design solutions aimed at dynamic 

qualities improvement. 
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