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Abstract: In this paper, we survey various results concerning n -involution operators and k -potent operators in Hilbert 

spaces. We gain insight by studying the operator equation 
nT I= , with , 1kT I k n≠ ≤ −  where ,n k ∈ℕ . We study the 

structure of such operators and attempt to gain information about the structure of closely related operators, associated operators 

and the attendant spectral geometry. The paper concludes with some applications in integral equations. 
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1. Introduction 

Let H  denote a Hilbert space and ( )B H  denote the 

Banach algebra of bounded linear operators. If ( )T B H∈ , 

then 
*T  denotes the adjoint of T , while ( ), ( ),Ker T Ran T M

and M ⊥
 stands for the kernel of T , range of T, closure of 

M  and orthogonal complement of a closed subspace M  of

H , respectively. We denote by ( ), , ( )T T r Tσ  and ( )W T

the spectrum, norm, spectral radius of T and numerical range 

of T , respectively. Recall that an operator ( )T B H∈ is 

normal if 
* *T T TT= , self-adjoint (or Hermitian) if 

*T T= , 

skew-adjoint if 
*T T= − , unitary if 

* *T T TT I= = , a 

projection(or idempotent) if 
2T T= , an orthogonal 

projection if 
2T T=  and 

*T T= , an involution if 
2T I= , a 

symmetry or a reflection if 
* 1T T T −= = . That is, T is self-

adjoint unitary, isometric if 
*T T I= , n-normal if

* *n nT T T T= , an n -th root of identity if ,nT I n=  a positive 

integer, an n -involution if , 2nT I n= ≥  a positive integer 

and normaloid if ( )r T T= , a contraction if Tx x≤ , for 

all x H∈ . 

Two operators ( )A B H∈  and ( )B B K∈  are said to be 

similar if there exists an invertible operator ( , )N B H K∈

such that NA BN=  or equivalently 1A N BN−= , and are 

unitarily equivalent if there exists a unitary operator 

( , )U B H K+∈  (Banach algebra of all invertible operators in 

( )B H ) such that UA BU=  (i.e. *A U BU= equivalently, 

1A U BU−= ). Two operators ( )A B H∈  and ( )B B K∈  are 

said to be metrically equivalent if Ax Bx= , (equivalently, 

1 1

2 2, ,Ax Ax Bx Bx=  for all x H∈ ) (see [5] for more 

exposition). Two operators S  and T  are said to be nearly 

equivalent if there exists an invertible operator V  such that
* 1 *S S V T TV−= . Clearly similarity, unitary equivalence, 

near-equivalence and metric equivalence are equivalence 

relations on ( )B H . An operator T is said to be nearly normal 

if * 1 *TT V T TV−= , for some invertible operator V . 

The spectral radius of an operator T  denoted by ( )r T  is 

defined as 
1

( ) lim n n
nr T T→∞= . 

It is well known that ( )r T  is equal to the actual radius of 
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the spectrum, that is, { }( ) sup : ( )r T Tλ λ σ= ∈ . The 

numerical range of ( )T B H∈  is defined by

{ }( ) , : , 1W T Tx x x H x= ∈ = . Behaviour of the powers 

nT  of a linear operator T on a Hilbert space H  has been 

studied by some researchers, leading to important 

applications. It is well-known that linear operators and their 

powers may behave quite differently. 

2. Main Results 

Theorem 2.1 ([5], Proposition 1.10). ( )T B H∈  is similar 

to a unitary operator if and only if T  and 
*T  are both similar 

to isometries. 

An operator ( )T B H∈  is said to be algebraic if there 

exists a nonzero polynomial ( ) [ ]p t F t∈  such that ( ) 0p T = . 

An algebraic operator ( )T B H∈  is said to be of order n  if 

( ) 0p T =  for ( ) [ ]p t F t∈  such that the degree of p  is n  and 

( ) 0q T ≠  for any polynomial of degree less than n . 

Algebraic operators with characteristic polynomial 

( ) 1,np t λ= −  2n ≥  are said to be generalized involutive of 

order n  or n -involutions and their characteristic roots are 

nth roots of unity. 

Operators such that 
nT I=  are similar to unitary 

operators. Indeed, if 
nT  is a contraction then T  is similar to 

a contraction C , which implies that nC I=  which in turn 

implies that C  is unitary (by use of the Nagy-Foias-Langer 

Decomposition for contractions ([5], § 5.1)). Operators of the 

form 

2 ki

nT e I

π

=  provide the simplest example of n -

involution operators in Hilbert spaces. It has been shown in 

([3], Theorem 1) that all n -involutions are of this form. 

Clearly an n -involution need not be unitary although it is 

norm-preserving and invertible. Note that if T is an n -

involution then 
1T −

 and 
*T  are n -involutions (see [1], [6], 

[10]). We may have operators T such that 
nT I= , with 

( )T Dσ ⊆ ∂  but 1T ≥ . 

Example 1. Let
1 1

0 1
A

− 
=  
 

. Clearly
2A I= . A simple 

computation shows that A  is not unitary, although it is 

similar to a unitary operator. Note that every operator similar 

to a unitary operator is invertible. 

Theorem 2.2 If S  and T  are similar then nS  and 
nT are 

similar. 

Theorem 2.3 Every n -involution T  is invertible. 

Proof. The fact that 
2T I=  implies that T  is left-

invertible and right-invertible, and hence invertible. 

Clearly if T is n -involution then 
1 1nT T− −=  (see [6]) and 

all the previous results hold. We note that an n -involution 

need not be unitary. The following result gives a condition 

under which an n -involution is unitary. 

Corollary 2.4 ([2], Corollary 6, § 3.7.3) If T is normaloid 

and 
kT I= , then T  is unitary. 

Proof. Recall that for any operator T , we have that
kkT T≤ . Since T  is normaloid, we have that

kkT T T= = . Since 
kT I=  it is true that

1
kkT T T= = = , whence 1T ≤ . 

Thus T is an invertible isometry and is therefore a unitary 

operator. 

Define the set { }( ) : ,n
T T B H T I nη = ∈ = ∈ℕ . Clearly, 

Tη  is a self-adjoint sub-algebra of n -involutions on H . It is 

clear that if TT η∈ , then *
TT η∈ . 

Theorem 2.5 Let S  and T be unitarily equivalent 

operators in a Hilbert space H . Then S is normaloid if and 

only if T  is. 

Proof. Suppose U  is a unitary operator. Then *S U TU=
implies that *n nS U T U= , so that 

n nS T=  for every 

integer 1n ≥ . Thus S  is normaloid if and only if T  is. 

Theorem 2.6 If TT η∈ , then T  is n -normal. 

Note that ( )T B H∈  is n -normal if and only if 
nT  is a 

normal operator. In other words, the n-normality of T  is 

equivalent to the statement that 
* *n n n nT T T T= . 

Theorem 2.7 Let , ( )S T B H∈  be such that SS η∈  and S

and T  are unitarily equivalent, n  then TT η∈ . 

Proof. Using 
nT I=  and *S UTU= , where U is unitary, 

we have that *n nS UT U= . Rewriting, we have 
*n nT US U I= = . This proves the claim. 

Note that Theorem 2.7 is also true if unitary equivalence is 

replaced by similarity. 

The next result shows that quasisimilarity leaves the n -

involutory property invariant. 

Proposition 2.8 If SS η∈  and S and T are quasisimilar, 

then 
nT I= . 

Proof. Suppose nS I=  and suppose S and T are 

quasisimilar with quasi-affinities X and Y such that XS = TX 

and SY = Y T. A simple calculation shows that n nXS T X=  
n nS Y YT=  (i.e. nS  and 

nT  are quasisimilar). Using the fact 

that nS I= , we have 
nT X X=  and 

nYT Y= . This says that 

(
nT I− ) X = 0 and Y (

nT I− ) = 0. This implies that 

Ran(X)=Ker(
nT I− ) and Ran(

nT I− ) = Ker(Y), 

respectively. 

Using the fact that X and Y are quasi-affinities, we have 

that Ker(
nT I− ) = H and Ran(

nT I− ) = { }0 . These two 

statements imply that 
nT I−  = 0, which is equivalent to

nT I= . This proves the claim. 

The following two results follow from definitions. 

Proposition 2.9 Let S  be a self-adjoint involution which is 

metrically equivalent to T . If T  is self-adjoint then it is an 

involution. 

Proposition 2.10 Let SS η∈  and suppose that S and T are 
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nearly equivalent. Then TT η∈  if S and T are self-adjoint. 

Theorem 2.11 If 
nT I=  and nS I= , then TS  is an n -

involution if and only if TS = ST. 

Proof. Using TS = ST we have 2( )n n nTS T S I I= = = . 

The converse is trivial. 

Theorem 2.12 If T is an n-involution, then r(T) = 1. 

Proof. Recall that 
1

( ) lim n n
nr T T→∞= . Thus if

nT I= , 

then 

1

1= ( ) limn n n
nr T T→∞=

1

lim ( )
nk knk

n T→∞=
1

lim ( )
nk nnk

n T→∞= =( ( ))nr T  

Thus ( ) 1r T = . 

Remark. Note that if 1nT = , then ( ) 1r T = . However, 

there are operators T such that 1T =  does not imply that

1nT = . For instance, the unilateral shift S  on 
2
ℓ ( ℕ ) is 

such that 1S =  but 0nS =  as n → ∞. Note also that 

1nT =  need not imply that 1T = . To see this, consider 

the operator represented by the matrix 

1 2 0

0 1 0

0 0 1

T

 
 = − 
 
 

. A 

simple calculation shows that 
2T I=  but 1 2 1T = + > . 

The result below gives a condition when 1nT =  implies 

that 1T = . 

Note that if T is normal then 
nnT T= . Consequently, if 

T is a normal n-involution then 1T = . This follows from 

the fact that 1
nnT T= = . 

Theorem 2.13 If T is a normal n-involution then 1T = . 

Proof. This follows from the fact that 1
nnT T= = . 

Theorem 2.13 also holds when normal is replaced by 

normaloid operator. 

Theorem 2.14 If T is an n-involution, then T is n-normal, 

for some n ∈ℕ . 

Proof. This follows easily from 
* *n nT T T T= . 

Example 2. The operator with matrix 
0 1

1 0
T

− 
=  
 

 is 

normal and 
4T I=  and hence TT η∈ . A simple computation 

shows that T is 4-normal. 

Definition 2.15 Let C be a simple smooth closed oriented 

curve and let ( )tα  be a one-to-one mapping of C onto itself. 

The function ( )tα  is called a shift function or simply a shift 

on C. A shift ( )tα  is called a Carleman shift if

[ ( )] ,t t t Cα α ≡ ∈ .  

Here 1 1( ) [ ( )], , ( )n nt t t C tα α α α α−≡ ∈ = , denotes the n-th 

iteration of ( )tα , 2,3,n = ⋯ . 

Let C D= ∂  denote the unit circle and 

2

( )

i

nt e t

π

α = . 

Evidently α(t) is a generalized Carleman shift of order n, 

preserving the orientation of C. The function 
1

( )t
t

α =  is a 

Carleman shift of order 2 on C, changing the orientation of 

C. 

3. Spectral Properties of n-Involutions 

In this section we study some spectral properties of n-

involutions. 

Theorem 3.1 If T is an n-involution, then 0 ( )Tσ∉ . 

Proof. Follows from the fact that T is invertible. 

Recall that a complex number λ  is said to be unimodular 

if 2 ike πλ =  for some k ∈ℝ . 

Proposition 3.2 If T is an n-involution then every 

component of the spectrum of T intersects the unit circle. 

Proof. Since 
nT I=  we have that

1 ( ) ( )
nn n n

r T T T r T= ≤ ≤ ≤ . Suppose that r(T) > 1. Then 

there exists a non-zero vector y H∈  such that 
nT y → ∞  

as n → ∞ , a contradiction to 1nT = . This proves that r(T) 

= 1. 

Theorem 3.3 Let H be a finite dimensional complex 

Hilbert space. An operator ( )T B H∈  is an n-involution if 

and only if it is similar to a diagonal matrix operator with 

unimodular entries. 

Proof. From Theorem 3.2 every component of the 

spectrum of T intersects the unit circle. Since H is finite 

dimensional, { }1 2,( ) ( ) , ,p mT Tσ σ λ λ λ= = ⋯  with

1 2, , m Dλ λ λ ∈ ∂⋯ . By the Jordan canonical decomposition, 

the matrix T is similar to a block-diagonal matrix  

1

2

0 0

0 0

0 0 m

T

T
T

T

 
 
 =
 
  
 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

, where i i mT Iλ=  and mI  is the 

m -dimensional identity matrix. 

Corollary 3.4 If T is an n-involution then the only 

eigenvalues of T are of the form
2

, 1, , ,0 1

ik

n
k ke n k k n

π

λ λ= = ∈ ≤ ≤ −ℕ . 

Theorem 3.4 can be generalized as follows. 

Theorem 3.5 Let T be an n-involution. A scalar λ ∈ σ(T) if 

and only if |λ| = 1. 

An operator T is called an n-symmetry if it is a unitary n-

involution, that is,  
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1 *( ) ( )n n nI T T T−= = = . 

An operator T is an n-reflection if 
nT I=  and

dim( ( )) 1Ran T I− = . 

Example 3. The operators 
1 1

0 1
A

 
=  − 

 and 

1 0 1

0 1 0

0 0 1

B

 
 =  
 − 

 acting on 2C  and 3C , respectively are 2 -

reflections since a simple calculation shows that 
2 2,A I B I= =  and 

dim( ( )) 1Ran A I− =  and dim( ( )) 1Ran B I− = . 

The following claims follow easily from definitions. 

Theorem 3.6 An operator ( )T B H∈  is an n -reflection if 

and only if T is similar to a diagonal matrix

(1,1, , 1)D diag= −⋯ . 

Theorem 3.7 An operator ( )T B H∈  is an n-involution if 

and only if T is similar to a diagonal matrix , 

1iλ = . 

Note also that if T is an n-involution then
1 1( ) ( )nT Tσ σ− −= . 

Clearly the following operator class inclusion holds 

n − Symmetries ⊂  n − Reflections ⊂  n− Involutions ⊂  
n-Normal 

Example 4. The operator 2 2: ( ) ( )T L L→ℝ ℝ  defined by

( )( ) ( )Tf t f t= − , where the bar denotes complex conjugation 

and t R∈ is an involution. Clearly 

2( )( ) ( )( ) ( ( )) ( )T f t T f t f t f t= − = − − = . 

The reflection operator 2 2: ( ) ( )R L L→ℝ ℝ  defined by 

( )( ) ( )Rf t f t= −  is an involution which is unitary. 

Clearly reflections are self-adjoint involutions. 

4. n-Involutions, Associated Idempotents, 

k-Potents and Geometry 

Involutions have a wide range of applications in geometry. 

Interestingly, there is a close relationship between n -

involutions and idempotent operators. 

Proposition 4.1 (a). If T is an involution then 

1
( )

2
P I T= +  is an idempotent operator. 

(b). If P is an idempotent operator then T=2P-I is an 

involution. 

Proof. 

(a). 
2 2 21

[ ( )]
2

T I P I T= ⇒ = +  

21 1
( 2 ) ( )

4 2
I T T I T P= + + = + =   

(b). 2 2 2(2 )P P T P I= ⇒ = −   

24 2 2 4 4P P P I P P I I= − − + = − + =  

It is clear that the map : ( ) ( )B H B Hψ →  defined by 

1
( ) ( )

2
T I T Pψ = + =  is a bijective correspondence between 

the class of involutions and that of idempotent operators. We 

shall call the involution T and the idempotent P  associated. 

Proposition 4.2 If P is a rank one idempotent operator then 

the operators 

2
, ,

0

I P P I P P I P I

I P I P P P I

− − −     
     − −     

 

are involutions. 

Theorem 4.3 ( )T B H∈  is an involution if and only if it is 

the difference of a pair of complementary idempotent 

operators. 

Proof. Suppose that 2 2, ,T P Q P P Q Q= − = =  and P + Q 

= I. Then 2 2 2 2( )T P Q P Q P Q I= − = + = + =  because PQ 

= QP = 0. This proves that T is an involution. Conversely, if 

T is an involution, we put 
1

( )
2

P I T= +  and 
1

( )
2

Q I T= − . 

Then P − Q = T and it is easy to see that this decomposition 

is unique:  

1
, ( )

2
T P Q P Q I P I T= − + = ⇒ = + . 

Example 5. The projection 

1 1
0

2 2

1 1
0

2 2

0 0 0

P

 
 
 
 =  
 
 
 
 

 has 

0 1 0

2 1 0 0

0 0 1

T P I

 
 = − =  
 − 

 as its associated involution. 

Theorem 4.4 Two involutions are similar if and only if 

their associated idempotent operators are similar. 

Proof. Suppose 1T  and 2T  are involutions acting on a 

Hilbert space H  such that 
1

1 2T X T X−= . Then the associated idempotent operators 

are 1 1

1
( )

2
P I T= +  and 2 2

1
( )

2
P I T= + , respectively. Clearly, 

1 12T P I= −  and 2 22T P I= − . Upon substitution, we have 

1
1 22 (2 )P I X P I X−− = −  and upon simplification we have 

that 1
1 2P X P X−= . Conversely, if 1

1 2P X P X−= , then 

1
1 2

1 1
( ) ( ( ))

2 2
I T X I T X−+ = + . A simple calculation shows 

)( idiagD λ=
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that T1=X
-1

T2X. This proves the claim. 

Remark. An idempotent operator need not be self-adjoint. 

We give a condition under which it is self-adjoint in terms of 

its associated involution. 

Proposition 4.5 An involution is self-adjoint if and only if 

its associated idempotent is self-adjoint. 

Proof. Let T be a self-adjoint involution. Then �∗ =
�

�
�� + 	∗
 =

�

�
�� + 	
 = � , where P is the associated 

idempotent. Conversely if
*P P= , then

* *2 2T P I P I T= − = − = . This proves the assertion. 

Remark. It is clear that if T is an involution, then 
*, ,I T T± ± ±  exhaust the set of involutions. Note also that the 

sum of involutions need not be an involution: For instance, if 

T is an involution, then T−  is but 2( ) 0T T I+ − = ≠ . The 

product of two involutions also need not be an involution 

unless they commute, as seen in Theorem 2.11. 

Theorem 4.6 If ( )T B H∈ , then the following assertions 

are equivalent. 

(a). 
*T T=  and 

2T I= . 

(b). T is normal and 
2T I= . 

(c). There exists an orthogonal projection such that

1
( )

2
P I T= + . 

Proof. We first note that assertion (a) says that T is a self-

adjoint unitary or a symmetry. 

(a)⇒  (b): Suppose 
*T T= . To see that T  is normal, note 

that 
* * 2T T TT T= = . 

(b) ⇒  (c): Let
1

( )
2

P I T= + . Then

* *1 1
[ ( )][ ( )]
2 2

P P I T I T= + +  

* *

* *

*

*

1
( )

4

1
( )

4

1 1
[ ( )][ ( )]
2 2

T T T T I

TT T T I

I T I T

PP

= + + +

= + + +

= + +

=

 

and 

2 2

2

1
[ ( )]
2

1
( 2 )

4

1
(2 2 )

4

1
( )

2

P I T

T T I

I T

I T

P

= +

= + +

= +

= +

=

 

and  

*P P= . 

(c) ⇒  (a): Let 2T P I= − . Then  

* *2 2T P I P I T= − = − =  

and  

2 2(2 ) 4 4T P I P P I I= − = − + =  

The following result gives a condition under which an 

involution is unitary. 

Theorem 4.7 If P is an orthogonal projection (self-adjoint 

idempotent), then the associated involution 2T P I= −  is 

unitary. 

Proof. This follows from  

* *(2 )(2 )T T P I P I= − −  

*

*

4 4

(2 )(2 )

P P I

I

P I P I

TT

= − +
=

= − −

=

 

If P is a projection, then the linear operator 

( 1) , , 0T I Pλ λ λ= + − ∈ ≠ℝ  is called a dilatation in the 

ratio λ. In the special case λ = 1, the dilatation becomes the 

identity operator. If λ = 0, T is a projection and if λ = −1, then 

T is an involution (indeed, a unitary involution, if P is an 

orthogonal projection).  

An invection T is a linear operator satisfying 
4T I= . That 

is, T is a 4-involution. 

Proposition 4.8 Every involution is an invection. 

Remark. We note that the converse of Proposition 4.8 is 

not true in general. There exist non-involutory 4-involutions. 

For instance, 
0 1

1 0
A

− 
=  
 

 is a 4-involution which is not an 

involution. Geometrically, the 4-involutions A  and A−  

represent rotations through 90�  and 90− � , respectively. 

The following operators are also 4-involutions: 

4 7 5 1 2 2

3 6 5 , 1 2 1 ,

2 4 3 0 0 1

11 9 15

4 3 8

10 8 15

A B

C

− − − −   
   = − − = − −   
   − − −   

− − − 
 = − 
 − − 

 

Maple Software shows that, 

{ } { } { }( ) 1, , , ( ) 1, , , ( ) 1, ,T i i B i i C i iσ σ σ= − − = − − = − −  and 

that 13.733, 3.606A B≈ ≈  and 25.814C ≈ . 

A simple computation shows that A and B are similar. A 

closer scrutiny reveals that ( ) ( )tr A tr B= . 

Theorem 4.9 Let A ∈ B(H) and suppose that A I≠ . If
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2A I= , then A is similar to an operator with matrix

0

0

I
B

I

 
=  − 

. 

We note that in Theorem 4.9 similarity cannot be replaced 

with unitary equivalence. 

Let A ∈B(H). Consider the subspaces M and N defined by 

{ }:M x H Ax x= ∈ =  and { }:N x H Ax x= ∈ = − . Clearly 

M and N are A- reducing subspaces and H M N= ⊕ .  

Two n-involutions need not be similar. The following 

result gives a condition when two involutions are similar. 

Corollary 4.10 Let A, B ∈ B(H). If A and B are n -

involutions and ( ) ( )tr A tr B= , then A and B are similar. 

Proof. Follows easily from Theorem 4.9. 

Proposition 4.11 If T is a n -involution, then 1T ≥ . 

We now try to characterize the class of n-involutions with 

norm 1. 

Theorem 4.12 Let T be an n-involution. Then 1T =  if 

and only if T is unitary. 

Proof. The converse is trivial. Suppose 
nT I=  and 

1T = . Then T is invertible, both T and 
1T −

 are power 

bounded and hence similar to a unitary operator ([5], 

Corollary 1.16 and Proposition 3.8). The condition that 

1T =  then shows that T is unitarily equivalent to a unitary 

and hence a unitary. 

Remark. Theorem 4.12 is true if T is unitarily equivalent to 

the operator. Note that unitary equivalence in this case 

collapses to equality to 
0

0

I

I

 
 − 

. We note also that 

A B=  is a necessary but not a sufficient condition for the 

unitary equivalence or even similarity of any two operators A 

and B. 

Corollary 4.13 If T ∈ B(H) is unitary and { }( ) 1Tσ ⊆ −  

and dim( )H < ∞ , then T is a self-adjoint involution. 

Proof. T unitary and { }( ) 1Tσ ⊆ −  implies that 
* 1T T −=

and { }* 1( ) ( ) 1 .T Tσ σ −= ⊆ − . This is true if T is self-adjoint. 

Thus 
2 *T T T I= = . This proves the claim. 

Example 6. The following operators are 4-involutions with 

norm 1: 

0 1

1 0
A

− 
= ±  

 
 and 

0

0

i
B

i

 
= ±  

 
. A simple calculation 

shows that they are unitary. 

Theorem 4.14 Every 4-involution can be decomposed as a 

product of two involutions. 

Theorem 4.15 If T is a 4-involution then 

2 31
( )

4
P I T T= + +  is the associated idempotent operator. 

Proof. Indeed, using Theorem 4.14, we have 

2 2 2 3 4 5 61
[ 3 4 3 2 ]

16
P I T T T T T T= + + + + + +  

2 4 6 2 3 4 5

2 3

2 3

1
[ 2 2 4 2 2 ]

16

1
[4 4 4 4 ]

16

1
[ ]

4

I T T T T T T T T

I T T T

I T T T

P

= + + + + + + + +

= + = +

= + + +

=

 

A linear operator T satisfying 
3T T= −  is called a twist, 

tripotent if 
3T T=  and k-potent if 

kT T= , where 2k ≥  is a 

positive integer. For more recent exposition on tripotent 

operators (see [8], [10]). The following result relates twists 

and 4-involutions. 

Theorem 4.16 Let ( )T B H∈ . 

(a). If T is a twist then 
2A I T T= + +  and 

1 2 3A I T T A− = − + =  are 4-involutions. 

(b). If A is a 4-involution then 

3 11 1
( ) ( )

2 2
T A A A A

−= − = −  is a twist. 

(c). If T  is a k-potent for 2k ≥ , then Ran(T) is closed and 
1kT −

 is idempotent and that 

2( ) ( ) ( )kRan T Ran T Ran T= = =⋯ , 

and 

2( ) ( ) ( )kKer T Ker T Ker T= = =⋯ . 

With respect to the direct sum decomposition H = Ran(T) 

⊕ Ker(T), the operator T has a  

2 × 2 operator matrix of the form 
0

0 0

A
T

 
=  
 

, where A: 

Ran(T) →  Ran(T) is invertible and 
1kA I− = . That is A is a 

1k − -involution. 

Remark. Twists and 4-involutions have important 

applications in geometry. For instance, if 2 2:A →ℝ ℝ  

defined by A(x, y) = (−y, x), then 2 3,A I A A= − = −  (i.e. A is 

a twist) and 
4A I=  (i.e. A is a 4-involution), so that 

2 2 1( 1) , .n n nA I A A+= − = −  

Therefore 

cos sintAe tA tA= +  

which is a rotation by the angle t: 

( , ) (cos sin , cos sin ),tAe x y tx ty t tx= − +  

and so A is a generator of rotation. 

Proposition 4.17 If T is an n-involution and an m-

involution, with n ≥ m + 2, then T is an 

(n − m)-involution. 

Proof. The proof follows from the fact that
( ) ( )n m n m n mI T T T T− −= = = . 
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Note that the converse to Proposition 4.17 is not generally 

true. For instance an involution T cannot be a 3-involution, 

unless T = I. 

The following result is trivial. 

Proposition 4.18 If T is an n-involution then 
nT  is an 

involution. 

Theorem 4.19 If T is an involution with associated 

idempotent P, then Ran(T) = Ker(I − P) and Ran(P) = Ker(I 

− T). 

Proof. ( )x Ran T x Tx∈ ⇔ =  

(2 )

( (2 )) 0

( ) 0

( ).

x P I x

I P I x

I P x

x Ker I P

⇔ = −
⇔ − − =
⇔ − =
⇔ ∈ −

 

The second part follows by substituting 
1

( ).
2

P I T= +  

( )x Ran P x Px∈ ⇔ =  

1
( )

2

( ) 0

( ).

x I T x

I T x

x Ker I T

⇔ = +

⇔ − =
⇔ ∈ −

 

Theorem 4.20 If T = AB, where A and B are invertible 

operators, then T is similar to BA. 

Theorem 4.21 If T is a product of two involutions then T 

and 
1T −
 are similar. 

Proof. If T = AB, where A and B are involutions, then using 

Theorem 4.20, we have 1 1( )T BA A AB A ATA− −= = = . This 

establishes the claim. 

Corollary 4.22 If T is a 4-involution, then T and 
1T −
 are 

similar. 

Proof. From Theorem 4.14, every 4-involution is 

decomposable as a product of two involutions. Invoking 

Theorem 4.21, the claim follows. 

Theorem 4.23 Every idempotent operator T is k-potent, for 

every integer 2k ≥ . 

Theorem 4.23 asserts that every projection operator is k-

potent, for every integer k ≥ 2. But not every k-potent, for 

every integer k > 2 is necessarily a projection. 

The following results show that if two idempotent 

operators have equal range then they are similar. 

Theorem 4.24 If H is a Hilbert space and J is an 

idempotent on H with range M and MP  is the orthogonal 

projection of H onto M, then J and MP  are similar operators. 

Corollary 4.25 If A, B ∈ B(H) and 
2A A=  and 

2B B=
with Ran(A) = Ran(B), then A is similar to B. 

Theorem 4.27 Let T be an n-involution. Then T is unitary if 

and only if 
1 1

1

( )n
T

T − −
= . 

Proof. The fact that T is a unitary involution implies that 

* *T T TT I= =  and 
nT I= . Thus 

1 1( )nT T − −= . Using the substitution 1 1( )nT T − −= , we 

have * 1 1( )nT T I− − = . Taking norms both sides, we have that 

*

1 1

1

( )n
T T

T − −
= = , which proves the claim. 

Recall that T ∈ B(H) is a 2-isometry if
*2 2 *2 0T T T T I− + = . 

Proposition 4.28 An operator T is an n-involution if and 

only if 
*T  is an n-involution. 

Theorem 4.29 Let T be a 2-isometry. If T is an involution, 

then T is unitary. 

Proof. Using Proposition 4.28 and a simple computation 

gives *2( ) 0I T T− =  or 
*T T I= . Thus T is an invertible 

isometry, which must be unitary. This proves the claim. 

Theorem 4.30 Let T be a self-adjoint operator. Then T is 

an involution if and only if T is unitary. 

Proof. Suppose 
*T T=  and 

2T I= . Then 
* *T T TT I= = . 

Thus T is unitary. Conversely, suppose 
*T T=  and

* *T T TT I= = . Then
2T I= , which proves our claim. 

Theorem 4.30 says that T  is a self-adjoint involution if 

and only if it is a symmetry. This means that the class of 

unitary operators and the class of involutions intersect at the 

class of symmetries. We note that there are operators which 

are involutions but are not isometric and hence not 

symmetric. For instance, the operator 
1 1

0 1
T

 
=  − 

 is an 

involution which is not an isometry (and hence not a 

symmetry). 

Remark. It has been shown by Singh et al [8] that the 

product of two tripotent operators is a tripotent operator if 

and only if they commute. The sum of involutions need not 

be an involution, even if they commute. However, it is clear 

that every n-involution is a sum of two complementary 

idempotent operators and that every n-involution is an n + 1-

potent operator. We aver that the claim by Singh etal [8] is 

equivalent to saying that the product of two commuting 

involutions is a tripotent operator. 

Operators A and B are said to quasicommute if

AB BA T= + , where T  is a compact operator (see also [4], 

Definition 1.23). Operators A and B are said to anti-commute 

if AB = −BA (or equivalently, AB+BA = 0). 

Example 7. Consider the operators Q and U defined on 
2 ( )L D∂  by ( )( ) ( )Qf t f t=  and  

(Uf)(t) = if (t), for all 2 ( )f L D∈ ∂ . A simple computation 

shows that Q is an involution and U is unitary and that 

( ) ( )QU f Q if if i f= = = −  and ( ) ( ) .UQ f U f i f= =  

Clearly UQ QU T= + , where ( )( ) 2 ( )Tf t if t= . Thus Q 

quasicommutes U. Note however, that [ 2Q , U] = 0. 

Theorem 4.32 Let Q be an involution and U is unitary 

operator. Then UQ = QU if and only if Q is a symmetry or U 

= I. 

Proof. Suppose UQ = QU. We pre-multiply by Q and post-
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multiply by Q and use the fact that 2Q I= . Applying the 

Fuglede-Putnam Theorem ([5], Theorem 0.15), taking 

adjoints and then solving the resulting equalities, we have 

that * * * *Q U Q U U QU= =  or U = I. This only holds if the 

invertible operator Q satisfies *Q Q=  (that is, Q is a 

symmetry) or U = I. 

Proposition 4.33 Let A and B be anti-commuting 

idempotent operators. Then A + B is idempotent. 

The following results are our adaption from linear 

topological spaces (see [3]) to real or complex Hilbert spaces. 

Theorem 4.34 ([3], Theorem 1) Suppose that A ∈B(H) is 

an n-involution where H is a complex Hilbert space. Let 
2 ik

ne

π

ε = . Then there exist subspaces 1 2, , , nH H H H⊆⋯  

such that 

1 2 nH H H H= ⊕ ⊕ ⊕⋯  

and 

,0 1
k k

k
H HA I k nε= ≤ ≤ −  

Proof. Consider the operators 

1

0

1
( ) ,1 .

n
n k j

n

j

Q A k n
n

ε
−

−

=

= ≤ ≤∑  

A simple computation and assuming that 
0A I= , we have 

0
1Q A I= = . 

2 0 2
2

1,2

1
( ) ( )

2

k k

k
Q A Aε ε− −

=
 = +   

1 0 0 0 0 11
( ) ( ) ( ) ( )

2
A A A Aε ε ε ε = + + +   

[ ]1

2

1
(1 )

2

I I A A

I A

ε

ε

= + + +

= + +
 

A similar computation gives 

2 2 4 2
3

1 1
(1 ) (1 )

3 3
Q I A Aε ε ε ε= + + + + + +  

and 

2 3 2 4 6 2
4

1 1
(1 ) (1 )

4 4
Q I A Aε ε ε ε ε ε= + + + + + + + +  

3 6 9 31
(1 )

4
Aε ε ε+ + + +  

and so on. 

A straightforward verification shows that the kQ  are 

projections (that is, 2
k kQ Q= ). If we set ( )k kH Q H= , then 

one can easily see that the kH  have the desired properties. 

Theorem 4.35 Let T ∈  B (H) be an n-involution. Then 

(a). 1( )nKer T +  and 1( )nRan T +  are T-invariant. 

(b). 1( )nKer T −  and 1( )nRan T −  are 
1T −
-invariant. 

Proof. (a). Note that 
nT I=  implies that 

1nT T+ = . Thus 
1( ) ( )nKer T Ker T+ =  and 1( ) ( )nRan T Ran T+ =  which are 

invariant under T. 

(b). The result follows from part (a) and the fact that
1 1nT T− −= . 

We introduce a new relation of operators. 

Let A, B ∈  B(H). If A = QB, where Q is an invertible 

operator then A and B are said to be Q-equivalent (notation
Q

A B≈ ). If Q is bounded but not necessarily invertible, we 

say that A and B are Q-partial equivalent. For instance, if Q 

is an isometry, we say that A and B are Q-partial isometric 

equivalent. Two operators A and B are said to be Wilf-

equivalent if B = V A, where V is a symmetry (that is, 
* 1V V V −= = ). 

Note that Q-equivalence preserves invertibility of 

operators. Note also that metric equivalence implies Q-

equivalence of operators. Note that these two relations 

coincide if Q is a unitary operator. 

Theorem 4.36 Any two invertible operators , ( )T S B H∈  

are Q-equivalent. 

Corollary 4.37 Any two n-involutions T, S ∈ B(H) are Q-

equivalent. 

Proof. Since n-involutions are invertible operators, the 

result follows from Theorem 4.36. 

Note that Q-equivalence of A and B is equivalent to the 

existence of invertible operators 1Q  and 2Q such that 

1A Q B=  and 2B Q A= . We note that Q-equivalence, Q-

partial equivalence and Q-partial isometric equivalence are 

not equivalence relations because they are not symmetric 

relations. 

Theorem 4.38 If Q is an involution operator then Q-

equivalence is an equivalence relation on B(H). 

Proof. Clearly A = IA. Thus 

Q

A A≈ . This shows that 

Q

≈  is 

reflexive. Now suppose 

Q

A B≈ . Then A = QB and 

1B Q A QA−= = . Thus 

Q

B A≈ . This proves that 

Q

≈  is 

symmetric. Finally, suppose that 

Q

A B≈  and 

Q

B C≈ . We show 

that 

Q

A C≈ . By hypothesis, there exists invertible operators 

1Q  and 2Q  such that 1A Q B=  and 2B Q C= . Thus

1 1 2A Q B Q Q C= = , which proves that 

Q

A C≈ . This shows that 

Q

≈  is transitive. Therefore 

Q

≈  is an equivalence relation. 
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Remark. Wilf-equivalence is an equivalence relation 

stronger than Q-equivalence. 

Question. Does Q-equivalence preserve self-adjointness, 

invertibility, norm, numerical range, etc. of operators? How 

is it related to other operator equivalence relations? 

It is clear that Q-equivalence preserves invertibility but it 

does not preserve norm, spectrum, and self-adjointness of 

operators and numerical range of operators. To see this, let 

0 1

1 0
A Q

 
= =  

 
 and 

1 0

0 1
B

 
=  
 

. A simple calculation 

shows that 

Q

A B≈ , but ] { }( ) 1,1 1 ( )W A W B= − ≠ = . This 

example also reveals that Q-equivalent operators need not 

have equal spectra, even if Q is unitary. If Q is unitary, then 

A B= . 

Remark. We note that Q-equivalence of operators is 

weaker than similarity. To see this, suppose A = QB. Then A 

= QB = QBQ 1Q−  = Q(BQ) 1Q− . It is a well-known result 

(see [1], Lemma 1) if A BC=  for some involutions B  and

C , then A  is similar to CB . We generalize this result below 

as follows. 

Proposition 4.39 If A and B are Q-equivalent then A is 

similar to BQ. 

The converse of Theorem 4.39 is also true. This leads to 

the following strong result. 

Corollary 4.40 Two operators A and B are Q-equivalent if 

and only if A is similar to BQ. 

Proof. We prove the converse since the other direction has 

been proved in the remark above. Suppose, without loss of 

generality that A = Q(BQ) 1Q− . Then a simple computation 

shows that A = QB. This proves the claim. 

Proposition 4.41 Let A and B in B(H) be n-involutions. If A 

and B are U-equivalent for some unitary operator U, then 

they are metrically equivalent. 

The converse of Theorem 4.41 is not generally true. The 

unilateral shift and identity operators on 2 ( )ℓ ℕ  are 

metrically equivalent but not U-equivalent for any unitary 

operator U. We note that the converse of the above statement 

holds in finite dimensional Hilbert spaces. 

Corollary 4.42 Two operators A and B on H are U-

equivalent for some unitary operator U if and only if they are 

normal and metrically equivalent. 

Proof. We prove the converse. Part of the other direction 

follows from Proposition 4.39 with Q U= , where U  is a 

unitary operator. Now suppose A and B are metrically 

equivalent normal operators. Then by ([7], Corollary 2.6), 

there exists a unitary operator U such that  

A = UB. 

Corollary 4.43 If two n-involutions A and B acting on a 

Hilbert space H are U-equivalent for some unitary operator 

U then A B= . 

Proof. Follows from the proof of Proposition 4.41. 

 

5. Discussion 

The notion of an operator T satisfying 
nT I=  is 

applicable in solving singular integral equations with a 

Carleman shift that involve an involutive operator Q such 

that 2Q I= , or more generally, nQ I= . Such equations can 

be written in the form 

: ( )K A QB fφ φ= + =  

or more generally 

2 1
1 2 3: ( )n

nK A QA Q A Q A fφ φ−= + + + + =⋯  

where 1 2, , , nA A A⋯  are bounded linear operators in a 

Banach space under consideration (see [4]). Projection 

operators (associated with involutions) are useful in vast 

areas of physics-in quantum theory, many-body physics, 

applications in group theory, projective geometry, statistical 

mechanics of irreversibility, to mention but a few. Quadratic 

forms with idempotent and tripotent operator matrices are 

extensively used in the theory of statistics, especially in the 

area of multivariate normal distributions (see [9]). 

6. Conclusion 

In this paper, the structure of some n -involution and k -

potent operators and their relationships has been shown. It 

has been shown that any normaloid n -involution is unitary. 

It has been shown that unitary equivalence, similarity and 

quasisimilarity preserve the n -involutory property of 

operators and that metric equivalence preserves this property 

for self-adjoint operators. Several conditions under which an 

n -involution has norm one has been proved. The notion of 

Q -equivalence is introduced and it is shown that if two n -

involutions are U -equivalent for some unitary operator then 

they have the same norm. 
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