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Abstract: The problem of calculating the sum of a divergent series for the Riemann ζ-function of a complex argument is 

considered in the paper, using the effects of the general theory of relativity. The parameters of the reference frame metric in 

which the calculation is performed are determined and solutions of the relativistic equations of motion of the material point 

realizing the calculation are found. The work lies at the junction of the direction known as "Beyond Turing", considering the 

application of the so-called "relativistic supercomputers" for solving non-computable problems and a direction devoted to the 

study of non-trivial zeros of the Riemann ζ-function. The formulation of the Riemann hypothesis concerning the distribution of 

nontrivial zeros of the ζ-function from the point of view of their computability on a relativistic computer is given. In view of 

the importance of the latter issue for studying the distribution of prime numbers, the results of the work may be of interest to 

specialists in the field of information security. 
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1. Introduction 

In this paper, an attempt is made to calculate the Riemann 

ζ-function using relativistic effects, or, more precisely, effects 

of the general theory of relativity (GRT). This idea was first 

used in the author's paper [1], where it was shown that by 

introducing the corresponding curved metric at the axis of 

real numbers, one can calculate the sum of a divergent series 

representing ζ (-1). The relative error obtained in [1] is ~ 

3,5%. Note that the talking is about the calculation, and not 

about some or other methods of summing divergent series 

[2]. In the present paper, these ideas were used to calculate 

the ζ-function of a complex argument. To do this, we use the 

representation of the ζ-function in the form of a series 
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which diverges for 1u <  [2]. Calculations were performed 

for 1/ 2u = . 

Such an approach (known as "Beyond Turing") to solving 

problems beyond the range of problems solved by the 

classical Turing machine develops in a number of works 

since the 1980s of the last century (see, for example, [3]). 

The corresponding computing devices received a name of 

"relativistic supercomputers". An unchanging attribute of 

the proposed projects is black holes, as the sources of the 

metric required for their implementation. The approach 

developed below, as in the author's previous paper [1], is 

free from this necessity. The calculation of the sum of a 

divergent series (a non-computable problem) is regarded as 

a physical problem about the motion of a material point in 

curved space-time, which is, in fact, the embodiment of the 

thesis, which is inverse to the well-known thesis, that any 

motion of a physical system can be treated as calculation 

[4]. In the book [4] the role of such a physical system plays 

the Universe. 

Classical methods for calculating the values of the ζ-

function are presented in [5-8]. 



21 Yuriy N. Zayko:  Calculation of the Riemann Zeta-function on a Relativistic Computer  

 

2. Behavior of the ζ-function in the 

Complex Plane 

Consider the behavior on the complex plane of partial sums 

of the divergent series, representing the Riemann ζ -function 

(hereinafter, the ζ-function) of the complex argument  
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=∑                                  (1) 

where n, m are natural numbers, s is an argument. Figure 1 

shows the results of calculating ζm。 

 

Figure 1. Calculation results of ζm(s1); s1=0.5-14.134725i - first non-trivial zero of ζ-function [9]. The choice of zero with negative imaginary part is dictated 

by considerations of convenience; (a): U = Re [ζm(s1)], V = Im [ζm(s1)]; (b): R=| ζm(s1)|, F= arg[ζm(s1)]; 1< m < 1001. 

From Figure 1a it is seen that successive values of ζm for sufficiently large m lie on a curve describing the velocity 

distribution of a flat vortex. This can be verified by calculating the dependence of the components of the vortex velocity 

( ), ( )rV r V rϕ/  in the cylindrical coordinates (Figure 2a) on the distance to the center of the vortex r. Below we shall consider the 

realization of the calculation of the ζ-function in the form of the motion of a certain material particle along the trajectory of a 

vortex. 

The components of the particle velocity shown in Figure 2, were calculated by the formulas 

 

Figure 2. Dependence of the components of the vortex velocity ( )V rϕ (a) and ( )rV r (b) on the distance from the vortex center r for the first non-trivial zero.  
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From Figure 2 it is seen that the trajectory ζm (s) 

corresponds to the vortex-source [10]. From Figure 2 it is 

seen also that the components of the vortex velocity are 

described by the formulas / , /rV r V rϕ ω δ= = (ω, δ – are 

constants) for sufficiently large r [10]. Table 1 shows the 

dimensionless values of ω and δ for the first ten nontrivial 

zeros of the ζ-function [9] obtained by calculation.  
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The divergence of the series (1) at m → ∞ is manifested in 

the fact that ( )m sζ  does not tend to zero, as would be the 

case for a convergent series.  

In view of the known symmetry of the ζ-function [9], its 

investigation in the complex plane s = u + iv can be 

restricted to points of the right upper (or lower) quadrant, 

where u > ½. In the present paper we pay main attention to 

the investigation of the behavior of the ζ-function in the 

points of its zeroes. 

Table 1. Dimensionless values of ω and δ for the first ten nontrivial zeros of the ζ- function. 

Zero number 1 2 3 4 5 6 7 8 9 10 

ω 0.071 0.048 0.04 0.033 0.03 0.027 0.025 0.023 0.021 0.02 

δ 2.501E-3 1.131E-3 8.012E-4 5.388E-4 4.514E-4 3.433E-4 2.943E-4 2.658E-4 2.124E-4 1.993E-4 

 

3. The Metric Associated with a Vortex 

As was said above, the study of the behavior of the sum 

(1) can be regarded as a problem of the motion of a material 

particle along the trajectory of a vortex. In this case, as 

shown below, the analysis should be carried out in curved 

space-time, starting from the fact that any computation 

realized by a system of material bodies bends the metric of 

space-time. This was, in particular, shown in work [1].  

In a fixed coordinate system , , ,r z tϕ′ ′ ′ ′  (in cylindrical 

spatial coordinates), the metric is given by the type of the 

interval  
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,r ϕ′ ′ −  are polar coordinates in the plane (x, y). Let's make 

the transformation to its own frame of reference, in which 

each point of the vortex is at rest 
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The first two expressions in (4) emphasize the locality of 

the transformation (4). The function α (r, t) introduced in 

order for the first expression (4) to be a total differential, 

must satisfy the equation
2t r r r

α δ α δ α∂ ∂− = −
∂ ∂

. It can be 

chosen in the form 1( )r C rα = , where 1C - is a constant, 

which we define later. It is easy to see that (4) is an analog of 

the transformation to a rotating coordinate system in the case 

of solid-state rotation [11]. In the new reference frame, the 

expression for the interval looks like 

2
2 2 2 2 2 2 2 2 2 2

1 12

2 2
12 2

ds c С dt С r dr r d
r

C rdrdt d dt dz

ω δ ϕ

δ ω ϕ

 
= − − − − −  
 

− − −

   (5) 

Thus, the vortex curves the metric of space-time in its 

neighborhood. In what follows, omit the term 2dz
.
 

Let us transform expression (5) to a form convenient for 

investigation. For this, the obvious relations are used 
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where dl – is an element of length along a line that is the 

projection of the three-dimensional trajectory of the vortex 

on the plane z = const. This will allow getting rid of the 

term~ dφdt in the (5). In addition, to eliminate the term ~ 

drdt, one more coordinate transformation is performed 

2
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     (7) 

where the parameter η is chosen from the condition that (7) is 

the total differential [12]. As a result,expressions for the 

integrating factor 
2 1c Aη − −= and for the interval ds are 

received 
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where 
1

1 /C r c ω−= =ɶ  was set. The metric tensor in the new 

frame of reference has the form 

( ) 0 0

0 1 0

0 0 ( )
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g
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The equations of motion 
2

2
0

i l k
i
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d x dx dx

ds dsds
+ Γ = , where 

1

2

i
klΓ = g

im
(gmk, l+gml, k - gkl, m) – are the Christoffel symbols 

[11], corresponding (8) look as follows  
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The second equation in (10) is directly integrated and leads 

to the result: 0 1 0,1( ) ,l s l l s l= + − are constants, s – is a proper 

time. For convenience, by choice of units, we set l1 = 1. 

Solving the first equation from (10), we find the relationship 

between the coordinate time and the proper one 

1
20
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ds r

−
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                           (11) 

As r approaches the horizon, whose role is played by 

0 /r r b= ɶ , time intervals dt′′ become longer, i.e. the 

coordinate time slows down. In the fixed system, the horizon 

is reached in an infinite time. 

The last equation in (10) can be reduced to the form 

2 4
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                   (12) 

C2-is a constant. Note that equation (12) in form represents 

the law of conservation of energy for a particle with a mass 

( )B r moving in a potential 
4 1( ) / 2b A r−

, then 2 / 2C  

represents the total energy of the particle. In the last equation, 

it is necessary to express rϕ′  by means of sr ′  by the formula  

( )2
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Figure 3 shows the phase portrait of the solution of 

equation (12). The qualitative behavior of the solution can be 

described as follows. In the moving system, the point 

representing the behavior of the particle begins to move 

along the branch, for which 0sr′ > (dashed line in Figure 3), 

corresponding to an increase in the helix radius over time 

(Figure 1b). In the branch point P 1sr′ = , what corresponds 

( )2
rϕ′ → ∞  or 0dϕ → , i.e. rotation is stopped. Then the 

point goes to another branch, for which 0sr′ <  (solid line in 

the Figure 3) and, moving along this branch and rotating in 

the opposite direction, reaches the horizon 0r r= . More 

precisely, the motion of a point can be described on a two-

dimensional surface embedded in a three-dimensional 

Euclidean space whose structure near the branch point 

resembles a torus. Point P corresponds to a transition from 

one side of the torus, on which the spiral is untwisting onto 

the opposite side, where the spiral is twisting. 

For the data in Figure 3, the horizon 0 0 / 1.001x r r= =ɶ . On 

the horizon, the radial velocity of the point is 

0

0

( )
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dr r b

rds

b r rϕ

δ
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±=
−

′
ɶ

                          (14) 

The ± signs correspond to two branches of the solution, 

shown in Figure 3. Solving equation (14) with allowance for 

(13) we obtain the value 0( ) /sr r δ ω′ ≈ ±  in which the higher 

order terms with respect to the small parameter / 1δ ω <<  

were omitted. Then, reaching the horizon, the point falls into 

a singularity 0r = . This stage of the behavior of the point 

can not be described within the framework of the metric (8) 

and requires an additional investigation. 

 

Figure 3. The phase portrait of the solution of equation (12); 

0 2/ , / ; 1.5x r r x x dr ds C′= > = =ɶ . The solid line and the dashed line show 

the two branches of the solution, dotted line – the horizon 0x ; P − is the 

branch point. The calculations were performed for the first nontrivial zero of 

the ζ -function. 

4. Metric in the Area Below the Horizon 

As in the Schwarzschild case, the metric (8) is incomplete, 

because it is not applicable when 0r r< [11]. Therefore, as 

well as solutions (10), it can be used only at distances 

exceeding 0r .  

To construct a metric suitable for 0r r< , following [11], 

we perform the transformation of coordinates , ,r t ρ τ→  

(omitting the strokes of t). Note, that a similar method was 

first applied by D. Finkelstein [11].  

( )
[ ]

2

2
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1( ) 1 ( )

f d cd f d cd
dr cdt

fA r B r

ρ τ ρ τ⋅ ± ±= =
−−        (15)  
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where f(r) –is a function chosen from the condition that the 

fictitious singularity at 0r r= of the metric (8) be eliminated. 

Performing the calculations, we find that this is achieved by 

choosing  

[ ]
1/2

2 2
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The expression for the interval (8) in which we again 

introduce instead the variable l the angular variable φ, takes 

the form 

( )22 2 2 2 2
( )ds cd f r d r dτ ρ ϕ= − −                (17) 

The interval (17) has only the real singularity at the point r 

= 0. The metric (17) is synchronous (gττ =1) and is 

nonstationary, as in the Schwarzschild case [11]. From (15) it 

follows the connection between the new and old coordinates 

[ ]
( ),

( ) 1 ( )
( )

( )

c r

A r B r
r dr

f r

ρ τ± = Φ

−
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In variables ,ρ τ , there is no singularity on the horizon 

1
0 ( )r r cρ τ−= = Φ − . The coordinate ρ  is everywhere 

spatial, and τ − temporary. The given values of r are 

corresponded to the world lines с constρ τ− = . The world 

lines of a particle at rest relative to the reference frame 

described by coordinates ,ρ τ  are straight lines parallel to the 

axis τ . Moving along them, the particle enters the center of 

the field 0r =  in a finite interval of proper time. As applied 

to our problem, this means that the series (1), divergent in a 

fixed coordinate system, converges in the moving system to 

the correct value ζ(s1)=0.  

Write out the system of equations of motion in the region 

below the horizon 
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where the expressions for the non-zero Christoffel symbols 

are used [11]. From the second equation of (19) we find the 

integral of system 
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ϕ ± =
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Taking into account that the integrand depends on /d drϕ , 

the integral (20) allows in principle to find the solution of the 

system (18) and calculate the time of the particle's fall into 

the singularity. 

5. Consideration of the General Case 

Let us apply our consideration to the general case when the 

argument of the ζ-function lies outside the critical line 

Re 1/ 2u s= = . We use to represent the partial sum (1) by 

the asymptotic Euler-Maclaurin formula [8] (one can find the 

proof in the textbooks on mathematics) 
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In the case m >> 1, one can neglect the unity in the numerator 

of the last expression. With the aid of (21) one can obtain 

asymptotically exact expressions for the quantities appearing in 

(2) 
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and, hence, to obtain expressions for the components ,rV Vϕ  

of the velocity of the particle, which realizes the calculations 

1
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1
r

u v u
V V

uCr Cr
ϕγ γ γ−= = =
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C is a constant. The case considered above corresponds

1/ 2u = . For that case, we get the expressions used before 

,

1
,

2

rV V
r r

v

C C

ϕ
ω δ

ω δ

= =

= =
                              (24) 

Hence we obtain a formula / 1 / 2vδ ω = , the validity of 

which with high precision is easily verified by means of Table 1. 

It would be possible to develop the methodology described 

above with reference to the general case, but this is meaningless 

since the dependences of the velocities (23) do not correspond to 

the model of ideal liquid used to realize the relativistic computer 

proposed in this paper. To show this we use the so-called 

equation of dynamic motion possibility of A. A. Friedman [10] 

and which was used by Helmholtz for an incompressible fluid 

( )d
V divV

dt

rotV

Ω = Ω ⋅∇ − Ω

Ω =

�
� � � �

� �
                        (25) 

Ω −
�

is a vorticity of the velocity field ( , ,0)rV V Vϕ
�

(21). 

Since for plane motion Ω
�

 is directed along the Z axis, 

equation (25) in a stationary case reduces to the condition 
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0divV =
�

. Writing it in cylindrical coordinates, we obtain 

condition 

( )
1

1
1 2 1

0
1

u
r

u
divV rV r

r u
−−= = =

−

�
                (26) 

which is valid only for 1/ 2u = , i.e. on the critical line. A 

consequence of this is the possibility of giving the Riemann 

hypothesis the following formulation: 

All the nontrivial zeros of the Riemann ζ-function are 

computable on a relativistic computer. 

6. Discussions 

The results of computing divergent series associated with 

the ζ-function can be clearly explained without using 

complicated calculations, using general physical 

considerations. Start with the result obtained in [1], devoted 

to the calculation of ζ (-1). In this case, we concentrate on the 

fact of obtaining a convergent series in a fixed system from 

the divergent series for ζ (-1) in the proper frame of 

reference, leaving aside getting specific value of the sum of 

the series - for this some calculations are needed, which are 

given in [1]. It was shown in [1] that as a moving system for 

calculating ζ (-1) one should take a system moving with 

respect to a rest system with constant acceleration, as long as 

the velocity of the moving system V << c (c is the speed of 

light). A naive (and solely right) way to represent the 

computation of a series for ζ (-1) is to sequentially attach 

segments on the real axis which length increases by 1 to the 

total segment corresponding to the next partial sum of the 

series 

( 1) 1 2 3 ... ...nζ − = + + + + +                (27) 

where n -means the length of the n-th segment. This would 

look an attempt (unsuccessful) to calculate the sum of the 

series for ζ (-1) in a moving system relative to which the 

computational device is at rest. While observing the 

calculation of the initial series from the fixed system, with 

respect to which the computational device moves with 

acceleration, we obtain another scheme 

( )
1 2 2

2

( 1) 1 2 3 ... ...

1 /

n

n n

n

V c

ζ β β β β

β

− = + + + + +

= −
    (28) 

where βn – is a Lorentz factor, and Vn – is the velocity of the 

moving system at the moment of adding the n-th term of the 

series. Due to this, the series representing ζ (-1) converges 

and has a finite sum. 

To explain the computation of the ζ-function of the 

complex argument, performed in the present paper, write the 

last equation (10) in the form 

24
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1
( ) ,

2 2 ( )

rb Ad dr
B r y y

dr dsA r

′   = =   
   

             (29) 

which represents the law of conservation of energy for a 

particle having velocity sr ′  and mass ( )B r . Integrating (29) 

with respect to r in the range from r1 to r2> r1> 0r , we obtain 

that the change in the kinetic energy / 2By of the particle on 

the virtual displacement from r1 to r2 is equal to the work of 

the force 4 2/ 2b A A′ on this displacement, which, as seen 

from expression (8), is positive. This means that the force is 

directed to the growth of r. However, the acceleration of the 

particle is directed in the opposite direction due to the 

negativity of the mass B for r > r0. This leads eventually to 

the convergence of the series (1) in the moving system. 

7. Conclusion 

In this article the computation of the Riemann ζ-function 

represented by a divergent series in the plane of the complex 

argument is performed using the methods of the general theory 

of relativity. The calculation is realized by the motion of some 

material particle in a curved metric. It is shown that the non-

computable (in the sense of Turing) problem of computation of 

the sum of a divergent series becomes computable in the 

transition to the moving system of reference. In this sense, the 

result of the work confirms the perspective of the direction 

associated with the so-called relativistic supercomputers [3], 

which received the conventional name "Beyond Turing". The 

difference of this work from the majority of works of the 

mentioned direction is the absence of the need to involve 

cosmological black holes for the realization of calculations. The 

curvature of the metric necessary for this purpose arises as a 

result of the motion of the computational particle (ensemble of 

particles), in accordance with the equations of hydrodynamics of 

an ideal fluid, which creates the corresponding singular metric. 

In fact, it is the implementation of the thesis, inverse to the well-

known thesis on the computational nature of motions in the 

Universe [4]. 

The character of the mobile frame of reference and its metric 

has been determined; the equations of motion of a material 

particle in this metric are solved. The resulting metric, like the 

Schwarzschild metric, has a fictitious singularity separating the 

inner region under the horizon from the outer one. This metric 

can be extended to the inner area, which eliminates the fictitious 

singularity. The motion in the inner region looks like the drop of 

the particle to the center in a finite proper time, which proves the 

convergence of the series under consideration, i.e., solution of an 

initially incomputable problem. 

The results concerning the properties of non-trivial zeros of ζ-

functions, taking into account their connection with the 

distribution of primes, are of great importance in solving 

information security issues [13]. 
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