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Abstract: A general overview about the usefulness of the theory of fuzzy type-2 for solving problems in the field of data 

analysis and analytical reasoning in analytical chemistry is given. Results of the development of Intel-systems for auto-

mated qualitative analysis in X-ray fluorescence analysis and in ICP-atomic emission spectroscopy are discussed. 

Keywords: Fuzzy Type-2, Analytical Chemistry 

1. Introduction 

There is an increasing interest in Analytical Chemistry in 

developing intelligent systems that approach human analyt-

ical reasoning as close as possible and that enable analytical 

knowledge to be acquired automatically. 

Besides artificial intelligent techniques based on symbol-

ic programming these goals can be pursued by applying the 

theory of fuzzy sets for matching the analyst’s way of rea-

soning and by neural networks to automate knowledge ac-

quisition and interpretation. There is intensive research 

going on to combine techniques of fuzzy sets and neural 

networks, or handle these two methods separately [1]. 

It can be shown that basic operations of the theory of 

fuzzy sets can be used in analytical chemistry to solve prob-

lems, such as library searching, depth profile comparison or 

calibration with errors in signals and concentrations. The 

major area of applications for fuzzy logic, however, con-

cerns the development of expert or intelligent systems, e.g. 

for spectra interpretation or reasoning in chemical data 

bases. An example for fuzzy reasoning is given here for rule 

building in an expert system for automated qualitative anal-

ysis with X-ray fluorescence spectroscopy. 

Neural networks are studied in analytical chemistry with 

respect to pattern recognition, modeling and prediction, e.g. 

in multi component analysis or process control, to classifi-

cation, clustering or pattern association. Based on the latter 

technique recent advances are reported for developing an 

expert system for qualitative ICP-atomic emission spectros-

copy. The present paper will use fuzzy type-2 applications 

to analytical chemistry. 

The organization of this paper is as follow. Section II de-

scribes the Type-2 Fuzzy Logic overview. Section III de-

scribes the applications of type-2 to analytical chemistry 

and Section IV presets the conclusions. 

2. Type-2 Fuzzy Logic: Overview 

Zadeh introduced fuzzy systems in 1965 and type-2 fuzzy 

sets in 1975 [2]. So, after 1975, it became necessary to dis-

tinguish between pre-existing fuzzy systems and type-2 

fuzzy systems; hence, it became common to refer to the pre-

existing FSs as “T1 FSs” and type-2 fuzzy systems as “T2 

FSs” [3]. T1 FSs have been successfully used in many ap-

plications [4, 5]. However, such FSs have limited capabili-

ties to directly handle data uncertainties, where handle 

means to model and minimize the effect of uncertainties. 

Of course, uncertainty comes in many forms and is inde-

pendent of the kind of FS or methodology one uses to han-

dle it. Two important kinds of uncertainties are linguistic 

and random. The former is associated with words, and the 

fact that words can mean different things to different people, 

and the latter is associated with unpredictability. Probability 

theory is used to handle random uncertainty and FSs are 

used to handle linguistic uncertainty, and sometimes FSs 

can also be used to handle both kinds of uncertainty, be-

cause a fuzzy system may use noisy measurements or oper-

ate under random disturbances. Within probability theory, 

one begins with a probability density function (pdf) that 

embodies total information about random uncertainties. 

However, in most practical applications, it is impossible to 

know or determine the pdf; so, the fact that a pdf is com-

pletely characterized by all of its moments is used. Unfortu-

nately, it is not possible, in practice, to determine an infinite 

number of moments; so, instead, at the very least, two mo-

ments are used—the mean and variance. Just as variance 
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provides a measure of dispersion about the mean, a fuzzy 

set also needs some measure of dispersion to capture more 

about linguistic uncertainties than just a single membership 

function (MF), which is all that is obtained when a T1 FS is 

used. A T2 FS provides this measure of dispersion. 

In type-2 fuzzy logic, the antecedent or consequent mem-

bership functions are type-2 fuzzy sets. Such sets are fuzzy 

sets whose membership grades themselves are type-1 fuzzy 

sets; they are very useful in circumstances where it is diffi-

cult to determine an exact membership function for a fuzzy 

set; that's why it is said they are useful for incorporating 

uncertainties [6]. 

If all uncertainty disappears, then a T2 FS reduces to a T1 

FS, as can be seen in Figure 1, e.g. if the uncertainties about 

the left- and right-end points disappear, then only the 

dashed triangle survives. This is similar to what happens in 

probability, when randomness degenerates to determinism, 

in which case the pdf collapses to a single point. In brief, a 

T1 FS is embedded in a T2 FS, just as determinism is em-

bedded in randomness [7]. 

 

Figure 1. Triangular MFs when base end points have uncertainty intervals.

It is not as easy to sketch 3-D figures of a type-2 mem-

bership function (T2 MF). Another way to visualize a T2 FS 

is to sketch (plot) its footprint of uncertainty (FOU) on the 

2-D domain of the T2 FS, and this is easy to do. The heights 

of a T2 MF (its secondary grades) sit atop its FOU. 

In Figure 1. If the continuum of triangular MFs is filled 

in (as implied by the shading), then the FOU is obtained. 

Another example of an FOU is shown in Figure 2. It is for a 

Gaussian primary MF whose standard deviation is known 

with perfect certainty, but whose mean, m, is uncertain and 

varies anywhere in the interval from m1 to m2. The uniform 

shading over the entire FOU means that uniform weighting 

(possibilities) is assumed. Because of the uniform weighting, 

this T2 FS is called an interval type-2 FS (IT2 FS) [7]. 

 

Figure 2. FOU for a Gaussian primary MF whose mean varies in the 

interval [m1, m2] but having constant standard deviation.. 

3. Applications 

With this overview analytical problems have been solved 

with respect to multi criteria decision making [8] or pattern 

matching in spectroscopy or chromatography [9]. 

T. George applied the fundamental fuzzy set operations in 

an interpretation system for automated qualitative analysis 

in X-ray fluorescence spectroscopy [10]. The measured X-

ray fluorescence spectrum is transferred to a line spectrum 

by using the 2
nd

 derivative computed by a Savitzky-Golay 

digital filter and the resulting lines are fuzzified using type-

2 according to their variability (Figure3). 

 

Figure 3. Comparison of a fuzzified sample spectrum with a crisp candi-

date reference spectrum by fuzzy type2 intersection. 

In the next step the membership functions have to be uni-

fied as demonstrated in Fig. 3 by bold lines covering the 

membership functions. Comparison of the measured spec-
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trum to the library spectra of the elements from sodium 

(atomic number 11) to uranium (atomic number 92) is per-

formed by fuzzy intersection. In this approach the library 

spectrum is assumed to be crisp. As the result of intersection 

discrete membership values are obtained that are aggregated 

by calculating the relative cardinality, i.e. the sum of the 

membership values normalized to the number of lines in the 

candidate reference spectrum. To aid analytical reasoning 

the theory of fuzzy sets is used in the sense of fuzzy logic 

and approximate reasoning. Fuzzy logical operations are 

defined for all the logical connectives known from classical 

(Boolean) logic, such as AND, OR, NOT or the implication. 

In most applications a fuzzy logical AND is defined by in-

tersection, a fuzzy OR by the union, the NOT by the fuzzy 

complement and an implication (IF V=A THEN U=B) by 

the membership function over the Cartesian product A x B 

represented by the minimum between the m.f.'s of A and B. 

Fuzzy logic has been mainly applied until now in the con-

text of fuzzy control. In chemistry this idea has been used 

by Yamada [11] to control fermentation of coenzyme Q10 

based on monitoring cell mass with a turbid metric sensor. 

In this way the very complex process that cannot be de-

scribed by a mathematical model is controlled by some 

rules of thumb specified by fuzzy sets. In the above men-

tioned example of X-ray fluorescence analysis fuzzy logic 

can be used to specify the following types of rules: 

- The intensity ratio of Ka and Kb-lines should be "about 

5". 

- For elements with atomic numbers less than 20 the de-

tection probability of Kb -lines is "decreased heavily". 

- Resolution of Lb1 and Lb5 lines "decreases with increas-

ing atomic Numbers". 

These rules are formalized in the usual manner as impli-

cations, e.g. IF the line pair is K a, Kb THEN intensity ratio 

is "about 5". The data "about 5" is represented here as a 

fuzzy number and the degree of membership of a measured 

intensity ratio is inferred by applying Zadeh's compositional 

rule of inference [12]. Different schemes of reasoning can 

be applied, for example the theory of approximate reasoning 

as further developed by Yager [13]. Approximate reasoning 

has been already explored in analytical chemistry for rea-

soning about missing data/information in a data base on pH-

indicators [14] and is used at present for building an inter-

pretation system in IR- spectroscopy. The concept of fuzzy 

theory is also used for data analysis in analytical chemistry. 

A difference to statistical data analysis can be understood as 

follows: a statistical (probabilistic) approach describes the 

set of potential outcomes on the basis of a certain distribu-

tion. The observation results are vague only before experi-

mentation but are a determined object after sampling. In a 

fuzzy-set theoretic (possibility) approach the concrete ob-

servation is available only with certain vagueness either due 

to the uncertainty of the data themselves or due to our de-

scription of the observed object by linguistic expressions. 

Because both types of observations can be specified as 

fuzzy sets data analysis can be carried out independent on 

the observation type, Up to now fuzzy data analysis has 

been applied to univariate and multivariate modeling [9], to 

pattern recognition problems [l5–17] or to clustering of data 

[18]. For example, grouping of malt samples analyzed for 9 

physic-chemical parameters was performed on the basis of 

fuzzy clustering [18]. The advantage of fuzzy methods of 

clustering over conventional crisp cluster algorithms is the 

feasibility to assign a single object to more than one cluster 

simultaneously. By means of pattern recognition gasoline 

samples analyzed by capillary gas chromatography can be 

matched to typical reference chromatograms of fuels in a 

library [19]. 

4. Conclusion 

In this study, a promising approach using fuzzy type-2 is 

proposed in analytical chemistry.  The proposed architec-

ture utilizes the capabilities of a type-2 fuzzy architecture 

in properly handling of uncertainties in computing the out-

put. 
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