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Abstract: This research presents the development of linear regression models to predict horizontal photovoltaic power 
output. We collected a dataset from 14 global Department of Defense (DoD) installations over a timeframe of one year using 
an experimental apparatus, resulting in 24,179 usable data points. We developed a linear model to predict power output, which 
incorporated site-specific weather and geographical characteristics, along with Köppen-Geiger climate classifications in order 
to determine the effect of adding climate to the model. After performing a Wald test between the full model and a reduced 
model without Köppen-Geiger climate variables, it was determined that including Köppen-Geiger climate variables improved 
the model’s ability to account for horizontal photovoltaic power variation by 3%. Although adding Köppen-Geiger variables 
provided added value when modeling the training dataset, these variables were less effective in predicting the validation 
dataset. From the analysis, the ideal Köppen-Geiger region was determined to be a warm temperate main classification, a fully 
humid precipitation classification and a warm summer temperature classification. This region possessed a 30% greater average 
power production than the mean value of the base climate classification. We found that the cost-effectiveness of a photovoltaic 
array depends on Köppen-Geiger climate regions, in addition to weather characteristics and the orientation of the array.  
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1. Introduction 

While weather variable effects on photovoltaic power 
production are discussed frequently in literature, there is 
limited information regarding the impact of the climate 
classification zone [1]. The few studies that have looked at 
climate’s effect on photovoltaic power production are based 
upon fixed-angle arrays instead of real-world data collected 
from horizontal systems [2]. With new technology being 
developed based on horizontal arrays, such as solar 
pavements, organizations with a global presence could 
benefit from an analysis showing the effect of climate region 
on the energy produced from horizontal PV panels. 

Therefore, the purpose of this research effort was to 
determine the correlation between the power output of 
horizontal polycrystalline PV panels and the Köppen-

Geiger climate classification system. This involves 
analyzing data collected from test systems placed in various 
climate regions to determine the most beneficial areas for 
photovoltaic investment. 

This study built upon prior research efforts that identified 
candidate test sites, completed the system design, assembled 
the experimental test equipment, and shipped the test 
equipment to 38 locations worldwide [3–5]. More 
information regarding these areas is provided in the 
remainder of this section. 

1.1. Site Selection 

Although there are numerous approaches to classifying the 
world’s climates, the most frequently used method is the 
Köppen-Geiger climate classification system. Many versions 
of the classification matrix have been proposed [2, 6–10]; 
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however, the 2006 Kottek et al. version was used for this 
research because it had the highest number of climate regions 
[7]. The Köppen-Geiger system categorizes climate into five 
major climate zones: arid, warm temperate, snow, polar, and 

equatorial. Each zone has several types and subtypes based 
on precipitation and temperature. There are six precipitation 
classifications: desert, steppe, fully humid, summer dry, 

winter dry, and monsoonal; and eight temperature 
classifications: hot arid, cold arid, hot summer, warm 

summer, cool summer, extremely continental, polar frost, and 

polar tundra [6–10]. 
In designing this experiment, Nussbaum performed an 

analysis of variance (ANOVA) on the latitude and longitude 
of 1,763 DoD installations and found concentrations of 
installations in 25 distinct regions [3]. Then, a Pareto analysis 
was conducted to determine the climate regions that have the 
highest amount of installations. The Pareto analysis showed 
the DoD had installations in 14 of the 31 distinct Köppen-
Geiger climate classifications. Test locations were selected 
based on these analyses, and then test systems were 
constructed and shipped to these locations. With spare parts, 
one additional test system was set up near Wright-Patterson 
Air Force Base, OH, USA to facilitate the diagnosis of 
system malfunctions. The final test location sites are shown 
as red dots on the map in Figure 1. Some of the locations in 
Figure 1 are close to one another, making it appear as one 
dot—e.g., the U.S. Air Force Academy and Peterson, AFB 
are both located near Colorado Springs, CO, USA. 

 

Figure 1. Test site locations [5]. 

1.2. Test Equipment 

 

Figure 2. Test system with monocrystalline PV panel (lower left), 

polycrystalline panel (upper left), battery (black, lower right), weatherized 

case (yellow, lower right) and charging panel (upper right). 

The main components of the system consisted of an 

ALEKO 25 Watt, 12 Volt mono-crystalline solar panel, a 
Renogy 50 Watt, 12 Volt poly-crystalline solar panel, a 
Raspberry Pi 3, model B, version 1.2 computer inside a 
weatherized case, a weather probe, and an external power 
source, as shown in Figure 2. The system was also equipped 
with red, yellow, and green light emitting diodes (LED) to 
indicate an error had occurred within the system, the system 
was operational, and a reading was taking place, respectively. 
The external power source used to run the Raspberry Pi was 
provided by a 20-foot extension cord connected to an outdoor 
power source or by an additional PV panel and battery. The 
Raspberry Pi computer took measurements at 15-minute 
intervals [11-12]. These measurements included the current 
and voltage of the panels, ambient air temperature, and 
humidity of the site. The current was read using a 
noninvasive current Hall sensor [13]. Next, voltage was 
measured by the voltage drop across a known resistance. 
Finally, ambient air temperature and humidity were measured 
using a probe located on the outside of the weatherized case. 
Data collection was conducted using a micro secured digital 
(SD) card. 

To ensure conformity and ease of system setup, each 
installer was instructed to place their systems in a flat 
orientation. This zero-degree tilt angle enables the data to be 
applied to potential solar pavement applications. To ensure 
that each panel received the maximum amount of sunlight 
per day, participants were instructed to place the systems so 
they would have a clear view toward the southern, eastern, 
and western horizons. Finally, participants were instructed to 
check system function once each day and to ensure the 
systems were clear of debris, snow or high amounts of dust. 

2. Methodology 

2.1. Data Collection and Configuration 

Of the original 38 test sites, data was only received from 
28 locations. After reception, the data had to be configured 
and compiled in order to provide a proper format for 
analysis. During each 15-minute interval, 64 readings for 
voltage and current were recorded for each panel, 
respectively. After multiplying these values together, the 
maximum power value was obtained for each interval. Next, 
the time for every location was adjusted from military or 
“Zulu” time to its respective time zone. Zulu time was the 
default time setting on each Raspberry Pi computer.  

Upon completion of data compilation, other variables were 
incorporated with the dataset to support further analysis. 
Location-specific variables added to the dataset include 
latitude, altitude, Köppen-Geiger climate classification, and 
cloud ceiling obtained from the National Oceanic and 
Atmospheric Administration [14]. Each cloud ceiling 
measurement was matched to the closet 15-minute interval 
using RStudio statistical software. 

After initial data analysis, it was determined that only 16 
of the sites had reliable and continuous data. Other sites were 
eliminated due to lack of data acquired throughout the 16-
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month collection period or because of errors in the date and 
time stamp of the recordings. The dates of the dataset ranged 
from June 2017 to September 2018, with 528,569 total data 
points. The data collected for each site can be seen in Figure 
3.  

Next the dataset was narrowed further to remove outliers 
and errors. The first discrepancy observed was the power 
output recorded for the mono-crystalline panel. The values 
ranged from 0 W to 500 W for a 25 W rated panel. Over 
64,000 readings were higher than 50 W, and it is unlikely for 
the panel to consistently read at such a high output. As a 
result, this data was removed, and no further analysis was 
performed on the mono-crystalline panel. Next, Learmonth 
Solar Observatory in Northwestern Australia was removed 
because it was the only site in the southern hemisphere. 
Capturing differences between the hemispheres, such as the 
opposite seasons, could have complicated the model and 
risked having key variables excluded. After removal, the 
model’s final application and interpretation would be limited 
to the northern hemisphere. 

 

Figure 3. Preliminary analysis site selection. A green filled box represents 

one month of data, a yellow filled box represents approximately a half month 

of data, and an empty or white box represents three or less days of data or 

no data recorded at all. 

Following the removal of Learmonth, a calibration break-
in period for several locations was identified, and the 
discrepancies were removed. These periods were identified 
by comparing histograms of power, plotted against month 
and hour for every location. These histograms displayed high 
power recordings during night along with power recordings 
above the poly-crystalline panel’s rating of 50 W. However, 
these high recordings only occurred during the first several 
months of data collection, see Figure 4. Eventually, the 
power recordings behaved in a normal manner with readings 
of 1 W or less at night and no recordings above 40 W. 

The last discrepancy identified if the data was associated 
with low temperature readings. The lowest temperature that 

was recorded was -40°C. However, these readings appeared 
to be associated with an error because it was recorded at 
southern sites such as Jonathan Dickinson Missile Tracking 
Station in Florida. For this reason, data with temperature 
readings lower than -39.3°C were removed. Along with these 
low temperature readings, there were several high 
temperature and power readings that were removed due to 
these points being extreme outliers and were easily identified 
as errors. 

 

Figure 4. Final analysis site selection. Locations’ discrepancies can be 

identified with red, while blue represents reliable data and white represents 

three or less days of data or no data record at all. 

2.2. Model Variables 

After collecting and filtering the data, individual variables 
were considered to create a simplistic model that allowed for 
easy interpretation and could be applied to all sites. First, the 
final variables for the model were selected. These variables 
included poly-crystalline panel power output, test site 
latitude, Köppen-Geiger climate classification, altitude, 
month, hour, temperature, cloud ceiling, and humidity. Next 
the rational for the inclusion of each variable into the model 
will be discussed. 

The first variable in the model was the power output of the 
poly-crystalline panel. The panel is rated at 50 W, but this 
value was never obtained at any of the sites after removing 
the discrepancies from the break-in period. On the lower 
range of the power output, any values lower than 0.25 W 
were removed from the dataset. These low values can occur 
from very dense cloud coverage, snow or other debris 
accumulating on the panel. These readings were also 
removed to account for the potential error of the panel 
recording power from an artificial light source. Potential 
artificial light sources near the panels could be from street 
and sidewalk lamps – prior work found that 0.14 W could be 
generated from a halogen lamp illuminating a poly-
crystalline panel with an area of 0.37 m2 and an efficiency of 
18% [15–17]. This source combined with other potential 
calibration errors within the test system itself is why values 
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lower than 0.25 W were eliminated from the data readings. 
Latitude was the next variable incorporated into the model 
and was treated as a continuous variable measured in 
degrees. Latitude was selected to account for the angle of the 
sun’s irradiance. The ideal angle for the irradiance to strike 
the panel in order to maximize the area exposed is 90° [18]. 
This ideal angle is why many fixed solar panels are tilted at 
an angle equivalent to their latitude because irradiance strikes 
a horizontal panel directly at 90° at 0° latitude on the equator. 

Köppen-Geiger climate classifications were included in the 
model to identify how effective they predict solar panel 
power production. Climate classification can account for 
location-specific characteristics that may not be included in 
other variables, such as wind speed, precipitation, vegetation 
and geographical landmarks such as mountains. The Köppen-
Geiger climate classification along with each sub 
classification for every site location is shown in Table 1. 
Other weather variables, such as temperature, cloud ceiling, 
and humidity, were added to the model due to their effect on 
solar power production. Temperature affects how efficient the 
panel is at generating power while cloud ceiling affects how 

much irradiance the panel receives [14, 19–23]. Humidity 
affects both the efficiency of the panel and the amount of 
irradiance the panel receives. This is because the water vapor 
in the air affects the amount of diffuse irradiance that reaches 
the panel and humidity can also have a soiling effect on the 
panel if water vapor seeps into the glass casing [24–26]. The 
Köppen-Geiger climate classifications were treated as 
categorical variables while temperature, cloud ceiling, and 
humidity were treated as continuous variables. Temperature 
was measured in degrees, cloud ceiling in hundreds of feet, 
and humidity was expressed as a percentage.  

Next, altitude was incorporated into the model to help 
account for the intensity of the irradiance on the panel. As 
irradiance travels to Earth, it can be deflected and diffused by 
water vapor and other particles in the air [26]. As altitude 
increases there is a lower chance for irradiance to be 
deflected and diffused resulting in a higher amount of direct 
irradiance hitting the solar panel compared to panels at lower 
altitudes. Altitude was measured in meters measured from 
sea level and treated as a continuous variable. 

Table 1. Test site Köppen-Geiger climate classifications. 

Location 
Köppen-Geiger 

Classification 
Main Precipitation Temperature 

Camp Murray, Washington, USA Csb Warm Temperate Summer Dry Warm Summer 
Forward Operating Location Curacao, Curacao Bsh Arid Steppe Hot Arid 
Grissom Air Reserve Base Indiana, USA Dfa Snow Fully Humid Hot Summer 
Hill AFB, Utah, USA Dfb Snow Fully Humid Warm Summer 
Jonathan Dickinson Missile Tracking Annex, Florida, USA Cfb Warm Temperate Fully Humid Warm Summer 
Lajes Field, Portugal Csb Warm Temperate Summer Dry Warm Summer 
Malmstrom AFB, Montana, USA BSk Arid Steppe Cold Arid 
March Air Reserve Base, California, USA Csa Warm Temperate Summer Dry Hot Summer 
Maui Air National Guard Station, Hawaii, USA Af Equatorial Fully Humid - 
Minneapolis-Saint Paul Joint Air Reserve Station, Minnesota, USA Dfa Snow Fully Humid Hot Summer 
Offut AFB, Nebraska, USA Dfa Snow Fully Humid Hot Summer 
Peterson AFB, Colorado, USA BSk Arid Steppe Cold Arid 
Spangdahlem Air Base, Germany Cfb Warm Temperate Fully Humid Warm Summer 
Travis Air Force Base, California, USA Csa Warm Temperate Summer Dry Hot Summer 
US Air Force Academy, Colorado, USA BSk Arid Steppe Hot Arid 

 
Finally, time was incorporated into the model to account 

for the position of the sun throughout the day and its seasonal 
affects. Time was accounted for by using the variables hour 
and month. Hour accounted for the position of the sun as it 
traverses the sky from east to west across the panel. Minute 
was not included because the position of the sun does not 
change significantly between the 15-minute measurements 
compared to its position after 60 minutes. As a result, hour 
was treated as a categorical variable with values between 0-
23. The time frame for this model was further limited 
between 10:00AM and 3:00PM or daylight hours. Creating a 
standard time frame helped eliminate bias in variable 
coefficients when the sun was not present due to northern 
locations having a shorter daylight period during the winter 
solstice [27]. Month helped account for seasonal changes 
throughout the year as well as the sun’s elevation in the sky 
with reference to the southern horizon. Month was also 
treated as a categorical variable with values between 1-12. 
After consolidating the data within the ranges of each 

variable, the final dataset consisted of 24,179 data points and 
14 test sites (Curacao did not have any cloud ceiling 
measurements). In conclusion, these variables aided in 
analyzing the effect of climate classification on horizontal 
solar panel power output while holding influential variables 
constant. 

2.3. Analysis 

After the model variables were finalized, 1,000 points 
were randomly removed to provide a validation set to 
confirm the model’s predictive ability. Next, the conceptual 
model (see Equation 1) was specified into an additive, 
statistical model for use in the empirical analysis (Equation 
2). After the full statistical model was completed, two 
reduced models were developed in order to conduct Wald 
tests for joint significance of the weather and climate 
coefficients [28]. The Wald test was used in place of the 
standard F-test because not all the underlying assumptions 
for an OLS model were met during initial data examination. 



 Journal of Energy and Natural Resources 2019; 8(2): 77-86 81 
 

The full and reduced models were compared using RStudio 
and conclusions were made on the effectiveness of the 
Köppen-Geiger climate classification system to predict 
photovoltaic power output compared to weather data. 

The conceptual model can be seen in Equation 1--it 
identifies three specific factors that impact photovoltaic 
power production as expressed earlier in the paper. These 
factors can be broken into specific variables to better 
understand their influence on power, as shown in Equation 2. 
This equation contains 28 variables and associated 

coefficients. The variables grouped together represent 
categorical variables that have multiple dummy variables. 
Dummy variables are equivalent to 0 or 1 in an equation such 
that one category is represented at a time. There is also one 
less dummy variable than there are categories for each group 
due to one variable being the baseline, which is taken into 
account by the intercept or β0. Finally, each numbered 
coefficient is defined in Table 2 below. Equation (1) is the 
conceptual photovoltaic power prediction model. Equation 
(2) is the statistical photovoltaic power prediction model. 

 

power = f(sun angle, weather, climate)                                                          (1) 

Y= β₀+β₁X₁+β₂X₂+β₃₋₁₃X₃₋₁₃+β₁₄₋₁₈X₁₄₋₁₈+β₁₉X₁₉+β₂₀X₂₀ +β₂₁X₂₁+ β₂₂₋₂₇X₂₂₋₂7                   (2) 

Table 2. Statistical Mode Coefficient Definitions. 

Coefficient Variable Coefficient Variable 

β₀ Intercept β₁₄ Hour 11 (11:00 AM) 
β₁ Latitude β₁₅ Hour 12 (12:00 PM) 
β₂ Altitude β₁₆ Hour 13 (1:00 PM) 
β₃ Month: 2 (Feb) β₁₇ Hour 14 (2:00 PM) 
β₄ Month: 3 (Mar) β₁₈ Hour 15 (3:00 PM) 
β₅ Month: 4 (Apr) β₁₉ Temperature 
β₆ Month: 5 (May) β₂₀ Humidity 
β₇ Month: 6 (Jun) β₂₁ Cloud Ceiling 
β₈ Month: 7 (Jul) β₂₂ Climate: Bsk 
β₉ Month: 8 (Aug) β₂₃ Climate: Cfb 
β₁₀ Month: 9 (Sep) β₂₄ Climate: Csa 
β₁₁ Month: 10 (Oct) β₂₅ Climate: Csb 
β₁₂ Month: 11 (Nov) β₂₆ Climate: Dfa 
β₁₃ Month: 12 (Dec) β₂₇ Climate: Dfb 

Next, assumptions were tested to determine if the proposed 

model could be viable. Assumptions that were tested include 
multicollinearity, serial correlation, normality, 
homoscedasticity, and coefficient significance. These were all 
tested in RStudio to determine if further analysis could be 
carried out. If these assumptions were not met, appropriate 
measures needed to be taken to draw valid conclusions from 
the model. 

After all assumptions were tested, a reduced model was 
created for both weather and climatic variables in order to 
conduct the Wald test. The Wald test compared these reduced 
models to the full model to determine if the variables 
provided any value in the prediction of power. The reduced 
models can be seen below in Equation 3 and 4. 

Equation (3) is the reduced prediction model without 
Köppen-Geiger climate classifications. 

 

Y= β₀ + β₁X₁ + β₂X₂ + β₃₋₁₃X₃₋₁₃ + β₁₄₋₁₈X₁₄₋₁₈ + β₁₉X₁₉ + β₂₀X₂₀ + β₂₁X₂₁                       (3) 

Equation (4) is the reduced prediction model without weather variables. 

Y= β₀ + β₁X₁ + β₂X₂ + β₃₋₁₃X₃₋₁₃ + β₁₄₋₁₈X₁₄₋₁₈ + β₂₂₋₂₇X₂₂₋₂7                                 (4) 

A Wald test was conducted for each reduced model. 
Depending on the test statistic and the associated chi-squared 
critical value, the null hypothesis can be rejected or fail to be 
rejected. If the null hypothesis is rejected, the test would 
conclude that the coefficients are not jointly equal to zero and 
thus add value to the power prediction model. If the null 
hypothesis cannot be rejected, the conclusion would be that 
the coefficients are equivalent to zero and add no value to the 
power prediction model. In other words, the variables tested 
do not have any effect on the power output of horizontal 
photovoltaic cells. 

Finally, the two reduced models were compared and 
analyzed to determine their effectiveness. First, each model’s 
goodness-of-fit was tested by calculating each model’s R-
squared values after inputting the 1,000 random validation 
points. Next the models’ predictive abilities were tested. Each 
model’s root mean squared error and mean absolute error 
were calculated to explain how well the models were able to 
predict the power given the input variables and actual power 
recorded. In conclusion, the results obtained from these tests 
determined the effectiveness of incorporating Köppen-Geiger 

climate classifications. 

3. Results 

 

Figure 5. Normality Q-Q plot. 

The full model was estimated using the remaining 23,179 
data points after removal of the validation dataset. First, 
normality was tested by creating a quantile-quantile (Q-Q) 
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plot, as shown in Figure 5. Ideally, if the dataset was 
normally distributed, the graphed points would follow the 
slanted, dotted line across the plot, yet the tail ends of the 
plotted points stray from the ideal line, indicating a non-
normal distribution. However, the sampling distribution of 
the coefficients is still considered to be normally distributed 
due to the central limit theorem, which suggests a large 
sample with random variables approaches normality 
regardless of the shape of the population distribution [29]. 

Next, multicollinearity was tested amongst the 
independent variables to determine if any of the variables 
were dependent upon each other. The variation inflation 
factor (VIF) was determined for each variable. An ideal 
VIF for a variable would be 1; however, VIFs under 10 are 
acceptable [28]. From the full model, two variables had a 
VIF above 10. Climate classification had a VIF of 37.64 
while altitude had a VIF of 12.49. First, altitude was 
removed from the model which drastically changed the VIF 
for climate classification. It decreased the VIF from 37.64 
to 4.20 indicating that altitude and climate classification 
were highly correlated. Besides this dramatic change, no 
other VIF values changed by more than 0.08. After the 
removal of altitude, the next highest VIF was temperature 
with a value of 4.41. Climate classification was also 
removed, and altitude was reinserted into the model to 
identify its effect. It also lowered all variables’ VIFs under 
10, with temperature having the highest VIF of 3.69. Due to 
climate classification being the investigated variable within 
this research, altitude was ultimately selected to remain out 
of the model. 

After multicollinearity, serial correlation was tested. To 

test this assumption the data was first organized 
alphabetically by each location and then within each 
location the data was organized chronologically. Finally, a 
plot of the residuals was created, as shown in Figure 6 
below. From this graph, autocorrelation can be clearly 
identified by the tendency of the data to continually stay 
above or below the x-axis at y = 0, labeled by the red line. 
Due to this evident trend, it was concluded that the 
residuals were correlated, which was further verified with 
the data failing a Durbin-Watson test [28]. Serial 
correlation was accounted for by using robust standard 
errors thus allowing for valid statistical inference. This 
process was completed in RStudio utilizing the package 
“sandwich” and command “coeftest” [30].  

Following correlation, homoscedasticity of the residuals 
was tested by first looking at a plot of the residuals versus 
the fitted values of the model, as shown in Figure 7. In the 
plot, the values are at first closely grouped to one another, 
but progressively spread further apart moving left to right 
across the plot. This plot is depictive of heteroscedasticity. 
For homoscedasticity the values would ideally follow a 
random pattern with no specific clustering throughout the 
plot. Heteroscedasticity was confirmed with a Breusch-
Pagan test [28]. Like serial correlation, heteroscedasticity 
was dealt with by using robust standard errors to adjust the 
standard error of the estimated coefficients within the 
model to determine the correct p-value and its significance. 
The robust standard errors were again calculated in RStudio 
utilizing the package “sandwich” and command “coeftest,” 
but specifying within the command to correct for both serial 
correlation and heteroscedasticity [30]. 

 

Figure 6. Residuals chronologically graphed. 
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Figure 7. Residuals vs Fitted Values of Modified Model. 

Finally, each variable’s significance was determined based 
upon a t-test using an alpha of 0.05 to determine the 
associated p-value’s significance [29]. Any p-value lower 
than 0.05 would result in a significant variable. After 
implementing robust standard errors, climate classification 
variables and Month 11 had the largest change in p-value. Of 
the climate classification variables, the p-value of Csa 
increased the most making the variable become more 
insignificant. This insignificance led to the conclusion that 
there is no difference on the effect of power production 
between Csa and the Af (the base climate of the model). The 
locations recorded with the climate classification Csa are 
both located in California while the location recorded with 
the climate classification Af is in Hawaii. The insignificance 
can potentially be explained by the two climates sharing 
similarities in local weather patterns and other climatic 
features while controlling for temperature, humidity and 
cloud ceiling. Similarly, Dfa and Csb also became 
insignificant after adjusting the standard errors for serial 
correlation and heteroscedasticity. Again, there could be 
similarities between these climates and Af, such as 
precipitation or wind speed, while controlling for 
temperature, humidity, and cloud ceiling. These variables 
were not removed from the model in order to maximize the 
number of locations the model can be applied to. In 
conclusion, the climates Csa, Dfa, and Csb could not be 
differentiated against Af in predicting the power output of 
horizontal photovoltaic panels. 

The only other variable within the model that was 
insignificant was Month 11 (November) with a p-value of 
390. This higher p-value could be due to November having a 
similar effect on horizontal photovoltaic power prediction 
when compared to the base month of the model (January) 
while controlling for the other variables in the model. This 
similar effect is most likely the position of the sun (solar 

elevation) in the sky throughout the month. In summary, the 
effect on power production could not be distinguished 
between November and January. However, November was 
retained as it is a key variable that will be used for prediction.  

In conclusion, the data obtained from the different test 
locations was developed into a simplified linear horizontal 
photovoltaic power model. The model was unable to meet the 
correlation and homoscedasticity assumptions, requiring a 
robust calculation of each coefficient’s standard error and p-
value. Overall, the Köppen-Geiger climate classification that 
was determined to have the highest positive effect on 
horizontal photovoltaic power production compared to Af, is 
Cfb or warm temperate, fully humid, and warm summer. 

With the completion of an initial model, two reduced 
models were compared against the full model to determine if 
climate classification and the weather variables temperature, 
humidity and cloud ceiling added value to the model. This 
analysis was conducted using a Wald test in order to properly 
account for the model’s robust standard errors. These errors 
were due to the model exhibiting heteroscedasticity and serial 
correlation. Both robust Wald tests were completed with the 
null hypothesis stating that the removed variables in the 
reduced models did not add value to the model [28]. In both 
instances, the test concluded with the rejection of the null 
hypothesis. In conclusion, it was determined that the 
Köppen-Geiger climates and the weather variables, 
temperate, humidity and cloud ceiling added value to the full 
model.  

Next the models’ predictive abilities were assessed based 
upon their ability to fit the validation dataset. First, the 
adjusted R-squared values of the full and reduced models 
were compared to determine each model’s goodness-of-fit or 
how well the model fit the validation data, as shown in Table 
3. The model with weather variables and no climate variables 
can explain, on average, 21.75% more variance of the power 
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output of horizontal photovoltaic cells compared to the model 
with climate variables and no weather variables from the 
dataset. Although the weather variables have a better fit, 
incorporating climate did increase the amount of variation the 
model can explain by 3.05%. An example of each model’s 
goodness-of-fit can be seen in Figure 8 below. In the figure, 
the predicted power output is graphed against the actual 
power recorded at March Air Reserve Base between Nov 28 
and Nov 30, 2017. Due to the time of day of the model being 
between 10:00AM and 3:00PM, times outside this period 

were all represented as 0 W. 

Table 3. Model Measures of Fit. 

Model Type R-Squared Adjusted R-Squared 

Full Model 0.5472 0.5468 
Reduced Model without 
Weather 

0.3028 0.3021 

Reduced Model without 
Climate 

0.5201 0.5196 

 

 

Figure 8. Model Predictive Power Output. 

 Finally, a comparison was conducted of the predictive 
abilities of the full and reduced models. This was completed 
by inputting the validation dataset into each model and 
measuring the difference between the actual values recorded 
and the predictive values produced from the models. Root 
mean squared error and mean absolute error were used to 
compare the models. Running the 1,000 validation points 
through the models produced the values in Table 4. The 
results are similar to the R-squared values in Table 3 above, 
showing that the reduced model with weather variables but 
no climate variables produced less error while predicting 
horizontal photovoltaic power. However, when climate 
variables were included—i.e. the full model—the error 
decreased further. In conclusion, weather variables within the 
model were able to fit the validation data better while 
producing less error compared to climate variables. 

Table 4. Model Measures of Prediction. 

Model Type RMSE MAE 

Full Model 4.614 3.534 
Reduced Model without Weather 5.732 4.656 
Reduced Model without Climate 4.749 3.620 

4. Conclusion 

Horizontal panel power output and weather data was 
collected from 28 test locations around the globe between 
June 2017 and September 2018. The model started with over 
a half billion data points collected from 16 reliable sites. 
However, the data was narrowed down to 14 test sites 
resulting in 24,179 usable data points, leading to the 
development of a linear model to predict power output. The 
model incorporated site-specific weather and geographical 
characteristics, along with Köppen-Geiger climate 
classifications in order to determine the effect of adding 
climate to the model. After performing a Wald test between 
the full model and reduced model without Köppen-Geiger 
climate variables, it was determined that the climate variables 
did provide added value to the full model. Although adding 
Köppen-Geiger variables provided added value to the model, 
these variables were less effective in fitting and predicting 
the validation dataset.  

After analyzing each models’ goodness-of-fit and 
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predictive abilities, it was concluded that cloud ceiling, 
temperature, and humidity were, on average, able to 
account for more variation compared to Köppen-Geiger 
climates. However, adding climate to these weather 
variables further increased the amount of variation 
explained by 3% and lowered the overall error within the 
model. The best Köppen-Geiger climate classification was 
Cfb, which was able to produce, on average, 30% more 
power compared to the climate Af. Similarly, the worst 
climate was BSk, which produced, on average, 9% less 
power compared to climate Af. Overall, the model can 
predict the power output of horizontal poly-crystalline 
photovoltaic panels at 1,213 DoD installations between the 
hours of 1000-1500. However, the final model was only 
able to account for approximately 55% of the variation 
within the data. In conclusion, it was discovered that the 
cost-effectiveness of a photovoltaic array depends on 
Köppen-Geiger climate regions, in addition to weather 
characteristics and the orientation of the array. 
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