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Abstract: Negative feedback is an established technique used to improve the quality of an amplifier. The modelling of the 

closed-loop circuit is a complex procedure that, if not done properly, may give erroneous results. A new method for modelling 

amplifiers that use negative feedback over a broad frequency range is presented. The method overcomes the main difficulties of 

the two-port analysis, namely the identification of the feedback type and the determination of the feedback network loading to the 

open-loop amplifier. Compared to other methods, it is more suitable for handling frequency-dependent quantities. All topologies 

are treated as voltage amplifiers. The open-loop amplifier is described by three open-loop transfer functions. The theoretical 

context of the non-ideal op amp is used to derive the closed-loop quantities, discriminating between the non-inverting and the 

inverting case. The proposed method provides accurate results over a broad range of frequencies. The poles and the zeros can be 

readily calculated as well as the loop gain, to examine the stability of the amplifier. It can account for complex loads and 

frequency-dependent gain-setting resistors. Another advantage is that once the open-loop transfer functions are known, other 

closed-loop configurations can be computed with no additional effort. Circuit complexity has not been found to be a problem. 

The proposed modelling technique has been used in the class for a number of years with undergraduate students responding 

positively to it. 
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1. Introduction 

The concept of feedback is fundamental in electronics and 

control systems. Negative feedback has certain benefits, the 

most important being the desensitization of the closed-loop 

gain. Other benefits include the extension of bandwidth, the 

reduction of noise and harmonic distortion. Negative feedback 

also modifies the input and output impedances, providing a 

means for tailoring the driving impedance at a specific port to 

our needs. The downside is a potential for instability that has 

to be taken care of at the design stage. 

Most textbooks present feedback theory in terms of 

two-port analysis, [1-3], assuming unidirectional amplifier 

and feedback path. A simplified analysis of feedback 

amplifiers based on the two-port methodology was given by 

Marrero, [4]. Similarly, Yeung’s approach [5] is essentially 

based on the two-port analysis. The problem with the two-port 

technique is that its ability to correctly describe the amplifier 

is based on the loaded open-loop gain, a vague quantity that 

occasionally accepts different definitions. Another difficulty 

is that the type of feedback, voltage or current, needs to be 

determined and then the feedback factor calculated. In 

addition, input and feedback signal mixing has to be 

characterized as series or shunt. This categorization creates 

four types of amplifiers: series-shunt, series-series, 

shunt-shunt, shunt-series, leading to an unnecessary 

complication. 

A general method to analyze feedback amplifiers was 

proposed by Bode [6]. Bode introduced the concept of the 

return ratio (RR). The RR for a controlled source can be found 

by setting all independent sources to zero, breaking the 

connection between the controlled source and the circuit, then 

driving the circuit at the break point with an independent 

source of equal strength and calculating the resulting output 

through the feedback loop. The return ratio technique was 

further refined by Rosenstark, [7]. Using Blackman’s formula, 

we are able to find the impedance at any port, [8]. Finding a 

dependent source that produces the simplest way to the result 
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is a matter of experience. Otherwise, the procedure may be 

cumbersome and the result not particularly insightful. 

Another technique for feedback circuit analysis is the one 

based on signal flow graphs, [9]. The method can in principle 

be used to handle any feedback architecture, however the 

choice of the parameters that represent each flow line is more 

or less an arbitrary process. Other methods for feedback 

circuit analysis can be found in references [10-13]. 

Regarding the subject of feedback amplifier modeling, little 

work has been done especially on models that predict the 

amplifier behavior over a broad frequency range. Cunha et al. 

[14], presented a low-pass equivalent feedback topology for 

feedback amplifier modelling where the open-loop gain is 

approximated by a polynomial, the coefficients of which are 

found with a recursive procedure. To complete the model, input- 

and output- matching filters are used. Yang [15], presented a 

simple model for the operational amplifier where the open-loop 

gain is represented with a transfer function with two poles. The 

model was found to be adequate for educational purposes. Gu et 

al. [16], proposed a new method based on dual-port network to 

solve an amplifier circuit using negative feedback. All 

parameters were assumed to be frequency independent. 

In practical circuits, the open-loop gain as well as the port 

impedances are a function of frequency. The gain of an 

amplifier can exceed 100,000 at very low frequencies and 

reduce to less than unity at frequencies above 10 MHz. The 

same variability exists in the port impedances. For this reason, 

it is inadequate to characterize the performance of an amplifier 

with a single number. From the literature review it occurs that 

no existing technique is particularly suited for handling 

frequency dependent quantities. In this paper, a method for 

modelling amplifiers with feedback is presented that is based 

on the measurement and subsequent modelling of three main 

quantities: the unloaded open-loop gain, the open-loop input 

impedance, the open-loop output impedance. From these three 

transfer functions, all closed-loop quantities can be derived 

from a simple theory that is based on the concept of the 

non-ideal operational amplifier. 

The structure of the paper is as follows: In Section II the 

theoretical background for the analysis of both inverting and 

non-inverting amplifiers is presented. Section III presents the 

analysis of amplifier circuits containing one or two poles in 

their transfer function. In Section IV, the proposed modelling 

method is applied on a practical amplifier circuit. In Section V 

the case of frequency-dependent gain-setting resistors is 

examined. The paper closes by highlighting all significant 

contributions made to the field. 

2. Expressions for the Gain and Port 

Impedances of Feedback Amplifiers 

2.1. Non-inverting Amplifier 

Figure 1 depicts a simple model for a non-inverting amplifier. 

Here Zi(jω) is the open-loop input impedance, Zo(jω) the 

open-loop output impedance and A(jω) the unloaded open-loop 

gain. The voltage dependent voltage source amplifies the error 

signal between the (+) and (-) nodes providing the output Vo(jω). 

It is important to clarify how the quantity A(jω) is calculated 

because it differs from the usual definition of the open-loop 

gain in two-port theory. The unloaded open-loop gain is 

calculated by removing any load connected at the output and 

taking the limit values R2 →	 ∞ and R1 → 0. The gain A(jω) is 

higher than the traditional loaded open-loop gain and also 

extends higher in frequency. The open-loop input impedance 

must be calculated under the same conditions. The open-loop 

output impedance is calculated in the usual way by grounding 

the input, removing the load and connecting a current source IS 

at the output. If Vo is the voltage measured at the output then Zo 

= Vo/Is. This procedure has to be followed for each single 

frequency within the frequency range of interest. 

 

Figure 1. Left: Non-inverting amplifier configuration, Right: amplifier model with voltage dependent voltage source. 

By writing the node equations of the circuit it is trivial to 

show that the closed-loop gain is given by the expression 
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where the denominator is 
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The expressions for the closed-loop input and output 
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impedances are as follows: 
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where D is given by (2) and subscript “f” denotes a quantity 

with feedback applied to the circuit. 

While the input and output impedances are a property of 

the amplifier itself, the gain is altered by the presence of any 

source impedance and load connected to the output. 

Referring to the general circuit of figure 2, after having 

computed the quantities Avf, Zif and Zof from Eqs. 1-4 the total 

gain from input to output can be found as 
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Figure 2. The general case where the source has internal impedance Zs and 

a load ZL is connected to the output. 

2.2. Inverting Amplifier 

Figure 3 shows an amplifier that inverts its input. In principle, 

every amplifier can be connected as inverting or non-inverting, 

however there are topologies that better serve for one case or the 

other. The quantities A, Zi, Zo are the same to that of Figure 1 and 

need not be measured again. The main difference between the 

circuits of Figure 1 and Figure 3 is that in the circuit of Figure 3 

the input signal is applied through resistor R1. 

 

Figure 3. Right: Inverting amplifier configuration, Left: amplifier model with voltage dependent voltage source. 

The closed-loop gain is given by the expression 
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where D is taken from Eq. (2). The closed-loop input 

impedance is 

��� =
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The output impedance for the inverting configuration is 

given by Eq. (4). 

3. Amplifier with Frequency-Dependent 

Gain 

3.1. Amplifier with One Pole 

For simplicity, we will assume that the open-loop amplifier 

has DC gain Ao and only one pole p. Then the open-loop gain 

transfer function can be written in the form 

�	$� =
��
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                 (8) 

Substituting Eq. (8) in Eq. (1), assuming that every other 

parameter is independent of frequency, we get the expression 

for the closed-loop gain 
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From Eq. (9) the DC closed-loop gain is 
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If Ao is large, then Eq. (10) simplifies to the ideal gain 

expression 
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From the numerator of Eq. (9) we find that a new zero 

appears at frequency 
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From the denominator of Eq. (9) we find the pole of the 

closed-loop system to be 
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Both znew and pnew lie on the left half-plane. Because Ao >> 

1, the pole pnew appears at a much higher frequency than the 

original pole p. It is a well-known fact that in feedback we 

trade gain for bandwidth. 

To conclude, the application of negative feedback to the 

one-pole open-loop amplifier had three main effects: a) 

decreased the voltage gain, b) increased the frequency of the 

pole, c) created a zero in the transfer function. 

3.2. Amplifier with Two Poles 

If the open-loop amplifier has DC gain Ao and two poles p1, 

p2 its transfer function can be written as 

�	$� =
��

	��% &�⁄ �	��% &
⁄ �
             (14) 

Then, substituting Eq. (14) in Eq. (1) we get the 

closed-loop gain of the amplifier in the form 
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where the coefficients are 
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5� = ���� + ��	��+��� + ��	��+���	5� = 5�	*� + *�� (17) 
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Depending on the magnitude of p1, p2 and the values of 

the other parameters, the poles can be real or complex. In 

practical cases the open-loop gain, input impedance and 

output impedance are all frequency dependent quantities. 

Also, in the general case, the gain-setting resistors can be 

impedances Z1, Z2. It is practically almost impossible to 

derive an analytical expression even for the simplest 

topology; therefore, another way of dealing with the problem 

of modelling has to be found. In the next paragraph, we will 

show a way of representing the open-loop quantities with 

transfer functions and predicting from them the closed-loop 

behavior for every case of interest, without having to 

simulate or build the actual circuit. 

4. Implementation of the Proposed 

Method in a Practical Amplifier 

Circuit 

4.1. Amplifier Connected as Non-inverting 

In figure 4 the circuit diagram of a power amplifier is 

depicted. The structure is typical of many commercial 

amplifiers. Transistors Q1, Q2 form a differential stage. The 

error signal is created by subtracting the feedback signal 

from the input. The feedback signal is generated by 

sampling the output by means of the voltage divider R1, R2. 

Transistor Q3, in common emitter configuration, provides 

most of the voltage gain. Miller compensation is 

implemented at this stage with capacitor Cc = 33 pF. This 

capacitor provides local feedback, limiting the gain at high 

frequencies. Transistors Q4, Q5, working in common 

collector mode, act as drivers for the output transistors. 

Transistors Q6, Q7 provide the necessary current gain for the 

load, which is a resistor of 8 ohms. Transistors Q8, Q9 

function as constant current sources. The voltage gain is set 

by resistors R1, R2. The ideal voltage gain assuming infinite 

open-loop gain is 27.83 (28.9 dB). 

 

Figure 4. Circuit diagram of power amplifier. 

The circuit was simulated in Spice using proper models for 

the transistors. Then, the unloaded open-loop gain, the input 

impedance and the output impedance were measured and the 

data saved in files. To measure the open-loop gain, first RL is 

removed, then a large inductor (1 GH) is connected between 

the output and R2. In addition, resistor R1 is effectively 

shorted by connecting a 1 kF capacitor in parallel. This way 

the DC conditions of the amplifier remain undisturbed. 
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The Spice data is shown in Figure 5 (circles). The 

discrete-time data set is read by Matlab and a transfer 

function is estimated that best fits the data. 

 

Figure 5. Unloaded open-loop gain as predicted by the transfer function of 

Eq. (19) (straight line). The original data are plotted with circles. 

The user can choose the maximum number of poles and 

zeros so that the mean squared error of the estimation is 

minimized. Usually, a third order transfer function gives a 

good enough approximation. The transfer function used to 

model the open-loop gain is 

�	$� =
#6.8·�9�:%�;.8·�9
<

%<�6.=�·�9>%
�?.�=·�9�@%��.�?·�9�A
      (19) 

A(s) is an approximation of the original A(jω) and its 

magnitude is plotted in Figure 5 using a straight line. As can 

be noticed the fit between the two data sets is almost 

perfect. 

Analogous expressions are estimated for the open-loop 

input and output impedances, again using 3
rd

 order transfer 

functions, Figure 6. The true open-loop input impedance is 

found by numerically removing the 22 kΩ resistor at the 

input. 

 

Figure 6. Input and output open-loop impedances. The original data are 

plotted with circles. 

Having obtained transfer functions A(s), Zi(s) Zo(s) we 

have a complete description for the amplifier without 

feedback. The closed-loop quantities are estimated from 

Eqs. (1-4). The closed-loop voltage gain in dB is plotted in 

Figure 7 (straight line) along with the results from Spice 

simulation (circles). The match is almost perfect. It should 

be noted that for all closed-loop transfer functions phase 

information is also available, but is omitted for the sake of 

clarity. 

 

Figure 7. Calculated closed-loop gain from the model transfer function 

(straight-line). The simulation results are plotted with circles. 

One advantage of the proposed modelling method is that 

the transfer function for the closed-loop system is available 

in analytic form and hence the poles and the zeros can be 

readily calculated. AVf(s) is a 9
th

 order transfer function with 9 

poles and 8 zeros as given in Table 1. The DC gain is 27.76. 

Table 1. Poles and zeros of the closed-loop transfer function. 

poles (MHz) zeros (MHz) 

-0.991 -5.9 ± j10.54 

-3.7 ± j5.28 -6.27 ± j11.32 

-6.72 ± j10.3 -20.11 

-5.91 ± 10.98 -150.01 

-19.37 129.96 ± j129.78 

-61.5 - 

All poles lie in the left half-plane, therefore the amplifier is 

stable. The lowest pole at 991 kHz determines the -3 dB 

point. 

Having derived the expression for the closed-loop gain, the 

loop gain T can be calculated from the equation 

B	CD� =
�·�E�	FG�

�#�·�E�	FG�
	              (20) 

where f is the feedback factor. For the amplifier of Figure 4 

the feedback factor is 820/22820. The loop gain (magnitude 

and phase) is plotted in Figure 8. The unity gain frequency (0 

dB point) occurs close to 1 MHz. At this point the phase is 

-99° and the phase margin is calculated as 180°-99° = 81°. 

This result is confirmed by Spice. 

 

Figure 8. Loop gain for the amplifier of Figure 4; magnitude plotted with 

solid line, phase plotted with dashed line. 

Having verified the reliability of our model we can now 

compute the closed-loop frequency response for various gains. 

Figure 9 depicts the magnitude response for gains of 5, 10, 20 



 Journal of Electrical and Electronic Engineering 2022; 10(4): 149-157 154 

 

and 30. In the case of gain 5 we notice a pronounced peak in the 

frequency range between 5 and 6 MHz. The lowest pair of poles 

for this case is -0.796 ± j5.634 MHz, giving a damping factor ζ = 

0.14. The low damping explains the response peaking. For a 

gain lower than 9 the lowest poles that occur is a complex pair, 

whereas for higher gains the lowest pole is real. 

 

Figure 9. Closed-loop frequency response; gain from bottom to top: 5, 10, 20, 30. 

4.2. Amplifier Connected as Inverting 

As explained in the previous paragraph the three transfer 

functions A(s), Zi(s), Zo(s) constitute a complete model for 

the amplifier of Figure 4. No additional information is 

necessary regarding its small signal behavior. Figure 10 

shows the same circuit connected as an inverting amplifier. 

The input signal is fed to the base of transistor Q2 through 

resistor R1 whereas the base of transistor Q1 is grounded. 

 

Figure 10. Inverting amplifier with a nominal gain 28.6 dB. 

Its frequency response can be calculated from Eqs. (6-7) with no additional measurements. The ideal gain with R1 = 10 kΩ, 

R2 = 270 kΩ is -27. The closed-loop frequency response with R1 = 10 kΩ, R2 = 270 kΩ is the middle curve in Figure 10. The 

results are verified by Spice simulation. 

 

Figure 11. Closed-loop frequency response of the inverting amplifier of Figure 10. From top to bottom the ratio R2/R1 is 560kΩ/10kΩ, 270kΩ/10kΩ, 

100kΩ/10kΩ. 
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5. Frequency-Dependent Gain-Setting 

Resistors 

Until this point, the gain-setting resistors were taken to be 

independent of frequency. However, there is no limitation in our 

method regarding the nature of R1, R2 or RL. Using the circuit of 

Figure 12 as an example we will study a case where Z1, Z2 are 

complex impedances. This circuit is a special type of filter that 

applies equalization to vinyl disk playback. Vinyl disks are 

recorded with standard RIAA curve. The active network of 

Figure 12 is a response shaping network that implements the 

inverse transfer function that has the analytical form 

H	$� = I
��J
%

	��J�%�	��J<%�
	            (21) 

where K is the gain at DC and the time constants are τ1 = 3180 

µs, τ2 = 318 µs, τ3 = 75 µs. 

 

Figure 12. An active filter that implements the inverse RIAA curve used in 

vinyl disk playback. Component values: R = 1 kΩ, C = 10 µF, R1 = 88.33 kΩ, 

C1 = 36 nF, R2 = 7.5 kΩ, C2 = 10 nF. 

The expressions for the feedback impedances are as follows: 
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      (22) 

As a first step A(jω), Ζi(jω) and Zo(jω) for the op amp must 

be measured and converted to transfer functions with the help 

of Matlab as explained in paragraph 4.1. Impedances Z1, Z2 

given by Eqs. (22) are also inserted in the model. The 

frequency response is calculated from Eq. (6). In Figure 13 the 

circuit frequency response is compared to the ideal response as 

given by Eq. (21). For the most part of the audio frequency 

range the circuit response follows closely the ideal response. 

The deviation observed at low frequencies is due to the zero at 

s = 0 created by the combination of components R and C. The 

departure from the ideal response at high frequencies is due to 

the limited open-loop gain of the op amp. 

 

Figure 13. The frequency response obtained with the active circuit of Figure 

12 (solid line). With the dashed line the ideal inverse RIAA curve. 

The procedure described in Sections 4, 5 can be 

summarized as follows: 

i) The unloaded open-loop gain A(jω), input impedance 

Zi(jω) and output impedance Zo(jω) of the amplifier are 

measured. 

ii) Using Matlab System Identification Toolbox transfer 

functions of arbitrary order are determined that best 

describe our data. 

iii) Resistors R1, R2 are identified. If they depend on 

frequency, an appropriate expression is written for 

impedances Z1, Z2. 

iv) Using the theoretical context of the non-ideal op amp 

laid out in Paragraph 2 the closed-loop gain is 

calculated as well as the closed-loop impedances. 

v) If the source has internal resistance or a load is connected 

at the output a correction is done using Eq. (5). 

6. Discussion 

The modelling of amplifiers that employ feedback is an 

open research field. Previous studies followed a rather 

simplistic approach, where the parameters are either 

frequency independent or the gain transfer function contains a 

maximum of two poles. In the proposed scheme, the order of 

the open-loop transfer functions is not predefined but 

determined by the experimental data. For the open-loop 

transfer functions, poles are used as well as zeros, to correctly 

describe both magnitude and phase over a broad range of 

frequencies. The final closed-loop transfer function is usually 

of a much higher order than the original open-loop transfer 

functions. 

The fundamental assumption in the proposed methodology 

is that the circuit main attributes, such as gain and impedances, 

can be described with transfer functions. Amplifiers, 

especially when working under open-loop conditions, are 

nonlinear circuits. In addition, the circuit behavior is 

perplexed by component tolerances and the changes caused by 

temperature variation. Fortunately, the application of feedback 

drastically stabilizes circuit performance and improves circuit 

linearity. Because of this reason, the assumption of linearity is 

not as limiting as it would be in a circuit with no feedback. The 

proposed method is expected to provide a reasonable 

approximation for the circuit’s performance under small 

signal conditions. To account for the nonlinearity when the 

amplifier is working under large signal conditions a 

completely different model would be required, perhaps a 

time-based model. 

Having a concise and accurate model for the amplifier is 

important because we can study how a change of a parameter 

modifies the open-loop transfer functions and how this is 

reflected to the amplifier’s closed-loop performance. For 

example, designers make a lot of effort to ascertain that the 

circuit operation is stable and free of unwanted oscillations 

under varying conditions. The circuit can be steady with a 

certain load but unsteady with another. This, as well as other 

problems, can be studied with the proposed method.  
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The proposed methodology will provide good results if the 

data collected are accurate. This is the reason we have chosen 

to get our data from simulation rather than real measurements. 

Current network analyzers have a dynamic range that 

exceeds 100 dB and a resolution better than 10 ppm, 

therefore the measurement of ports impedances should 

present no difficulty. However, the measurement of the 

unloaded open-loop gain in practical circuits can be a real 

challenge. The main problem is that the biasing of the 

amplifier should not be disturbed, hence the use of a large 

inductor in the feedback loop and a large capacitor that shorts 

the (-) input. The problem of accuracy exists at very low 

frequencies. Practical limits for the component values are 

100 H for the inductor and 20,000 µF for the capacitor. The 

input signal should be kept as small as possible to avoid 

non-linearity and circuit overloading. 

An indirect way to obtain the unloaded open-loop gain is 

to measure the loop gain with the set up shown in Figure 14. 

The signal from the generator is injected in the feedback loop 

using a transformer. A suitable point for injection is one 

where the input impedance is high. The loop gain is 

computed as T = -Vo/Vi. For a given feedback factor f = 

R1/(R1+R2) the unloaded open-loop gain is T/f. The method 

requires a wide-bandwidth transformer and its validity 

remains to be confirmed in practice. 

 

Figure 14. Set up to measure the loop gain of an amplifier. 

As a final word, let us further clarify what is meant by the 

term “unloaded open-loop gain”. To measure it, the load is 

removed and we take the limit values R2 →	 ∞, R1 → 0. 

Because we use the term “open-loop” we should not jump to 

the conclusion that the rest of the circuit has no feedback. In 

fact, the amplifiers of Figures 4 and 10 that we have studied 

have local feedback in the form of degeneration as well as 

Miller compensation. In accordance with the simple models 

of Figures 2 and 3, only the feedback introduced by the 

addition of resistors R1, R2 is examined, everything else is a 

part of the open-loop amplifier. 

7. Conclusion 

A new method for modelling amplifiers that use negative 

feedback over a broad frequency range has been presented. 

The open-loop amplifier is fully described by three transfer 

functions. A simple theory based on the non-ideal op amp 

concept provides the closed-loop quantities, discriminating 

between the non-inverting and the inverting case. 

The proposed methodology treats every amplifier as a 

voltage amplifier. This way the main difficulties in the 

application of the two-port methodology (identification of 

feedback type and loading from the feedback network) are 

solved. Once the open-loop transfer functions are formed, any 

possible configuration of the basic amplifier can be computed 

with no additional work done. 

The model is flexible enough to account for 

frequency-dependent gain-setting resistors as well as complex 

loads. The poles and the zeros can be easily calculated as well 

as the loop gain. Work is underway to apply the proposed 

modelling method to real circuits working under typical 

conditions met in practice. 
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