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Abstract: Certain properties of the recently introduced Quasi-Moment-Method (QMM) for the calibration of basic radiowave 

propagation pathloss models are systematically examined in this paper. Using measurement data concerning three different 

routes located in a smart campus environment and made available in the open literature, the paper, in particular, investigates the 

effects of size of pathloss measurement data on the outcomes of the QMM calibration of nine basic pathloss models: namely, 

COST 231-urban and sub-urban cities models, ECC33-large and medium sized cities models, and the Egli, Ericsson, Hata, Lee, 

and SUI-‘Terrain A’ models. Computational results reveal that for the data sizes considered, and in the cases of the basic COST 

231 and Hata models, which share identical correction factors for receiver antenna height, the ‘model calibration matrix’ 

becomes ill-conditioned for one choice of basis functions. The corresponding calibrated models, however, still predict pathloss 

with accuracy typical of the QMM. For example, Root Mean Square Error (RMSE) outcomes of predictions due to the calibration 

of these models, emerged as approximately the same for these three models; with values of 6.03 dB (Route A), 7.96 dB (Route B), 

and 6.19 dB (Route C). The results also show that when model calibration utilizes measurement data for distances further away 

from the transmitters (by ignoring measurement data for radial distances less than 100m away from the transmitters) significant 

improvements in RMSE metrics were recorded. The paper, in terms of the eigenvalues of the model calibration matrices, further 

examined the responses of these models to calibration with large-sized measurement data, to find that the model calibration 

matrices remained characterized, in each case, by a distinctly dominant eigenvalue. An important conclusion arising from the 

results of the investigations is that whereas the QMM model calibration process may lead, in some cases, and when large-sized 

measurement data is involved, to ‘badly-scaled’ model calibration matrices, the calibrated models still record very good 

assessment metrics. Computational results also reveal that with large-sized data sets, QMM models yield pathloss predictions 

with excellent (close to 0 dB) mean prediction errors. 
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1. Introduction 

A few decades ago, Durgin, Rappaport and Xu, [1], 

predicted that with the then advent in the USA, of the 

National Information Infrastructure (NII) systems, 

campus-wide wireless networks will proliferate in 

universities. They also suggested that because NII systems 

were designed to use frequencies higher than Personal 

Communications Systems (PCS) and the cellular systems of 

that era, pathloss associated with NII signals propagating into 

buildings and along corridors will require new prediction 

models. Wireless Local Area Networks (WLANs) have since 

become routine features in virtually all universities, and the 

channel modeling issues arising from the introduction of new 

standards and services continue to engage the attention of the 

scientific community. In quite a few cases, the focus of 

research attention is establishing, usually through empirical 

investigations, that the network of interest will function 

effectively in the campus environment. Durgin et al [1], for 

example, utilized extensive field measurements of 
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outdoor-to-indoor propagation pathloss concerning a 5.85 

GHz wireless link to characterize channels typical of 

residential and campus environments. Cheng et al [2], 

ascertained, through the analysis of pathloss measurement 

data for a university campus, that a 15GHz channel 

represented a suitable choice for the deployment of 5G 

networks in the university. Results of empirical investigations 

carried out by Aborahama et al [3] on a 28GHz network 

deployed at the campus of the American University of 

Sharjar (AUS) in the United Arab Emirates, were utilized for 

the evaluation of the shadow fading characteristics of 5G 

communications in that environment. A similar study was 

reported by Nwawelu et al [4], whose investigations focused 

on a 2.4GHz network deployed at the Nsukka campus of the 

University of Nigeria. In their contribution, Fraga-Lamas et 

al [5], utilized measurement results for a campus extending 

over an area of 26000m
2
, to evaluate the performance of a 

network simulator, implemented for a smart campus scenario. 

A similar contribution was reported by Han et al [6], who 

utilized measurement data (as provided by a University of 

Colorado repository) concerning pathloss for a campus 

environment for the validation of predictions by a network 

simulator. 

Some of the other investigations of interest to wireless 

networks deployed in university campuses either compared 

the performances of existing pathloss models or developed 

empirical models for the networks. This category includes 

investigations conducted by Ogunjide et al [7], who took 

measurements at the Gidan Kwano Campus of the Federal 

University of Technology Minna, Nigeria. The paper reported 

outcomes of the performance evaluation of certain basic 

prediction models as well as empirical model developed with 

the use of the measurement data. Ramos et al [8] focused on 

pathloss over short propagation ranges in the 27GHz to 

40GHz frequency regime, and developed a Fuzzy-based 

empirical model, with the measurement data from a 

university campus in Rio de Janerio, Brazil. The Artificial 

Neural Network (ANN) model developed by Olajide and 

Samson [9] utilized measurement data from 2.4GHz 

networks in two campuses of the Federal University 

Oye-Ekiti, Nigeria. A corridor propagation case was reported 

by Femi-Jemilohun and Walker [10], whose empirical model 

for the 2.4GHz frequency band is said to be suitable for use 

with office and campus environments. Unlike the research 

works briefly described in the foregoing discussions, which 

focused on pathloss issues associated with outdoor-to-indoor 

propagation, a number of campus-network studies limited 

attention only to outdoor, large scale pathloss cases. Many of 

the investigations, covering different network types and 

services, were concerned only with the evaluation prediction 

ability of the existing basic models. Ogbeide and Aikhoje 

[11], for example, compared predictions by the basic models 

with field measurement for a cellular (GSM standards) 

communication network at the Ugbowo campus of the 

University of Benin, Nigeria. Oyetunji [12], for the FM 

broadcast station at the Federal University of Technology, 

Akure, Nigeria, utilized pathloss measurements to evaluate 

the prediction performance of irregular terrain models. 

Outcomes of a measurement campaign conducted for the 

purposes of characterizing outdoor pathloss in ‘campus-like’ 

environments were reported by De-Luca et al, [13], who also 

utilized the results for the evaluation of some models. In a 

pair of companion papers, Popoola et al [14, 15] presented 

results of the performance evaluation of five pathloss 

prediction models, using the results of extensive field 

measurements carried out over three routes at the campus of 

the Covenant University, Ota, Nigeria. Although like many 

similar publications, the comparisons reported in [11, 14] 

suggested that the basic Okumura-Hata and the 

COST231-Hata models provide the best results for the 

campus environments investigated, it has since been 

demonstrated [16-18], that when basic models are calibrated 

by the recently introduced Quasi-Moment-Method [16], the 

calibrated ECC-33 models provide the best prediction 

metrics. 

Heretofore, QMM-calibration of the basic pathloss models 

involved measurement data sizes of less than 100, [17, 18], 

so that the ability of the model calibration tool to handle 

large data sets remained unexplored. It is consequently the 

main objective of this paper, to examine the nature of the 

characterizing properties of the QMM, when field 

measurement data size is in excess of 400. And to that end, 

field measurement data freely made available by Popoola et 

al, [14, 15] is utilized for the calibration of nine (9) basic 

pathloss models: COST231 (Urban and Sub-Urban), ECC-33 

(Large-and Medium cities), Egli, Ericsson, Okumura-Hata, 

Lee, and SUI-‘Terrain A’ models. As may be expected, a 

number of interesting features were revealed by the 

computational results. First, the model ‘calibration matrix’ 

for the COST231 and Okumura-Hata models, (which share 

similar correction factors for mobile station antenna height) 

becomes ill-conditioned when measurement data size 

exceeds 400. Second, in terms of Root Mean Square 

prediction Error (RMSE), the solution of the QMM 

calibration problem virtually converges, when the basic 

models have similar structures. On the other hand, 

corresponding Mean Prediction Error (MPE) values differ 

significantly. Third, the model calibration matrix for each 

model remains characterized by a single predominant 

eigenvalue. 

The paper in section 2, gives a brief description of the 

QMM model calibration process, after which the outcomes of 

the calibration of the nine models using measurement data 

for three routes (A-496; B-547; C-746) are presented. Using 

graphical information and tabulated metrics, section 3 

evaluates the performances of the calibrated models through 

comparisons of measurements and predictions, for a number 

of data size scenarios. 

2. The Quasi-Moment-Method 

The fundamental idea in the Quasi-Moment-Method 

calibration process is to utilize field measurement data for the 

calibration of the generic basic pathloss prediction model 
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given as 

( ) ( ) ( )
1 2

 .  .  .  +lb N
P d d dϕ ϕ ϕ= + + ,       (1) 

to obtain a corresponding calibrated model defined by 

( ) ( ) ( )1 21 2
 .  .  .  +lbc N N

P d d dκ ϕ κ ϕ κ ϕ= + +   (2) 

such that the Euclidean semi-norm of the error function 

2lb lbcP Pε = −                  (3) 

assumes its lowest possible value, [16-18]. The calibration 

coefficients nκ  appearing in (2) derive directly from the 

matrix operations defined by 

( ) [ ] ( )1−Κ = Φ Ρ ,                (4) 

in which the calibration coefficients are the entries into the 

column vector ( )Κ , and where the mn
th

 element of the model 

calibration matrix is given by, [16], 

[ ] ( ) ( )
1

,

L

mn m n k km n
k

d dϕ ϕ ϕ ϕ
=

Φ = =∑ .     (5) 

And the n
th

 member of the column vector (P) is given by 

( ) ( )
1

,

L

n n mea n kmea
k

P p p dϕ ϕ
=

= =∑ ,     (6) 

provided that it is understood that ( )kmea
p d stands for the 

pathloss measurement at the distance dk away from the 

transmitter of interest, and that there are a total of ‘L’ such 

measurements. 

2.1. The QMM-Calibrated Models 

With the use of the basic model calibration process 

described by (1) to (6) above, nine basic pathloss prediction 

models were calibrated with measurement data provided by 

[14, 15], for three different routes. 

2.1.1. QMM Models for Route A 

For this route, a total of 496 measurements, covering 

69 882m d m≤ ≤  are available from [14, 15], for an 

1800MHz network, outcomes of the QMM-calibration of the 

models are given below, as follows. 
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for the COST231 model (large urban city), when the ‘basis 

function’ associated with the correction factor for receiver 

antenna height is as defined by the 4
th

 term of the model. On 

the other hand, when this factor is utilized as two ‘basis 

functions’, with the constant ‘4.97’ being one, and the 

remaining terms, the other, the QMM calibrated model 

emerges as 
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The results of (7 and 8) represent a consequence of 

ill-conditioning of model calibration matrix earlier alluded to 

in the introductory remarks, and it is readily verified that 

pathloss predictions due to these two models are virtually 

identical. In both equations (and elsewhere in this paper) the 

numerical figures displayed in magenta colored fonts are the 

model calibration coefficients obtained with 18teh m=  and 

1.5reh m= . Other calibrated models for this route include. 
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and 
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in the case of the COST231 (sub-urban city) models, for 

which comments concerning (7 and 8) also apply. 

QMM-calibrated models for ECC33 models were obtained as 
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for the basic ‘medium city’ model, and 
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for the corresponding ‘Large city’ model. For the basic Egli 

model, QMM calibration yielded 
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 (13) 

And the calibrated Ericsson model was obtained as 
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The basic Hata model, which shares a similar ‘receiver 

height correction factor’ with the COST231 models, 

responded to calibration in this case, to yield 
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Model calibration results for the Lee and SUI (Terrain-A) 

basic models emerged, respectively, as 
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2.1.2. QMM Models for Route B 

Pathloss measurement data for this route extended over 

69 883m d m≤ ≤ , and a total of 547 measurements were 

taken, as reported in [14, 15]. Outcomes of the QMM 

calibration of the nine basic models of interest to this paper 

are provided in what follows. Although model calibration 

matrices for the COST 231 and Hata models also exhibited 

ill-conditioning of the type described in section 2.1.1, only 

models associated with the well-conditioned calibration 

matrices are presented in this section, and henceforth. 

The QMM-calibrated COST 231 models were obtained for 

this route as 

10

10

10

2
10

10

10

*46.3- *33.9log

*(-13.82log )

- *(-3.2

0.6648 0.0559

1.1161

13.8717

17.89

(log 11.75 ) )

*4.97 - *44.9log

- *-6.55log log

- *

54 8.9832

51.0905

10.4357 3.0

te

re
Urb

te

f

h

h
Pl

d

d h

 
 + 
 
 =
 +
 
 
 
 

     (19) 

for large urban city model, and 
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in the case of the sub-urban cities model. Calibration results 

for the ECC 33 models emerged as 
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for the large cities model, and in the case of medium sized 

cities, as 
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The basic Egli and Ericsson models calibrated with 

measurement data for this route are 
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in the case of the SUI model, for this route. 
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for the small-medium sized cities model. For the other five 
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for the Lee and SUI models, respectively. 

2.2. Alternative Calibration Models 

In order to examine the effects of measurements taken close 

to the transmitting antenna location, on the performances of 

the QMM calibrated models, alternative models were 

developed, using measurement data with starting points 

significantly farther away from the transmitter, than was the 

case for the each of the models in section 2.1. 
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as its calibrated version, and the Lee and SUI models, with 
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Finally, the basic SUI model’s response to the calibration 

emerged as 
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2.2.3. Route C 

Alternative calibration models developed for this route 

utilized 647 pathloss field measurements covering the radial 

distance range defined by 100 1132m d m≤ ≤ . Basic model 

calibration results obtained for the COST231 models are given 

below as 
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respectively, for the urban and sub-urban cities’ models. In the 

cases of the two ECC33 models, the corresponding models are 
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for the ‘small-medium’ sized cities model, and 
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for the large cities model. The calibrated Egli model was 

obtained as 
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and for the Ericsson model, as 
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In response to the QMM calibration with this route’s field 

measurements as earlier described, the Hata model yielded 
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as the calibrated version. And the responses of the Lee and 

SUI models to QMM calibration, emerged, respectively, for 

this route, as 
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3. Discussion of Results 

3.1. Prediction Performances of Route A QMM Models 

With the use of the models presented in § 2, the prediction 

performances of the calibrated models are evaluated in this 

section, through comparisons with measurement data. 

Figures 1 and 2 compare pathloss predicted by the models 

of (7) to (18), with pathloss measurements. 

Table 1 describes the performances of the models in terms 

of Root Mean Square Error (RMSE) and Mean Prediction 

Error (MPE). And it is readily observed from the table that in 

all cases, the calibrated models perform significantly better 

than the basic models from which they derive. An interesting 

feature of the metrics is that the RMSE values generally fall 

into two broad groups: 5.579dB for both ECC33 models, and 

6.038dB for the other models: with the SUI-Terrain model 

being the exception to this observation. Mean Prediction 

Error (MPE) generally ranged between 0.002dB and 0.004dB, 

with the Egli model, which recorded an MPE of 0.0006dB 

and the SUI model (-1.4206dB) being exceptions. As a 

matter of fact, although not shown in the table, Mean 

Absolute Prediction Error (MAPE) followed the same pattern 

as the RMSE, in that the ECC33 models recorded 4.0234dB, 

whilst the other models (with the exception of the 4.6479dB 

recorded by the SUI model) had 4.6034dB as their MAPE 

values. 
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Figure 1. Comparison of predicted and measured pathloss for Route A QMM COST231 and ECC33 Models. 

 

Figure 2. Comparison of predicted and measured pathloss for Route A QMM Egli, Ericsson, Hata, Lee and SUI Models. 

Table 1. RMSE and MPE Metrics for Route A Models. 

Model/Metric 
RMSE (dB) MPE (dB) 

Basic QMM Basic QMM 

COST231-SU 9.7885 6.0383 5.9070 0.0013 

COST231-UR 8.3290 6.0383 2.9070 0.0023 

ECC33-L 7.5838 5.5791 4.7266 -0.0018 

ECC33-M 14.642 5.5791 -13.3872 -0.0031 

RGLI 33.200 6.0383 32.1073 -0.0006 
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Model/Metric 
RMSE (dB) MPE (dB) 

Basic QMM Basic QMM 

ERICSSON 59.236 6.0383 -58.8442 -0.0042 

HATA 11.072 6.0383 7.8528 0.0028 

LEE 19.945 6.0383 18.7454 0.0045 

SUI 15.758 6.2032 -12.0162 -1.4206 

 

The profiles of Figure 3 compare pathloss predicted by the 

alternative QMM models defined by (37) – (45) with 

corresponding field measurement data. It is apparent from the 

profiles in the figure that predictions by all the models (with 

the exception of the ECC33 models) are virtually coincident. 

In addition to supporting this observation, the metrics of 

Table 2, which share the features earlier described for Table 1, 

reveal that RMSE improves by about 15% for the ECC33 

models, and about 12% for the other models, when the 

alternative calibration is utilized for this route. 

Table 2. RMSE and MPE Metrics for the Alternative Route A Models. 

Model/Metric 
RMSE (dB) MPE (dB) 

Alternative QMM Alternative QMM 

COST231-SU 5.3327 6.0383 -0.0053 0.0013 

COST231-UR 5.3327 6.0383 -0.0001 0.0023 

ECC33-L 4.7423 5.5791 -0.0034 -0.0018 

ECC33-M 4.7423 5.5791 0.0029 -0.0031 

RGLI 5.3327 6.0383 -0.0009 -0.0006 

ERICSSON 5.3327 6.0383 -0.0007 -0.0042 

HATA 5.3327 6.0383 -0.0014 0.0028 

LEE 5.3327 6.0383 -0.0029 0.0045 

SUI 5.3327 6.2032 0.0024 -1.4206 

3.2. Prediction Performances of Route B QMM Models 

Calibrated models for Route B are identified by (19)–(27), 

and the profiles of the pathloss predictions due to these 

models are displayed in Figures 4 and 5. The RMSE and 

MPE metrics of Table 3 represent evaluations of the 

prediction performances of these models, in comparison with 

pathloss measurements for the route. 

Table 3. RMSE and MPE Metrics for Route B Models. 

Model/Metric 
RMSE (dB) MPE (dB) 

Basic QMM Basic QMM 

COST231-SU 9.9963 7.9652 -0.3703 0.0051 

COST231-UR 10.542 7.9653 -3.3703 0.0013 

ECC33-L 8.0903 7.6583 -0.7309 -0.0020 

ECC33-M 20.494 7.6583 -18.8447 -0.0047 

RGLI 27.701 7.9652 25.5832 -0.0034 

ERICSSON 65.267 7.9652 -64.6496 0.0014 

HATA 10.112 7.9653 1.5755 0.0008 

LEE 15.744 7.9652 12.9271 0.0025 

SUI 22.577 7.9652 -18.9022 -0.0024 

When compared with the corresponding metrics on Table 1, 

it is seen that RMSE values recorded in this case, as 

7.6583dB for ECC33 models and 7.9652 for all the other 

models (including the SUI-terrain A model), are poorer than 

those obtained for ROUTE A QMM models. And whereas the 

MAPE metrics for ROUTE B are also poorer than those 

recorded for ROUTE A, the MPE metrics for the former 

route are better than those for the latter. 

 

Figure 3. Comparison of predicted and measured pathloss for Route A Alternative QMM Models. 
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Figure 4. Comparison of predicted and measured pathloss for Route B QMM COST231 and ECC33 Models. 

 

Figure 5. Comparison of predicted and measured pathloss for Route B QMM Egli, Ericsson, Hata, Leeand SUI Models. 
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Figure 6. Comparison of predicted and measured pathloss for Route B Alternative QMM Models. 

With the choice of measurement data utilized for 

calibration to obtain the alternative QMM models as defined 

by (46)-(54), the pathloss prediction profiles of Figure 6 

emerged. 

Table 4. RMSE and MPE Metrics for the Alternative Route B Models. 

Model/Metric 
RMSE (dB) MPE (dB) 

Alternative QMM Alternative QMM 

COST231-SU 5.3991 7.9652 -0.0047 -0.0119 

COST231-UR 5.3991 7.9653 -0.0044 -0.0409 

ECC33-L 4.3728 7.6583 0.0024 -0.0020 

ECC33-M 4.3728 7.6583 0.0021 -0.0047 

RGLI 5.3991 7.9652 0.0027 -0.0034 

ERICSSON 5.3991 7.9652 -0.0007 0.0014 

HATA 5.3991 7.9653 -0.0409 -0.0499 

LEE 5.3991 7.9652 -0.0064 0.0025 

SUI 5.3991 7.9652 0.0032 -0.0024 

RMSE and MPE metrics for these alternative models are 

presented in Table 4, from which it is readily observed that 

RMSE, for the ECC33 models, improved by about 43%, and 

by about 33% for the other alternative models. It is apparent 

from these results, that the remarkable improvements 

recorded in this case owe in large part, to the exclusion, in 

the calibration process, of measurement data for 

100 308m d m≤ ≤ , over which measured pathloss decreases 

virtually monotonically from 130dB to 99dB. 

3.3. Prediction Performances of Route C QMM Models 

The QMM models for ROUTE C are those defined by 

(28)-(36), and whose pathloss prediction profiles are 

displayed in Figures 7 and 8. 

The RMSE and MPE metrics for the calibrated models in 

the case of this route are displayed in Table 5 below. 

Table 5. RMSE and MPE Metrics for Route C Models. 

Model/Metric 
RMSE (dB) MPE (dB) 

Basic QMM Basic QMM 

COST231-SU 17.584 6.1944 8.5147 -0.0015 

COST231-UR 16.343 6.1944 5.5147 0.0053 

ECC33-L 11.381 5.7926 6.3216 0.0008 

ECC33-M 15.120 5.7926 -11.7922 0.0060 

RGLI 38.599 6.1944 34.7543 -0.0059 

ERICSSON 57.739 6.1944 -56.3255 0.0006 

HATA 18.604 6.1944 10.4606 0.0020 

LEE 24.805 6.1944 21.2666 -0.0009 

SUI 22.277 6.1944 -9.0217 -0.0012 

The RMSE metrics for the calibrated, though comparable 

with those of corresponding ROUTE A models, are slightly 

poorer; but share the feature that they are identical for the 

two ECC33 models (5.7926dB) on one hand, and the seven 

other models (6.1944dB) on the other. As was the case with 

the other routes, excellent MPE metrics were recorded for all 

nine calibrated models, being in fact, virtually 0dB for the 

calibrated ECC33 (large city), Ericsson and Lee models. It 

may also be remarked, that MAPE metrics for the calibrated 

models in this case are exactly the same only for the two 

ECC33 models, the differences between metrics for the other 

models may be considered small enough as to be 

insignificant. 
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Figure 7. Comparison of predicted and measured pathloss for Route C QMM COST231 and ECC33 Models. 

 

Figure 8. Comparison of predicted and measured pathloss for Route C QMM Egli, Ericsson, Hata, Lee and SUI Models. 

Table 6. RMSE and MPE Metrics for the Alternative Route C Models. 

Model/Metric 
RMSE (dB) MPE (dB) 

Alternative QMM Alternative QMM 

COST231-SU 5.3610 6.1944 -0.0003 -0.0015 

COST231-UR 5.3610 6.1944 0.0036 0.0053 

ECC33-L 5.3603 5.7926 0.0011 0.0008 

ECC33-M 5.3603 5.7926 -0.0000 0.0060 

RGLI 5.3610 6.1944 -0.0013 -0.0059 

ERICSSON 5.3610 6.1944 -0.0000 0.0006 

Model/Metric 
RMSE (dB) MPE (dB) 

Alternative QMM Alternative QMM 

HATA 5.3610 6.1944 -0.0011 0.0020 

LEE 5.3610 6.1944 0.0050 -0.0009 

SUI 5.3610 6.1944 -0.0019 -0.0012 

Profiles of the pathloss predicted by the alternative models 

presented as (55)-(63) compared with the measurement data 

for the route are displayed in Figure 9. And the associated 

performance metrics (RMSE and MPE) are presented in 
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Table 6. 

It is readily verified that in this case, better improvements 

in RMSE (13.5%) were recorded by the COST231, Egli, 

Ericsson, Hata, Lee, and SUI models than the two ECC33 

models (2.8%) unlike what obtained with the other two 

routes. Again, the MPE metrics for the models are excellent, 

and includes values of 0dB for the ECC33 (small-medium 

city) and Ericsson models. 

3.4. Eigenvalues of the Model Calibration Matrix 

As was noted in [16], the real, symmetric model 

calibration matrices of the QMM calibration process are 

typically characterized by one predominant eigenvalue. In 

this section, the features of the eigenvalues associated with 

the nine basic pathloss prediction models are, for each of 

routes A, B, and C, further explored, with reference to the 

influence of size of measurement data. 

The distribution of the eigenvalues as obtained with the 

use of MATLAB’s library function ‘eig’ for each of the basic 

models, and the three routes, are presented in what follows. It 

is evident from the profiles of Figure 10 that the model 

calibration matrices remain characterized by a single 

dominant eigenvalue, whose magnitude for route C is 

significantly greater than those for routes A and B. The 

profiles also reveal that the magnitudes of the dominant 

eigenvalues for routes A and B are relatively close, and that 

for the alternative QMM models, route A’s dominant 

eigenvalue has a larger magnitude than for route B’s; the 

reverse being the case, when the full complement of 

measurement data points are utilized. 

Indeed, the profiles of Figures 12 (for the Egli and 

Ericsson models) and 13 (for the Hata and Lee models) also 

display patterns similar to those described for the COST231 

and ECC33 models, thus suggesting that it is legitimate to 

conclude that the pattern is characteristic of the model 

calibration matrices of QMM-based calibration of the basic 

pathloss models. The same remarks apply for the model 

calibration matrices of the ECC33 models, as can be seen 

from Figure 11. 

It may be remarked here that a comparison of the metrics 

displayed in Tables 13, 14, and 15 of [14] with the 

corresponding metrics (Tables 1, 3, and 5) in this paper, very 

clearly show that the former utilized basic COST231 

(sub-urban city) and ECC33 (medium-sized city) models for 

pathloss prediction. And according to the results of [4], the 

best performing (in terms of RMSE) basic models are 

COST231 (9.8149dB) for Route A, (9.9948dB) for Route B, 

and ECC33 (16.9762dB) for Route C. On the other hand, the 

results presented here reveal that the basic ECC33 (large city) 

is the best performing (7.5838dB-Route A; 8.0903dB-Route 

B; and 11.381dB-Route C) across all three measurement 

routes The results also show that whereas the basic COST231 

sub-urban city model had a better RMSE metric than the 

urban city model in the case of Route B, the latter’s RMSE 

metrics were better than the former’s for Route A (8.2309dB) 

and Route C (16.343dB). This suggests that when basic 

pathloss prediction models are being evaluated for any 

environment, it is best to investigative the performances of 

alternative (city size-based) models, where applicable. 

 

Figure 9. Comparison of predicted and measured pathloss for Route C Alternative QMM Models. 
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Figure 10. Eigen values of COST231 model calibration matrices. 

 

Figure 11. Eigenvalues of ECC33 model calibration matrices. 
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Figure 12. Eigenvalues of Egli and Ericsson model calibration matrices. 

 

Figure 13. Eigenvalues of Hata and Lee model calibration matrices. 
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In order to further explore the influence of data size on the 

magnitude of the dominant eigenvalues, the computed ratios 

of the largest dominant eigenvalues for route C to those of 

routes A and B are tabulated as shown in Table 7, for the 

model calibration matrix of each basic model considered in 

this paper. 

Table 7. Ratios of Dominant Eigenvalues: Route C: Routes A&B. 

MODEL 
QMM Alternative QMM 

DEC/DEA DEC/DEB DEC/DEA DEC/DEB 

COST231-SU 1.5074 1.3782 1.4045 1.4739 

COST231-UR 1.5074 1.3782 1.4045 1.4739 

ECC33-L 1.4091 1.3833 1.4107 1.4687 

ECC33-M 1.4092 1.3831 1.4108 1.4686 

EGLI 1.4020 1.3886 1.4039 1.4744 

ERICSSON 1.4424 1.3571 1.4462 1.4355 

HATA 1.5105 1.3898 1.4027 1.4755 

LEE 1.4064 1.3855 1.4078 1.4716 

SUI 1.4487 1.3511 1.4551 1.4257 

It is readily observed from the ratios in Table 7 that the 

ratios of magnitude of dominant eigenvalues for route C 

(denoted by DEC) to those for both routes A and B (denoted 

by DEA and DEB, respectively) are identical for the cases of 

the two COST231 models. This, put in other words implies, 

for example, that whereas the dominant eigenvalues (DEC, 

DEA) are different for the model calibration matrices of the 

COST231 (urban city and sub-urban city) models, the ratios 

C

COST URB
A

DE

DE −

 
 
 

and C

COST SUB
A

DE

DE −

 
 
 

give exactly the 

same numerical value. 

Table 8. Ratios of Dominant Eigenvalues: QMM: QMMalt:& (A:B)alternative. 

MODEL 
DEQMM/DEQMM-ALT 

DEA/DEB 
ROUTE-A ROUTE-B ROUTE-C 

COST231-SU 1.0773 1.2366 1.1563 1.0495 

COST231-UR 1.0773 1.2366 1.1563 1.0494 

ECC33-L 1.0737 1.1387 1.0725 1.0411 

ECC33-M 1.0736 1.1387 1.0724 1.0410 

EGLI 1.0776 1.1426 1.0762 1.0502 

ERICSSON 1.0572 1.1153 1.0544 0.9926 

HATA 1.1779 1.2390 1.1596 1.0519 

LEE 1.0751 1.1408 1.0704 1.0453 

SUI 1.0547 1.1081 1.0501 0.9798 

It should be remarked that the entries in Table 7 do not 

reflect the relative magnitudes of the dominant eigenvalues. 

For the computational results reveal in the case of route C, 

for example, the descending order of magnitudes is Ericsson, 

Lee, COST231 (urban city), COST231 (suburban city), Hata, 

Egli, EC33 (small-medium sized city), ECC33 (large city), 

and SUI models, when relevant data for the alternative 

calibration is utilized; and when the full complement of 

measurement data is utilized, the order recorded is Ericsson, 

COST231 (Urban and suburban, in that order), Lee, Hata, 

Egli, ECC33 (medium city and large city, in that order), and 

SUI models. Similar items of information for routes A and B 

are summarized by Table 8, which displays the ratios of 

dominant eigenvalues of the alternative QMM models. 

4. Conclusions 

This paper, using measurement data made freely available 

in the literature, has examined certain properties of the 

recently introduced Quasi-Moment-Method (QMM) for the 

calibration of basic radiowave propagation pathloss models. 

In particular, the influence of large-sized field measurement 

data (in excess of 400, in this case) on the prediction 

performances of the calibrated models was examined.  

And a number of interesting features were revealed, by the 

computational results, for the model calibration tool. First, for 

the basic COST231, Egli, Ericsson, Hata, Lee, and SUI 

models (which, for given frequency operation, transmitter 

antenna and receiver antenna heights, have the generic form 

10logm m dα β+ ) results of QMM calibration converged to 

the same RMSE solution as can be seen from Tables 1-6. This 

same observation is shown to be true by the results of Tables 

1-6 for the ECC33 models, whose corresponding generic form 

is ( ) 2

10 10
log log

m m m
a b d c d+ + . It is important to note that 

the constants ( ), , , ,
m m m m m

a b cα β appearing in the 

forgoing remarks, vary from basic model to basic model. It is 

also worth pointing out that whereas the Mean Prediction 

Error (MPE) values differ for the two sets of calibrated models, 

the Mean Absolute Prediction Errors (MAPE) converged for 

the two sets, as did the RMSE metrics. 

Second, the results suggested that when model calibration is 

restricted to regions farther (about 100m) away from the 

transmitter than provided for in the original measurement data, 

significant improvements in the Root Mean Square Error 

(RMSE) metrics of the models can be expected. As examples, 

prediction RMSE improved for the pair of ECC33 models, 

from 5.5797dB to 47423dB (15%), in the case of Route A, 

7.6583dB to 4.3728dB (43%) for Route B, and from 5.7926dB 

to 5.3603dB (7.5%), for Route C. The same trend was 

recorded for the group of other models, with RMSE 

improvements ranging from 9% for Route C, through 12% for 

Route A, to 37% for Route B. Third the results confirmed the 

conclusions reported by earlier investigations, that in terms of 

RMSE, the ECC33 models respond best to QMM calibration; 

and that QMM calibrated models in general, provide excellent 

Mean Prediction Error (MPE) metrics, approaching 0 dB in 

quite a few cases. Finally, and from the results due to the 

alternative QMM models for ‘ROUTE B, it may be concluded 

that although MPE metrics are, compared to RMSE metrics, 

only slightly affected by the presence of a significant number 

of outliers in measurement data, RMSE metrics, on the other 

hand, improve tremendously, when the outliers are excluded 

from the calibration process. 

The paper also described properties of the eigenvalues of 

the model calibration matrices associated with the basic 

models, as a preliminary step towards the possible formulation 

of an eigenvalue problem for the empirical pathloss 

development process. Each model calibration matrix, the 

results reveal, is characterized by one dominant eigenvalue, 

whose properties of apparent interest to future investigations 
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are described in some details, in section 3.4 of the paper. 
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