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Abstract: The finite element method (FEM) was carried out to investigate the eigenmodes of square hole-assisted photonic 

crystal fiber (HAPCF). The Krylov-Schur iteration method was applied to solve the large matrix eigen equation that resulted 

from FEM. HAPCF is conventional optical fiber with air holes added on the interface between the core and cladding. HAPCF is 

divided into two classes. One has a buffer coated with a perfect conductor and the other was constructed with the same buffer of 

the dielectric as the cladding. As a result, transverse magnetic (TM) and transverse electric (TE) spectra were described 

schematically with the transverse vector fields, the longitudinal scalar fields and their projected contour lines on the cross section 

of the fiber. The mode types could be determined mainly with the contour lines of the longitudinal scalar field on the cross section 

of HAPCF. It was found that the buffer coated with the perfect conductor has a great influence on the forming characteristics of 

the eigenmodes. From the spectra, it was identified that the TM transverse vector fields were almost perfectly constrained in the 

core area, but the transverse vector fields of TE modes were distributed over to the buffer layer. So, it was understood that more 

reliable analysis is possible when describing eigenmodes with these three kinds of spectra. 

Keywords: Eigenmode, Buffer Layer, Perfect Conductor, Transverse Vector Field, Longitudinal Scalar Field, Contour Line, 

Spectra, Krylov-Schur Iteration 

 

1. Introduction 

Photonic crystal fiber (PCF) was introduced by Philip 

Russell in 1996 [1]. PCFs have attracted a lot of attention 

from research groups around the world in recent decades. 

PCFs are a relatively new class of optical fibers using the 

properties of photonic crystals [2]. In the PCF development 

process, HAPCF was introduced to accomplish more with it 

[3]. HAPCF are optical fibers that contain an array of 

roughly wavelength sized holes running along the fiber axis. 

The relative sizes and positions of the air holes (or dielectric 

materials) can be varied in HAPCF so that a much broader 

range of index profiles becomes possible. It is possible to 

establish a comparatively large index contrast between 

cladding containing air holes and the core in these systems. 

The distribution of these air holes causes the weighted 

average refractive index “seen” by the wave to be lower 

much than that of the core. HAPCFs trap the light in the core, 

and provide a much better waveguide for photons than 

conventional fiber optics. Because of these reasons, the fiber 

results in with highly unusual optical characteristics. Optical 

properties such as mode shape, nonlinearity, dispersion, and 

birefringence can be varied over a range, often well 

exceeding what is possible with conventional fiber 

technology. The guiding light in HAPCF with these 

advantages may be understood by two distinct mechanisms, 

namely, total internal reflection and band gap effect. It is well 

known that the first one is the most probable interpretation 

for the above capabilities. The fiber guiding by total internal 

reflection relies on index-guiding by a core whose refractive 

index is higher than that of the surrounding cladding of 

dielectric materials. The components of light that make up 

the propagating wave are reflected by the cladding and 

intensely interfere with each other in the core. With these 

properties, the relationship between the structure and 

eigenmode in HAPCF can be known. It has been well known 
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that one of the urgent tasks of HAPCF research is finding its 

modes - electromagnetic fields capable of propagating in it. 

Identifying the optimal condition to construct eigenmodes is 

the first step to realize an ideal HAPCF. There are many 

methods to find the ideal process [4]. Among them, 

numerical analysis is known as the most efficient method to 

understand eigenmodes accompanying the structure of 

HAPCF. 

Previously, the author of the present article has studied 

fiber systems that are forms of circular HAPCF and square 

PCF. In that study [5-6], there were not enough descriptions 

for the spectra. In particular, it would be needed to add a 

sufficient consideration on the contour lines of longitudinal 

scalar modes projected on the fiber cross section. In this 

study, FEM was carried out to investigate the eigen 

properties of a square HAPCF. The cross section of HAPCF 

was divided into simple triangular elements. The vector 

Helmholtz equation governing the eigenmode is represented 

with the linearized simultaneous equation. It is rebuilt into 

the matrix eigen equation in the process of FEM calculation. 

The square matrix is made to be a Schur matrix by similarly 

transforming it. The eigenvalues and eigenmodes are 

represented by the diagonal component of the Schur matrix 

and the column matrix of a similarly transforming matrix, 

respectively. The Krylov-Schur iteration method was used to 

obtain several prominent eigen pairs in the calculation 

process. As a result, the TM and TE type eigenmodes are 

represented schematically by two dimensional transverse 

vector fields, longitudinal scalar fields represented in the 

three dimensional space and their projected contour lines on 

the cross section of the fiber. 

2. Theory 

2.1. Square HAPCF Structure 

Figure 1 schematically represents the cross-section of 

HAPCF. The relative refraction coefficient of the core is 

assumed to be � � 13. The relative refraction coefficients of 

the cladding including the air holes surrounding the core 

symmetrically are � � 2  and � � 1 , respectively. The 

central angle between neighboring air holes is made to be � 4⁄  radian. They are positioned symmetrically around the 

core, and the distance from the center of the fiber is 2.5	� 4⁄ , 

where ��arb. � is a length from the center to the edge of the 

square HAPCF. In the course of FEM calculation, the space 

of cross section is divided into a mesh of triangular elements, 

as can be seen in figure 1. The total number of triangular 

elements, edges and nodes for the TM mode are 800,1240 

and 441, respectively. The total number of triangular 

elements, edges and nodes for the TE mode are 800,1160 and 

361, respectively. The number of differences for these TE 

and TM modes depends on the boundary conditions applied 

to the buffer coating. 

 

Figure 1. Square HAPCF structure. 

The eigenmodes are composed with the transverse vector 

fields and the longitudinal scalar fields. The transverse vector 

fields are represented by the edge vectors of the mesh 

elements. The longitudinal scalar fields are described with 

the nodes of the mesh elements. These eigenmode 

components are obtained simultaneously from the solution of 

the matrix eigen equation. The dimension of the matrix eigen 

equation is �edge	number	 � 	node	number��, which is too 

large for a personal computer to perform. So, a sophisticated 

method such as the Krylov-Schur iteration method is carried 

out to obtain the several prominent eigenmodes. This method 

is described in the “Krylov-Schur iteration method” section. 

The transverse vector field components thus obtained are 

schematically represented at the centroidal position of each 

triangular element. The longitudinal scalar modes are 

described in three dimensional shapes by the connecting the 

potential values at each node. And the contour lines of 

longitudinal scalar fields are obtained by projecting 

longitudinal spectra on the cross section of HAPCF. 

2.2. Finite Element Method 

For HAPCF, the propagating modes are divided into TE or 

TM modes, which can be solved separately. The same 
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procedures are applied for the electric field ���	and magnetic 

field ����, except on the boundary condition. For the perfect 

conductor coating on the buffer layer of HAPCF, the 

Neumann and Dirichlet boundary condition are applied for TE 

and TM modes respectively. In this study, the calculation is 

focused on the procedure for ��� field. 

For convenience of discussion, it is assumed that the cross 

section and the axis of HAPCF are the xy  plane and z  direction of the Cartesian coordinate, respectively. The 

vector Helmholtz wave equation for the electric field is given 

[7] 

"�� # $ %&' "�� # ���(  )*�+,��� � 0         (1) 

where 

��� � .�/01 � �231 � �45̂789:;4       (2) 

and where <, and +, are the relative permeability and the 

relative permittivity, respectively. By separating the 

transverse vector fields and the z-directional longitudinal 

scalar fields, equation (1) can be described as 

"��= # �"��= # ���=� � %
&' .>�"��=�4 � >����=7 � )*�+,���= 	    (3) 

 %
&' ?"��= ∙ ."��=�4 � >���=7A � )*�+,�4         (4) 

where 

���= � �/01 � �231	             (5) 

 

Figure 2. Orientational relations of edges of two adjacent triangular elements. 

For directional consistency, the edges of adjacent triangular elements must be 

in the same array as the first one. Therefore, the nodes of adjacent triangle 

elements should be arranged opposite to each other. 

To make these equations suitable for numerical solutions, 

they are converted into weak forms. These forms are obtained 

by multiplying vector testing function B= to equation (3) and 

scalar testing function BC to equation (4), and performing the 

integrals on these equations in the triangular element area. 

∬ B��= ∙ .E���= # E���= # ���=7FG∆ � %
&'∬ B��= ∙ .>�"��=�4 � >����=7FG∆ �

)*�+,∬ B��= ∙ ���=FG∆                (6) 

 %
&'∬ BC?"��= ∙ ."��=�4 � >���=7AFG∆ � )*�+,∬ BC�4FG∆  (7) 

To perform the integration, it is necessary to use the 

Green’s theorem to reduce the order of derivatives [8]. The 

order of the triple product and the Laplacian operator can be 

reduced by using the first theorem of Greens formulae as 

follows 

∬ B��= ∙ ."��= # "��= # ���=7FG �∆ ∬ ."��= # B��=7 ∙ ."��= # ���=7FG∆  
I B��= ∙ ."��= # ���=7 ∙ �1	FJK∆            (8) 

∬ BC"��4FG∆ � I BC"���4 ∙ �1	FJK∆  ∬ "��BC ∙ "���4FG∆  (9) 

where �1	is the outward normal of the closed surface. On a 

perfect electric conducting boundary, the contour integral of 

equation (8) vanishes as B��=  is set to zero to satisfy the 

Dirichlet boundary conditions. And the contour integral on 

the right-hand side of equation (9) vanishes as BC is set to 

zero for the TM case and L�4 L�⁄  vanishes for the TE case 

to satisfy the Neumann boundary condition. When the vector 

Helmholtz equation is divided into two equations, one 

equation is described by a tangential edge vector and the other 

by the node component of the triangular element. Then the 

transverse electric field is approximately given by the 

edge-based tangential vector, as follows 

���= � ∑ 8=NO����=NPNQ%                (10) 

where O����=Nis the edge R vector of the triangular element. 

Its components are given with a simplex coordinate ST such 

as 

O����=% � U=%.SPE���=S�  S�E���=SP7          (11) 

O����=� � U=�.S%E���=SP  SPE���=S%7           (12) 

O����=P � U=P�S�E���=S%  S%E���=S��           (13) 

where U=T is a length of the tangential edge connecting the 

nodal points V	and	). The z-direction longitudinal scalar field 

is described by the nodal based first order Lagrangian 

interpolation functions as 

�4 � ∑ 84TSTPTQ%                    (14) 

where ST is the simplex coordinate of node W. The simplex 

coordinates are given with nodal points of the triangular 

element of figure 2. 

XS%S�SPY � Z
1 1 10% 0� 0P3% 3� 3P[

9%
X103Y	         (15) 

The tangential edge vectors of a triangular element are 

defined as shown in figure 2. For directional consistency, the 

edges of adjacent triangular elements must be in the same 

array as the first one. Applying Galerkin’s technique, the 

testing functions are the edge vector \���=N and the simplex 

node function ST of the mesh element for equations (8) and 

(9), respectively. 

From these relations, the vector Helmholtz equation for the 

triangular element can be made into the matrix eigen 
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equation 

]^_`�==� ^_`�=4�^_`�4=� ^_`�44�a $
8=84( � ]B_`�==� 00 B_`�44�a $

8=84(    (16) 

where each component of the square matrix is represented as 

^_`�==� � %
&'∬ ."��= #O����=N7 ∙ ."��= #O����=b7∆ FG  ;c

&'∬ .O����=N ∙∆O����=b7 FG	               (17) 

^_`�=4� � ;c
&'∬ .O����=N ∙ "��=S:7∆ FG             (18) 

^_`�4=� � ;c
&'∬ ."��=S: ∙ O����=N7∆ FG             (19) 

^_`�44� � ;c
&'∬ �"��ST ∙ "��S:�∆ FG             (20) 

B_`�==� � +,∬ .O����=N ∙ O����=b7∆ FG             (21) 

B_`�44� � +,>�∬ ST ∙ S:∆ FG              (22) 

The global eigen equation results from combining these 

element matrices for total meshes. 

d^ef8=*=g � )*�dBeh8i`*jk               (23) 

As a result, the eigenmodes are obtained by similarly 

transforming the matrix eigen equation into the Schur matrix. 

The column vectors of the similarity transformation matrix 

are the eigenmodes and the diagonal components of the 

Schur matrix are eigenvalues. 

2.3. Krylov-Schur Iteration Method 

In general, the dimensionality of the matrix eigen equation 

is very large. A personal computer cannot perform the 

calculation, especially for the inverse matrix of large 

dimensionality, in an ordinary manner. Therefore, a 

sophisticated method such as the Krylov-Schur iteration 

method is applied to overcome the problems [9]. It is well 

known that this method gives several prominent eigenmodes 

for the communicating optical fiber in robust way. This 

iteration method has previously been applied to various 

optical fibers and revealed their eigen properties of 

propagating waves [10]. To apply this iteration method, the 

global eigen equation is first converted to a shift invert form, 

like 

%
lmc9n h8i`*jk � o

dpe9ndoe h8i`*jk � dqeh8i`*jk     (24) 

The Krylov-Schur iteration method is applied to the matrix dqe. By doing so, this strategy may be more efficiently 

implemented in finding specific eigen pairs at σ value. It 

can be summarized as follows: 

[Krylov-Schur iteration method] 

Input: Matrix dqe and assumed initial vector f8Tg with 

the number of the decomposition dimension, R. 

Output: J s R Ritz pairs. 

1. Build a Hessenberg matrix of order R  by Arnoldi 

decomposition [11]. 

2. Apply a QR algorithm to get a Schur matrix [12]. 

3. Find the eigen pairs by the inverse iteration method. 

4. If there are \ eigen pairs satisfying the pre-determined 

condition, reorder them to first primary diagonal block 

through the unitary similarity transform [13]. 

5. If J s \, truncate the result Schur matrix at position \. 

6. Extend the matrix with the residual vector 8̃ � 8̃uv%as 

an initial vector and go to step 1. 

Similar to the previous study, the eigenmodes of the square 

HAPCF waveguide were obtained through the above 

procedure. The eigenmodes are the column vectors of the 

similarity transform matrix, which make matrix dqe into the 

Schur form. The eigenvector is separated into two 

components that describe the transverse vector field and the 

z-direction longitudinal scalar field. The transverse 

eigenmodes are described by the first w_  components of the 

column matrix. The remaining wb  elements represent the 

z-direction longitudinal eigenmodes. The characteristics of 

the transverse vector eigenmodes at the center x�y ��0̅=,T , 3|=,T�  of the triangular element are obtained by 

applying equation (10) for each mesh element. The 

z-direction longitudinal eigenmodes of the triangular element 

are calculated from equation (14). The magnitude of each 

transverse vector ���y 	and	����y  is normalized based on the 

maximum value of propagating modes. The magnitude of the 

z-direction longitudinal field is also normalized from the 

maximum value of the longitudinal scalar mode at each nodal 

point. 

3. Results and Discussion 

 

Figure 3. TM eigenmodes of HAPCF. The first column represents transverse 

magnetic eigenmodes, the second column illustrates z-component 

eigenmodes and the third column describes contours of magnetic scalar 

potential projected on the cross-section of HAPCF.  
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The Krylov-Schur iteration method was applied to the 

matrix dqe of equation (24) to obtain the eigenmodes of 

HAPCF. We have previously studied similar optical fiber 

systems. The study [5] was about a square PCF that was not 

the same as this study. The square PCF consisted of a core 

and holes without the cladding. The eigenmodes did not 

include the contour lines of the longitudinal eigenmodes on 

the cross section of the fiber. The study in reference [6] was 

for circular HAPCF. It was constructed similar to 

conventional fiber, including holes at the interface between 

the core and the cladding. The resulting eigenmodes were 

schematically represented with the transverse vector fields, 

the longitudinal scalar fields represented in the three 

dimensional space and their contours lines projected onto the 

xy-plane of the fiber. But there were no TM eigenmodes that 

combined with TE modes to illustrate the eigen property of 

circular HAPCF more developmentally. So, some additional 

information related to the longitudinal scalar field of TE and 

TM modes is needed for a better understanding of the eigen 

property of HAPCF. 

 
Figure 4. TE eigenmodes of HAPCF. In contrast to the TM mode, there is a 

distribution of the transverse electric field in the cladding and air holes. The 

equipotential contours, combined with the three-dimensional representation 

of electric scalar potential, give indispensable information to determine the 

mode type of the spectra. 

In this study, a square HAPCF similar to a circular HAPCF 

was constructed. There are more mesh elements because of 

expanding the space of cross-section from the circular to 

square forms of HAPCF. But the density of the mesh element 

is not different from the circular one. As mentioned in figure 

1, the buffering layer is assumed to be coated with the perfect 

conductor for TM modes. This boundary condition 

differentiates the FEM calculation between TM and TE 

modes. When calculating the TM mode, the node and edge 

components on the buffer coating surface are ignored by the 

Dirichlet and Neumann boundary condition, respectively. 

The results of the calculation for TM eigenmodes are 

illustrated in figure 3. As can be seen in the first column of 

this figure, the transverse magnetic field is confined to the 

core region. The conventional fiber consisting only of a core 

and cladding permit leakage over the interface between them. 

For PCF made with the core and multiple air holes without 

dielectric cladding, leakage can not be excluded over the core. 

But the buffer of HAPCF coated with a perfect conductor 

confines the propagating wave to the core and permits only 

small leakage over the interface. From this result, it can be 

said that the wave sees the prominent refractive difference 

between the effective cladding and the core. The refractive 

index of effective cladding is composed of contributions 

from the cladding, air holes and the buffer of the perfect 

conductor. The exact index difference between the core and 

the effective cladding cannot be determined from 

conventional theory, but only estimated experimentally. The 

second column of figure 3 reveals the z-direction longitudinal 

magnetic field. Together with the relation of the transverse 

magnetic vector field, the mode types are determined and 

notified as shown under each spectrum. The longitudinal 

scalar fields more clearly represent the eigen properties of 

HAPCF. Comparing the transverse spectra, the peak intensity 

of the longitudinal field is higher at the position where the 

magnetic field is strong. The determination for the mode type 

is more clear by investigating the contour lines of the 

longitudinal fields, as shown in the third column of figure 3. 

These spectra are obtained by projecting the spectra of the 

second column onto the cross section of HAPCF (or xy-plan 

of Cartesian coordinate). In these spectra, peak positions and 

their intensity are clear, and represented by color intensity. 

Contour lines are continuously distributed, do not cross each 

other and do not terminate at the surface. These are reasoned 

from the boundary condition that excludes the magnetic field 

and z-direction longitudinal scalar field from the surface. In 

other words, it can be conjectured that the boundary 

condition from the buffer surface of the perfect conductor 

contributes to clearly identify the eigenmode with FEM 

numerical calculation. 

Figure 4. is the spectra of the TE modes of HAPCF, which 

have different boundary conditions from TM modes. In this 

system, the buffer material is the same as the cladding 

dielectrics. The buffer layer does not exclude the field 

components, so the spectra reveal differently from the TM 

modes. As can be seen in the third column of figure 4, the 

contour lines of the longitudinal scalar field are distributed 
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continuously across the cross section of HAPCF, but 

terminated at the buffer layer. This appearance of spectra is 

prominently different from the TM modes. It is difficult to 

classify the mode type of spectra into TM and TE by 

transverse vector field or scalar potential. In particular, the 

transverse field is not sufficient for determining the mode 

type of HAPCF because the transverse field is shielded by 

the air holes and their strength is weakened at the buffer layer. 

So, the mode type can be clearly determined by investigating 

the contour lines of the longitudinal scalar fields in addition 

to the transverse field vectors. 

The interpretation for the transverse field of the TE spectra 

is not as simple as the MT mode. The electric field is not 

completely constrained to the core area. The components of 

this field extend beyond the air holes to the cladding region. 

This is in contrast to the TM mode, where the transverse field 

is completely restricted to the core region. This phenomenon 

can be presumed to be caused by the different boundary 

conditions applied to the two systems. For the TM mode, it 

was assumed that the buffer layer is coated with the perfect 

conductor. With the Dirichlet boundary condition, it can be 

said that the field components are excluded from the 

conductor coating layer. Due to this effect, it can be 

understood that the formation of the TM mode is restricted to 

the core area. In the case of the TE mode, only the cladding 

and the air holes function to shield the transverse wave. It has 

previously been shown that the effect of shielding the 

transverse waves depends on the changes of position of air 

holes and their numbers. The results meant that in order to 

effectively shield the transverse waves, many air holes must 

be arranged in a multiple structure [14]. And air holes with a 

low refractive index should limit the spatial distribution of 

the transverse waves and concentrate them in the core area. 

For the TM mode, this function is performed by the buffer 

layer coated with a perfect conductor. 

The third column in figure 4. plays an important role in 

determining the mode type, as in the TM mode. The spectra 

of several prominent eigenmodes are schematically 

represented in the figure along with the mode type. The peak 

position and intensity of these spectra are represent the 

characteristics of mode type. Unlike in previous studies, the 

contour lines of the longitudinal electric field contribute a lot 

of to determining the mode type. In other words, these 

spectra contribute to determining a definite mode type 

together with their three-dimensional representation. 

4. Conclusion 

FEM has been carried out to investigate the eigenmodes 

constructed in square HAPCF. The spectra of TM and TE 

modes were plotted with the transverse vector field, 

longitudinal scalar fields and their contour lines onto the 

cross section of the HAPCF. The mode types were mainly 

determined by the contour lines of the longitudinal scalar 

fields together with their three dimensional representation. 

Comparing the spectra of TM and TE modes, it was 

identified that the buffer coated with a perfect conductor 

functioned importantly in constructing the eigenmodes for 

HAPCF. 
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