

Journal of Electrical and Electronic Engineering
2016; 4(3): 51-56

http://www.sciencepublishinggroup.com/j/jeee

doi: 10.11648/j.jeee.20160403.12

ISSN: 2329-1613 (Print); ISSN: 2329-1605 (Online)

Fast Type Recognition of Missive Insulator Leakage Current
Data Using Spark

Song Yaqi

Department of Computer Science, North China Electric Power University, Baoding, China

Email address:

bdsyq@163.com

To cite this article:
Song Yaqi. Fast Type Recognition of Missive Insulator Leakage Current Data Using Spark. Journal of Electrical and Electronic Engineering.

Vol. 4, No. 3, 2016, pp. 51-56. doi: 10.11648/j.jeee.20160403.12

Received: April 14, 2016; Accepted: May 17, 2016; Published: May 24, 2016

Abstract: Performance is the key issue in power big data applications. One of main challenges is how to exploit these

technologies in building power big data processing platform and facilitating science discoveries such as those in electric power

systems. This paper explores how Spark and Cloud computing can accelerate performance of missive insulator leak current

data pattern recognition. We have designed and implemented the Parallel KNN(k-NearestNeighbor) algorithm using Spark and

then deployed onto the Aliyun E-MapReduce cloud computing platform. The results from experiments shows the performance

and scalability can be enhanced through these advanced technologies.

Keywords: Insulator Leakage Current, Electric Power Big Data, Spark

1. Introduction

Electric power equipment monitoring are developing from

single-parameter monitoring to all-round and

multi-parameter monitoring. The monitoring data showed

exponential growth. Remote monitoring center of power

equipments is faced with heavy tasks, such as data collection,

processing, storage and analysis when large amounts of

monitoring data flock in.

The traditional single-machine environment which

using a single task is only applicable to small amount of

data and will be difficult to finish data processing tasks on

time or even unable to deal with when facing large volume

of data [1].

[2] stores and manages massive neuroimaging data by

integrating database management systems (DBMS) with Grid

computing. [3] propose a dynamic programming algorithm

for pattern-based time series classification on GPUs. Given

the industrial real-time demand, [4] propose a parallelized

method to model the Elman network, which shifts the

computational intensive tasks of network training on GPU. [5]

study a large scale EEG (electroencephalogram) distributed

data storage method on Hadoop [6]. Cloudera used Hadoop

to store and manage around 1.5 trillion points of time-series

data in 15TB of PMU archive files at TVA [7]. Although the

Hadoop MapReduce [8] can effectively deal with large

amounts of data, it will frequently access disks and the task

need to take up several minutes of even hours. In view of

complex iterative computing tasks in electric power

equipment condition evaluation, the MapReduce can not

finish analysis and pattern recognition tasks for large

amounts of alarm monitoring data in a short limited time and

performance is difficult to meet the requirements [9].

Apache Spark is a fast and general engine for large-scale

data processing [10]. It has an advanced DAG execution

engine that supports cyclic data flow and in-memory

computing. In some computing tasks, Spark run programs up

to 100x faster than Hadoop MapReduce in memory, or 10x

faster on disk. Spark offers over 80 high-level operators that

make it easy to build parallel apps. And one can use it

interactively from the Scala, Python and R shells. Spark has

been widely used in seismic data analysis [11], data analysis

in smart grid [12], GATK DNA analysis [13], data reduction

[14], etc.

This paper studied fast pattern recognition of electric

power equipment monitoring data using Spark. Spark-based

K-Nearest Neighbor algorithm (KNN) is designed and

implemented in Aliyun E-MapReduce platform and used for

insulator leakage current data type identification. The results

from experiments show that Spark-KNN runs up to 2.97x

faster than MapReduce-based one.

 Journal of Electrical and Electronic Engineering 2016; 4(3): 51-56 52

2. Distributed Storage of Monitoring

Data in RDD

Resilient Distributed Dataset (RDD) is the core concept in

Spark framework. It can hold any type of data. Spark stores

data in RDD on different partitions. It helps with rearranging

the computations and optimizing the data processing. It also

has fault tolerance because an RDD know how to recreate

and recompute the datasets. RDDs are immutable and can be

modified with a transformation with the result of a new RDD

returned, whereas the original RDD remains the same. RDD

provides a rich set of operations to manipulate data, including

map, flatMap, filter, join, group By, reduce By Key, etc

which facilitate distributed data processing.

The waveform or extracted features of power equipment

monitoring data is stored and organized as RDDs. RDD can

be understood as a large array, but the array is distributed on

the cluster. A RDD logically is composed of multiple

partitions which are corresponding to physical block in data

node memory. The process of executing analysis includes a

series of transformations and actions for RDDs. Monitoring

data is stored in the RDD as shown in Figure 1.

Figure 1. Distributed storage of monitoring data in RDD.

In Figure 1, RDD1 contains four partition (P1, P2, P3, P4)

and are distributed stored in three nodes (Worker Node1,

Worker Node2 and Worker Node3). RDD2 contains two

partitions (P1 and P2) and are stored in 2 nodes (Worker

Node3 and Worker Node1).

3. The Spark-KNN Algorithm for Fast

Pattern Recognition

In pattern recognition, the k-Nearest Neighbors algorithm

(k-NN) is a non-parametric method used for classification

and regression [15]. In the classification phase, k is a

user-defined constant, and an unlabeled vector (a query or

test point) is classified by assigning the label which is most

frequent among the k training samples nearest to that query

point. A commonly used distance metric for continuous

variables is Euclidean distance. The k-NN algorithm is

among the simplest of all machine learning algorithms.

This paper studied parallel KNN algorithm using Spark,

called Spark-KNN. The input and output can be from local

file system, HDFS, or OSS, etc. Spark-KNN algorithm is

described in Table 1.

Table 1. Spark-KNN algorithm.

Spark-KNN algorithm
Input:

TrainSet file(cvs format);TestSet file(cvs format);

ResultSet file path; Parameter k;
Output:

ResultSet file(cvs format);

Procedure:

1: Initialize SparkContext environment parameters;

2: Load TrainSet to RDD using SparkContext.textFile();

Do format conversion using RDD.map();

map(line => {vardatas = line.split(" ") (datas(0), datas(1), datas(2))})

3: Executing RDD.collect() to get a scala Array for TrainSet in Driver

node named TrainSet_Array;

4: Broadcast the TrainSet_Array to every node using

SparkContext.broadcast();

5: Broadcast the parameter k to every node using

SparkContext.broadcast();

6: Load TestSet to RDD using SparkContext.textFile();

Do format conversion using RDD.map(), as described at step 2;

7: Get the result set using RDD.map():

7.1: Parsing a test sample tuple, extracting the characteristics;

7.2: distance_set= trainDatas.foreach(trainData =>(characteristics，

distance，category)});

7.3: Sorting the distance_set according to the ascending order of distance;

7.4 Get the first k points and their categories;

8: ResultSet.saveAsTextFile(ResultSet file path);

The flowchart for Spark-KNN is shown in Figure 2.

Figure 2. Data processing flow in Spark-KNN.

In Figure 2, Input data are loaded from HDFS using

textFile function of SparkContext class. Then input data are

organized as RDDs. Format conversion operations are

conducted by the map transformation. A new RDD will be

produced after map transformation. Colletc is a kind of

Action and return all the elements of the dataset as an array at

the driver program. This is usually useful after a filter or

other operation that returns a sufficiently small subset of the

data. Broadcast is a kind of Action and allows the

programmer to keep a read-only variable cached on each

machine rather than shipping a copy of it with tasks. They

can be used, for example, to give every node a copy of a

large input dataset in an efficient manner. Spark also attempts

to distribute broadcast variables using efficient broadcast

algorithms to reduce communication cost. 'saveAsTextFile' is

53 Song Yaqi: Fast Type Recognition of Missive Insulator Leakage Current Data Using Spark

a kind of Action and can write the elements of the dataset as

a text file (or set of text files) in a given directory in the local

filesystem, HDFS or any other Hadoop-supported file system.

Spark will call 'toString' on each element to convert it to a

line of text in the file.

4. Experimental Evaluation in the Cloud

4.1. The Experiment Environment

We have conducted the experiments based on the

Cloudcomputing platform. We deploy our prototype in the

AliyunE-Map Reduce platform by renting virtual computer

nodes (ECS.S3. Large type) from Aliyun ECS. The

configuration of each machine is described in Table 2.

Table 2. Configuration of a virtual machine fromAliyun ECS.

Item Configuration

CPU Intel Xeon CPU,4 cores

Memory 8GB memory

Storage 80GB SSD cloud disk

Network bandwidth 8MB

Operating system
Federa Core 8

(2.6.21.7-2.ec2.v1.2.fc8xenLinux Kernel)

Platform major version EMR 1.0.0

Software
hive 1.0.1; ganglia 3.7.2; Spark 1.4.1; yarn

2.6.0; pig 0.14.0

We deploy the Spark cluster using Spark on YARN mode.

The ganglia (3.7.2) is a scalable distributed monitoring

system for high-performance computing systems such as

clusters and Grids. We use it to monitor the CPU and

memory utilization so as to make adjustment and

optimization of parallel tasks configuration parameters, such

as 'number-exector', etc. The following 4 parameters are very

important as shown in Table 3.

Table 3. Parameter Configuration of Spark job.

Parameter Description Default value Our value

--executor-memory Memory per executor 1GB 2GB

--driver-memory Memory for driver 512MB 1GB

--num-executors
Number of executors

to launch
2 4

--executor-cores
Number of cores per

executor

1 in YARN

mode
4

4.2. Experimental Data

This paper focus on the insulator leakage current data

pattern recognition intransmission line monitoring system.

We select the widely used four features (maximum leakage

current, the 50-Hz, 150-Hz and 250-Hz amplitudes after

Fourier transform) to form a 4-dimension vector for pattern

recognition using Spark-KNN. Some samples selected from

training set are shown in table 4.

Table 4. Samples in training set.

Type maximum (mA) 50Hzamplitude (mA) 150Hzamplitude (mA) 250Hzamplitude (mA)

Stage A 14.8936 12.4707 0.1082 0.1016

Stage A 18.0136 14.7075 0.8962 0.1175

Stage A 59.1919 44.0040 11.5511 2.7286

Stage B 87.6251 63.2405 15.7299 3.7481

Stage B 92.7320 68.5759 17.1612 4.2756

Stage C 138.9287 102.3116 20.6031 5.8952

Stage E 20781 1603 348 161

Insulator leakage current types [16] are described in table 5.

Table 5. Category of iced insulator leakage current samples.

Type Type description

Stage A Faint discharges, a subtle audible sound, no visible signal

Stage B Some visible point discharges, a continuous sound

Stage C Liner weak local arcs

Stage D Intermittent, stronger local arcs

Stage E Flash over

Table 6. Train set.

Train Set ID Sample size (piece)

T1 50

T2 500

T3 1000

Experimental data is from artificial experiments and

real-measured insulator leakage current. We make several

replications to simulate large scale concurrent alarm data.

The experiment simulates 6 million monitor points, and by

setting up the fault rate(0—100%), simulates the different

size of alarm data due to bad weather. In a short period of

time, the alarm data size needed to deal with is in the range

of zero to 6 million pieces of data. The data set includes

raining set and test set as shown in Table 6 and Table 7.

Table 7. Testset.

Test Set ID failure rate Sample size (kilo pieces)

C1 10% 60

C2 30% 180

C3 50% 300

C4 80% 480

C5 100% 600

4.3. Performance Evaluation

We use the data set in table 5 to test the performance of

Spark-KNN. We run the KNN program respectively in single

computer, Hadoop cluster and Spark cluster, which named

KNN, MR-KNN and Spark-KNN respectively. The

MR-KNN and Spark - KNN run at the same hardware

environment as shown in table 1.

In a single computer, the run time of KNN changes along

with the data size variation as shown in Figure 3.

 Journal of Electrical and Electronic Engineering 2016; 4(3): 51-56 54

Figure 3. Execution time of KNN on a single computer.

As can be seen from the Figure 3, the execution time is

close to half an hour when training set is T2 and test set is C5.

While choosing training set T3, the execution time is so long

that the computer is 'died'. As a result, T3 curve is not drawn

in figure 3. The experimental results show that the single

computer environment is not up to the fast pattern

recognition task of large-scale alarm data.

We have measured the execution time of MR-KNN and

Spark-KNN by varying the training set, as shown in Figure 4.

a) Training set T1

b) Training set T2

c) Training set T3

Figure 4. Execution time comparison between Spark-KNN and MR-KNN.

As shown in Figure 4, the Spark - KNN performance is

superior to MR-KNN under various training set. Spark-KNN

runs up to 2.97x faster than MR-KNN.

The execution time trend of Spark-KNN under different

training sets is shown in Figure 5.

Figure 5. Execution time trend of Spark-KNN.

As can be seen from Figure 5, the programexecution time

grows slowly as the growth of the test set size.

0

5

10

15

20

25

30

35

C1 C2 C3 C4 C5

E
x

e
cu

ti
o

n
 t

im
e
（（ （（

m
in
）） ））

Test Set ID

Train Set T1 Train Set T2

0

1

2

3

4

5

6

C1 C2 C3 C4 C5

E
x

e
cu

ti
o

n
 t

im
e
（（ （（

m
in
）） ））

Test Set ID

KNN MR-KNN Spark-KNN

0

5

10

15

20

25

30

35

C1 C2 C3 C4 C5

E
x

e
cu

ti
o

n
 t

im
e
（（ （（

m
in
）） ））

Test Set ID

KNN MR-KNN Spark-KNN

0

2

4

6

8

10

12

14

16

C1 C2 C3 C4 C5

E
e

x
cu

ti
o

n
 t

im
e
（（ （（

m
in
）） ））

Test Set ID

MR-KNN Spark-KNN

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C1 C2 C3 C4 C5

E
x

e
cu

ti
o

n
 t

im
e
（（ （（

m
in
）） ））

Test Set ID

Train Set T1 Train Set T2 Train Set T3

55 Song Yaqi: Fast Type Recognition of Missive Insulator Leakage Current Data Using Spark

Speedup is a metric for improvement in performance

between two systems processing the same problem. Speedup

is calculated by formula (1). Ts denotes the execution time

with a single CPU core. Th denotes the execution time with h

CPU cores.

h

s
peedup T

T
S = (1)

We calculate the speedup for Spark-KNN by varying core

number of the cluster and using various training set and test

set, as shown in Figure 6.

Figure 6. Speedup of Spark-KNN.

In Figure 6, the speedup increases with the growth of data

scale. The maximum is 8.8 when using the dataset T2 and C4

with 16 CPU cores. The minimum is 1.22 when using the

dataset T1 and C1. The speedup does not increase when

using dataset T1 and C1 even if add more CPU cores, while

increases almost linearly when using dataset T2C4 and T2C5.

5. Conclusion

In this paper, we have investigated how to apply Spark and

Cloud computing to insulator leak current data pattern

recognition use case in order to understand how well these

advanced technologies can accelerate the performance in

supporting data-intensive applications. We have adapted the

KNN pattern recognition task to Spark program. The

prototype was deployed on the Aliyun E-MapReduc cloud

computing platform for experimental evaluation. We have

used the speed up as the standard metric.

The results from the experiment show that the performance

can be improved by using Spark. We have also compared

execution time of the Spark and the Hadoop MapReduce.

The result shows that Spark-KNN is much faster than

MR-KNN and more suitable for real-time data processing for

electric power equipment monitoring system.

Acknowledgements

This work was supported by the Fundamental Research

Funds for the Central Universities (2016MS117,

2016MS116).

References

[1] Zhou, G., Zhu, Y., Wang, G., & Song, Y. “Real-time big data
processing technology application in the field of state
monitoring”. Diangong Jishu Xuebao/transactions of China
Electrotechnical Society, vol.29, pp. 432-437.

[2] Uri Hasson, Jeremy I Skipper, Michael J Wilde, Howard C
Nusbaum, and Steven L Small. Improving the analysis, storage
and sharing of neuroimaging data using relational databases
and distributed computing. NeuroImage, 39(2):693–706, 2008.

[3] Kai-Wei Chang, Deka, B Hwu, W.-M.W, etc. Efficient
Pattern-based Time Series Classification on GPU[C]. 2012
IEEE 12th International Conference on Data Mining (ICDM
2012). Los Alamitos, CA, USA, 2012: 131-40.

[4] Zhao Jun, Zhu Xiaoliang, Wang Wei, etc. Extended Kalman
filter-based Elman networks for industrial time series
prediction with GPU acceleration [J]. Neurocomputing, 2013,
118: 215-224.

[5] Haimonti Dutta, Alex Kamil, Manoj Pooleery, Simha
Sethumadhavan, and John Demme. Distributed Storage of
Large-Scale Multidimensional Electroencephalogram Data
Using Hadoop and HBase [J]. Grid and Cloud Database
Management.2011.9.

[6] White T. Hadoop: The definitive guide [M]. O'Reilly Media,
Inc, 2012:260-261.

[7] Christophe Bisciglia. The smart grid: Hadoop at the Tennessee
Valley Authority (TVA) [EB/OL]. 2009.6 [2013.2].
http://www.cloudera.com/blog/2009/06/smart-grid-hadoop-ten
nessee-valley-authority-tva/

[8] Dean J, Ghemawat S. MapReduce: simplified data processing
on large clusters [J]. Communications of the ACM, 2008, 51(1):
107-113.

[9] Zaharia M, Chowdhury M, Das T, et al. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing [A]. Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation[C]. USENIX
Association, 2012: 2-2

[10] Zaharia M, Chowdhury M, Das T, et al. Fast and interactive
analytics over Hadoop data with Spark[J]. USENIX; login,
2012, 37(4): 45-51

[11] Yan Y, Huang L, Yi L. Is Apache Spark scalable to seismic data
analytics and computations? [C]// IEEE International
Conference on Big Data. IEEE, 2015.

[12] Shyam R, Bharathi Ganesh H. B, Sachin Kumar S, et al.
Apache Spark a Big Data Analytics Platform for Smart Grid[J].
Procedia Technology, 2015, 21:171-178.

[13] Mushtaq H, Al-Ars Z. Cluster-based Apache Spark
implementation of the GATK DNA analysis pipeline[C]//
Bioinformatics and Biomedicine (BIBM), 2015 IEEE
International Conference on. IEEE, 2015:1471-1477.

1.22

8.8

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

e
e

d
 u

p

The numner of CPU cores

ideal value T1C1 T1C2

T1C3 T1C4 T1C5

T2C1 T2C2 T2C3

T2C4 T2C5

 Journal of Electrical and Electronic Engineering 2016; 4(3): 51-56 56

[14] Ram&#, Rez-Gallego S, Garc&#, et al. Distributed Entropy
Minimization Discretizer for Big Data Analysis under Apache
Spark [C]// IEEE Trustcom/bigdatase/ispa. IEEE Computer
Society, 2015.

[15] Cover, T., Hart, P. Nearest neighbor pattern classification [J].
IEEETrans. Inf. Theory, 1967, 30(1): 21–27

[16] Suda T. Frequency characteristics of leakage current
waveforms of an artificially polluted suspension insulator [J].
Dielectrics & Electrical Insulation IEEE Transactions on, 2001,
8(4): 705-709.

