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Abstract: Performance is the key issue in power big data applications. One of main challenges is how to exploit these 

technologies in building power big data processing platform and facilitating science discoveries such as those in electric power 

systems. This paper explores how Spark and Cloud computing can accelerate performance of missive insulator leak current 

data pattern recognition. We have designed and implemented the Parallel KNN(k-NearestNeighbor) algorithm using Spark and 

then deployed onto the Aliyun E-MapReduce cloud computing platform. The results from experiments shows the performance 

and scalability can be enhanced through these advanced technologies. 
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1. Introduction 

Electric power equipment monitoring are developing from 

single-parameter monitoring to all-round and 

multi-parameter monitoring. The monitoring data showed 

exponential growth. Remote monitoring center of power 

equipments is faced with heavy tasks, such as data collection, 

processing, storage and analysis when large amounts of 

monitoring data flock in. 

The traditional single-machine environment which 

using a single task is only applicable to small amount of 

data and will be difficult to finish data processing tasks on 

time or even unable to deal with when facing large volume 

of data [1]. 

[2] stores and manages massive neuroimaging data by 

integrating database management systems (DBMS) with Grid 

computing. [3] propose a dynamic programming algorithm 

for pattern-based time series classification on GPUs. Given 

the industrial real-time demand, [4] propose a parallelized 

method to model the Elman network, which shifts the 

computational intensive tasks of network training on GPU. [5] 

study a large scale EEG (electroencephalogram) distributed 

data storage method on Hadoop [6]. Cloudera used Hadoop 

to store and manage around 1.5 trillion points of time-series 

data in 15TB of PMU archive files at TVA [7]. Although the 

Hadoop MapReduce [8] can effectively deal with large 

amounts of data, it will frequently access disks and the task 

need to take up several minutes of even hours. In view of 

complex iterative computing tasks in electric power 

equipment condition evaluation, the MapReduce can not 

finish analysis and pattern recognition tasks for large 

amounts of alarm monitoring data in a short limited time and 

performance is difficult to meet the requirements [9]. 

Apache Spark is a fast and general engine for large-scale 

data processing [10]. It has an advanced DAG execution 

engine that supports cyclic data flow and in-memory 

computing. In some computing tasks, Spark run programs up 

to 100x faster than Hadoop MapReduce in memory, or 10x 

faster on disk. Spark offers over 80 high-level operators that 

make it easy to build parallel apps. And one can use it 

interactively from the Scala, Python and R shells. Spark has 

been widely used in seismic data analysis [11], data analysis 

in smart grid [12], GATK DNA analysis [13], data reduction 

[14], etc. 

This paper studied fast pattern recognition of electric 

power equipment monitoring data using Spark. Spark-based 

K-Nearest Neighbor algorithm (KNN) is designed and 

implemented in Aliyun E-MapReduce platform and used for 

insulator leakage current data type identification. The results 

from experiments show that Spark-KNN runs up to 2.97x 

faster than MapReduce-based one. 
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2. Distributed Storage of Monitoring 

Data in RDD 

Resilient Distributed Dataset (RDD) is the core concept in 

Spark framework. It can hold any type of data. Spark stores 

data in RDD on different partitions. It helps with rearranging 

the computations and optimizing the data processing. It also 

has fault tolerance because an RDD know how to recreate 

and recompute the datasets. RDDs are immutable and can be 

modified with a transformation with the result of a new RDD 

returned, whereas the original RDD remains the same. RDD 

provides a rich set of operations to manipulate data, including 

map, flatMap, filter, join, group By, reduce By Key, etc 

which facilitate distributed data processing. 

The waveform or extracted features of power equipment 

monitoring data is stored and organized as RDDs. RDD can 

be understood as a large array, but the array is distributed on 

the cluster. A RDD logically is composed of multiple 

partitions which are corresponding to physical block in data 

node memory. The process of executing analysis includes a 

series of transformations and actions for RDDs. Monitoring 

data is stored in the RDD as shown in Figure 1. 

 

Figure 1. Distributed storage of monitoring data in RDD. 

In Figure 1, RDD1 contains four partition (P1, P2, P3, P4) 

and are distributed stored in three nodes (Worker Node1, 

Worker Node2 and Worker Node3). RDD2 contains two 

partitions (P1 and P2) and are stored in 2 nodes (Worker 

Node3 and Worker Node1). 

3. The Spark-KNN Algorithm for Fast 

Pattern Recognition 

In pattern recognition, the k-Nearest Neighbors algorithm 

(k-NN) is a non-parametric method used for classification 

and regression [15]. In the classification phase, k is a 

user-defined constant, and an unlabeled vector (a query or 

test point) is classified by assigning the label which is most 

frequent among the k training samples nearest to that query 

point. A commonly used distance metric for continuous 

variables is Euclidean distance. The k-NN algorithm is 

among the simplest of all machine learning algorithms. 

This paper studied parallel KNN algorithm using Spark, 

called Spark-KNN. The input and output can be from local 

file system, HDFS, or OSS, etc. Spark-KNN algorithm is 

described in Table 1. 

Table 1. Spark-KNN algorithm. 

Spark-KNN algorithm 
Input: 

TrainSet file(cvs format);TestSet file(cvs format); 

ResultSet file path; Parameter k; 
Output: 

ResultSet file(cvs format); 

Procedure: 

1: Initialize SparkContext environment parameters; 

2: Load TrainSet to RDD using SparkContext.textFile( ); 

Do format conversion using RDD.map( ); 

map(line => {vardatas = line.split(" ") (datas(0), datas(1), datas(2))}) 

3: Executing RDD.collect( ) to get a scala Array for TrainSet in Driver 

node named TrainSet_Array; 

4: Broadcast the TrainSet_Array to every node using 

SparkContext.broadcast( ); 

5: Broadcast the parameter k to every node using 

SparkContext.broadcast( ); 

6: Load TestSet to RDD using SparkContext.textFile( ); 

Do format conversion using RDD.map( ), as described at step 2; 

7: Get the result set using RDD.map( ): 

7.1: Parsing a test sample tuple, extracting the characteristics; 

7.2: distance_set= trainDatas.foreach(trainData =>( characteristics，

distance，category)}); 

7.3: Sorting the distance_set according to the ascending order of distance; 

7.4 Get the first k points and their categories; 

8: ResultSet.saveAsTextFile(ResultSet file path); 

The flowchart for Spark-KNN is shown in Figure 2. 

 

Figure 2. Data processing flow in Spark-KNN. 

In Figure 2, Input data are loaded from HDFS using 

textFile function of SparkContext class. Then input data are 

organized as RDDs. Format conversion operations are 

conducted by the map transformation. A new RDD will be 

produced after map transformation. Colletc is a kind of 

Action and return all the elements of the dataset as an array at 

the driver program. This is usually useful after a filter or 

other operation that returns a sufficiently small subset of the 

data. Broadcast is a kind of Action and allows the 

programmer to keep a read-only variable cached on each 

machine rather than shipping a copy of it with tasks. They 

can be used, for example, to give every node a copy of a 

large input dataset in an efficient manner. Spark also attempts 

to distribute broadcast variables using efficient broadcast 

algorithms to reduce communication cost. 'saveAsTextFile' is 
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a kind of Action and can write the elements of the dataset as 

a text file (or set of text files) in a given directory in the local 

filesystem, HDFS or any other Hadoop-supported file system. 

Spark will call 'toString' on each element to convert it to a 

line of text in the file. 

4. Experimental Evaluation in the Cloud 

4.1. The Experiment Environment 

We have conducted the experiments based on the 

Cloudcomputing platform. We deploy our prototype in the 

AliyunE-Map Reduce platform by renting virtual computer 

nodes (ECS.S3. Large type) from Aliyun ECS. The 

configuration of each machine is described in Table 2. 

Table 2. Configuration of a virtual machine fromAliyun ECS. 

Item Configuration 

CPU Intel Xeon CPU,4 cores 

Memory 8GB memory 

Storage 80GB SSD cloud disk 

Network bandwidth 8MB 

Operating system 
Federa Core 8 

(2.6.21.7-2.ec2.v1.2.fc8xenLinux Kernel) 

Platform major version EMR 1.0.0 

Software 
hive 1.0.1; ganglia 3.7.2; Spark 1.4.1; yarn 

2.6.0; pig 0.14.0 

We deploy the Spark cluster using Spark on YARN mode. 

The ganglia (3.7.2) is a scalable distributed monitoring 

system for high-performance computing systems such as 

clusters and Grids. We use it to monitor the CPU and 

memory utilization so as to make adjustment and 

optimization of parallel tasks configuration parameters, such 

as 'number-exector', etc. The following 4 parameters are very 

important as shown in Table 3. 

Table 3. Parameter Configuration of Spark job. 

Parameter Description Default value Our value 

--executor-memory Memory per executor 1GB 2GB 

--driver-memory Memory for driver 512MB 1GB 

--num-executors 
Number of executors 

to launch 
2 4 

--executor-cores 
Number of cores per 

executor 

1 in YARN 

mode 
4 

4.2. Experimental Data 

This paper focus on the insulator leakage current data 

pattern recognition intransmission line monitoring system. 

We select the widely used four features (maximum leakage 

current, the 50-Hz, 150-Hz and 250-Hz amplitudes after 

Fourier transform) to form a 4-dimension vector for pattern 

recognition using Spark-KNN. Some samples selected from 

training set are shown in table 4. 

Table 4. Samples in training set. 

Type maximum (mA) 50Hzamplitude (mA) 150Hzamplitude (mA) 250Hzamplitude (mA) 

Stage A 14.8936 12.4707 0.1082 0.1016 

Stage A 18.0136 14.7075 0.8962 0.1175 

Stage A 59.1919 44.0040 11.5511 2.7286 

Stage B 87.6251 63.2405 15.7299 3.7481 

Stage B 92.7320 68.5759 17.1612 4.2756 

Stage C 138.9287 102.3116 20.6031 5.8952 

Stage E 20781 1603 348 161 

 

Insulator leakage current types [16] are described in table 5. 

Table 5. Category of iced insulator leakage current samples. 

Type Type description 

Stage A Faint discharges, a subtle audible sound, no visible signal 

Stage B Some visible point discharges, a continuous sound 

Stage C Liner weak local arcs 

Stage D Intermittent, stronger local arcs 

Stage E Flash over 

Table 6. Train set. 

Train Set ID Sample size (piece) 

T1 50 

T2 500 

T3 1000 

Experimental data is from artificial experiments and 

real-measured insulator leakage current. We make several 

replications to simulate large scale concurrent alarm data. 

The experiment simulates 6 million monitor points, and by 

setting up the fault rate(0—100%), simulates the different 

size of alarm data due to bad weather. In a short period of 

time, the alarm data size needed to deal with is in the range 

of zero to 6 million pieces of data. The data set includes 

raining set and test set as shown in Table 6 and Table 7. 

Table 7. Testset. 

Test Set ID failure rate Sample size (kilo pieces) 

C1 10% 60 

C2 30% 180 

C3 50% 300 

C4 80% 480 

C5 100% 600 

4.3. Performance Evaluation 

We use the data set in table 5 to test the performance of 

Spark-KNN. We run the KNN program respectively in single 

computer, Hadoop cluster and Spark cluster, which named 

KNN, MR-KNN and Spark-KNN respectively. The 

MR-KNN and Spark - KNN run at the same hardware 

environment as shown in table 1. 

In a single computer, the run time of KNN changes along 

with the data size variation as shown in Figure 3. 
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Figure 3. Execution time of KNN on a single computer. 

As can be seen from the Figure 3, the execution time is 

close to half an hour when training set is T2 and test set is C5. 

While choosing training set T3, the execution time is so long 

that the computer is 'died'. As a result, T3 curve is not drawn 

in figure 3. The experimental results show that the single 

computer environment is not up to the fast pattern 

recognition task of large-scale alarm data. 

We have measured the execution time of MR-KNN and 

Spark-KNN by varying the training set, as shown in Figure 4. 

 

a) Training set T1 

 

b) Training set T2 

 

c) Training set T3 

Figure 4. Execution time comparison between Spark-KNN and MR-KNN. 

As shown in Figure 4, the Spark - KNN performance is 

superior to MR-KNN under various training set. Spark-KNN 

runs up to 2.97x faster than MR-KNN. 

The execution time trend of Spark-KNN under different 

training sets is shown in Figure 5. 

 

Figure 5. Execution time trend of Spark-KNN. 

As can be seen from Figure 5, the programexecution time 

grows slowly as the growth of the test set size. 
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Speedup is a metric for improvement in performance 

between two systems processing the same problem. Speedup 

is calculated by formula (1). Ts denotes the execution time 

with a single CPU core. Th denotes the execution time with h 

CPU cores. 

h

s
peedup T

T
S =                (1) 

We calculate the speedup for Spark-KNN by varying core 

number of the cluster and using various training set and test 

set, as shown in Figure 6. 

 

Figure 6. Speedup of Spark-KNN. 

In Figure 6, the speedup increases with the growth of data 

scale. The maximum is 8.8 when using the dataset T2 and C4 

with 16 CPU cores. The minimum is 1.22 when using the 

dataset T1 and C1. The speedup does not increase when 

using dataset T1 and C1 even if add more CPU cores, while 

increases almost linearly when using dataset T2C4 and T2C5. 

5. Conclusion 

In this paper, we have investigated how to apply Spark and 

Cloud computing to insulator leak current data pattern 

recognition use case in order to understand how well these 

advanced technologies can accelerate the performance in 

supporting data-intensive applications. We have adapted the 

KNN pattern recognition task to Spark program. The 

prototype was deployed on the Aliyun E-MapReduc cloud 

computing platform for experimental evaluation. We have 

used the speed up as the standard metric. 

The results from the experiment show that the performance 

can be improved by using Spark. We have also compared 

execution time of the Spark and the Hadoop MapReduce. 

The result shows that Spark-KNN is much faster than 

MR-KNN and more suitable for real-time data processing for 

electric power equipment monitoring system. 
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