

Journal of Electrical and Electronic Engineering
2014; 2(3): 47-54

Published online September 20, 2014 (http://www.sciencepublishinggroup.com/j/jeee)

doi: 10.11648/j.jeee.20140203.11

ISSN: 2329-1613 (Print); ISSN: 2329-1605 (Online)

An efficient fractional-pixel motion compensation based on
Cubic convolution interpolation

Lung-Jen Wang
*
, Chia-Tzu Shu

Dept. of Computer Science and Information Engineering, National Pingtung University, Pingtung, Taiwan, R. O. C.

Email address:
ljwang@mail.nptu.edu.tw (Lung-Jen Wang)

To cite this article:
Lung-Jen Wang, Chia-Tzu Shu. An Efficient Fractional-Pixel Motion Compensation Based on Cubic Convolution Interpolation. Journal of

Electrical and Electronic Engineering. Vol. 2, No. 3, 2014, pp. 47-54. doi: 10.11648/j.jeee.20140203.11

Abstract: The fractional-pixel motion compensation is used in the H.264/AVC algorithm, in order to improve the coding

efficiency of fractional-pixel displacement, an efficient cubic convolution interpolation (CCI) with four coefficients is proposed.

In this paper, the detailed derivation of the CCI filter and using CCI with fractional-pixel displacement are presented. It is

shown by computer simulation that the presented method substantially reduces the computation complexity and also increases

the precision of the motion compensation.

Keywords: H.264/AVC, Motion Compensation, Fractional-Pixel Displacement, Cubic Convolution Interpolation

1. Introduction

A video can be viewed as a time-ordered sequence of

images-frames [1]. In general, the volume of uncompressed

video data is so large that the use of video compression is

almost mandatory. In High Definition TV (HDTV), if

uncompressed, the bitrate could easily exceed 1Gbps.

Therefore, video compression allows the video to be

transmitted over the Internet in real time. Also it reduces the

requirements for video storage.

The H.264/AVC algorithm is one of the latest international

standard for the video compression technique, which was

jointly implemented by ITU-T video coding experts group

(VCEG) and ISO/IEC motion picture experts group (MPEG)

[2][3]. In order to improve the precision for motion

compensation prediction in the H.264/ AVC algorithm [4]-[8],

the fractional-pixel displacement is calculated, which is used

the interpolation process to estimate the fractional-pixel (1/2-

and 1/4-) positions between the existing positions. In the

H.264/ AVC standard, there are two processing steps in the

fractional-pixel displacement. First, a fixed 6-tap Wiener

filter is calculated for the 1/2-pixel displacement, and then

the bilinear interpolation is used for the 1/4-pixel

displacement. The disadvantage of the H.264/ AVC standard

is that the computations required for 1/2-pixel displacement

with 6-tap Wiener filter are substantially increased. The 6-tap

Wiener filter requires not only huge computational cost, but

also its accuracy is not guaranteed in the fractional-pixel

displacement [7].

Interpolation is the process of estimating the intermediate

values of a continuous event from discrete samples. It is used

extensively in image processing to magnify or reduce images

and to correct spatial distortions. Because of the amount of

image data, an efficient interpolation algorithm is essential.

Rigorously speaking, the process of decreasing the data rate

is called decimation and increasing the data samples is

termed interpolation [9]-[11][16]-[18]. It is well known that

several decimation and interpolation functions such as linear

interpolation [10], cubic convolution interpolation [11], cubic

B-spline interpolation [16], linear spline interpolation [17],

cubic spline interpolation [9][18], etc. can be used in the

image processing.

The authors proposed a cubic convolution interpolation

(CCI) with four coefficients in [12], in order to reduce the

computation complexity of the fractional-pixel displacement

in the H.264/AVC standard. This paper proposes more

detailed descriptions for the CCI and the fractional-pixel

motion compensation prediction for the H.264/ AVC

algorithm. That is, the detailed derivation of CCI and

combination with motion compensation are presented in this

paper. Finally, experimental results show that the proposed

CCI method is used to speed up the 6-tap Wiener filter in the

H.264/AVC standard and still obtain a superior performance

for motion compensation. The primary advantage of the CCI

method is that it increases the precisions and also

substantially reduces the computation complexity for the

fractional-pixel displacement.

Journal of Electrical and Electronic Engineering 2014; 2(3): 47-54 48

This paper is organized as follows. Section 2 describes the

background of this work for the interpolation function,

H.264/AVC algorithm and interpolation in fractional-pixel

displacement. Then the proposed CCI filter with four

coefficients (4-tap CCI) is presented in Section 3. In this

section, the cubic convolution function and 4-tap CCI are

discussed in detail. In Section 4, the proposed CCI combined

with motion compensation is illustrated for the H.264/AVC

algorithm. The motion compensation with CCI and the CCI

interpolation computation are also described in detail. Finally,

experimental results and conclusions are discussed in

Sections 5 and 6, respectively.

2. Background of this Work

2.1. Interpolation Functions

An interpolation function is a special type of

approximating function. A fundamental property of

interpolation functions is that they must coincide with the

sampled data at the interpolation nodes, or sample points. In

other words, if f is a sampled function, and if f̂ is the

corresponding interpolation function, then)()(ˆ
kk xfxf =

whenever kx is an interpolation node [11]. Thus, an

interpolation function can be expressed in the following

form.

∑
=

−=
N

k

kkk xxRcxf
1

)()(ˆ (1)

where)(kk xfc = are the coefficients to be determined

from the input data,)(xRk is the chosen interpolation basis

function, x and kx represent continuous and discrete value,

respectively, and N is the number of given data points. There

are several interpolation functions, shown in Fig. 1, such as

linear function, cubic B-spline function, sinc function, and

cubic convolution function [10][11].

(a) Linear function

(two squares convolved)

R
1
(x)

x

(b) Cubic B-spline function

 (two linear convolved)

R
2
(x)

x

(d) Cubic Convolution function

R
4
(x)

x

(c) Sinc function

R
3
(x)

x

Figure 1. Several interpolation functions.

The linear function provides the first-order linear sample

interpolation with triangle-shaped interpolation waveforms.

This linear function may be considered to be the result of

convolving a square function with itself. It requires only one

addition and one shift in each interpolation. The convolution

of the linear function with itself yields a cubic B-spline

function. The cubic B-spline function is a particularly

attractive candidate for image interpolation because of its

properties of continuity and smoothness at the sample points

[10]. The sinc convolution function uses many sample points

for each interpolation point. It provides an exact

reconstruction, but it cannot be physically generated by an

incoherent optical filtering system [10]. It is possible to

approximate the sinc function by truncating its tails. That is to

say if we only consider the sinc function with a four sample

interval. The problem is that the slope discontinuity at the

ends of the sinc waveform will lead to amplitude ripples in a

reconstructed function. In order to eliminate amplitude ripples

in a reconstructed function, the cubic convolution

interpolation is developed to force the slope of the ends of

interpolation to be zero [11].

2.2. The H.264/AVC Algorithm

The H.264/AVC standard is the latest algorithm of video

compression technique [2][3]. The block diagram of the

H.264/AVC encoder is shown in Fig. 2. In this figure, the

input video frame is partitioned into some blocks. For each

block of input video frame, the H.264/AVC encoder applies

either intra-frame prediction or inter-frame prediction to

process the video signal. In the intra-frame prediction, each

block is converted by the DCT transform into the DCT

coefficients. Next the quantization (Q) and the entropy

coding (ENC) are used for the DCT coefficients. In the

inter-frame prediction, which is also called as the motion

compensated prediction or temporal prediction, the motion

estimation uses the current frame block from reference

frames to predict the content of the current frame block [15].

Furthermore, the de-quantization (Q
-1

) and the inverse DCT

(IDCT) transform are used to obtain the reconstructed video

frame.

2.3. Interpolation in Fractional-Pixel Displacement

In the H.264/AVC algorithm, the displacement vectors with

fractional-pixel resolution are applied to perform the motion

compensated prediction. In order to estimate and compensate

the fractional-pixel displacement, the two-step interpolation

process is used in [7]. In H.264/AVC, the block diagram of

the two-step interpolation process is shown in Fig. 3. In the

first step, the sampling rate of image I is increased by a

factor of 2 and filtered by the 6-tap Wiener filter with the six

coefficients: [1, -5, 20, 20, -5, 1]/32 is used to interpolate the

1/2-pixel positions in this step and an image
wI is generated

after the first step. In the second step, the sampling rate of the

resulting image
wI is also increased by a factor of 2 and

filtered by a simple 2-tap bilinear interpolation filter with the

49 Lung-Jen Wang and Chia-Tzu Shu: An Efficient Fractional-Pixel Motion Compensation Based on

Cubic Convolution Interpolation

two coefficients: [1, 1]/2 is used to interpolate the 1/4-pixel

positions and an image I ′ is generated after the second step.

In Fig. 4, the interpolation relationship between the

full-pixel positions (black), the 1/2-pixel positions (gray) and

the 1/4-pixel positions (white) are shown. In this figure, at

first, the 1/2-pixel positions aa, bb, b, q, cc, dd, and ee, ff, h, l,

gg, hh are calculated, using a horizontal or vertical 6-tap

Wiener filter, respectively. For example, aa = (A1 - 5A2 +

20A3 + 20A4 - 5A5 + A6) / 32, and ee = (A1 – 5B1 + 20C1 +

20D1 – 5E1 + F1) / 32, respectively. Using the same Wiener

filter applied at 1/2-pixel positions aa, bb, b, q, cc, and dd, the

1/2-pixel position j is obtained as: j = (aa – 5bb + 20b + 20q –

5cc + dd) / 32. In the second step, the remaining 1/4-pixel

positions are computed using the bilinear interpolation filter

based on the calculated 1/2-pixel positions and existing

full-pixel positions [8]. For example, a = (C3 + b) / 2 and d =

(C3 + h) / 2 in horizontal and vertical interpolations,

respectively.

Figure 2. Block diagram of the H.264/AVC encoder.

WI

Figure 3. Two-step interpolation process used in H.264/AVC.

A1 A2 A3 A4 A5 A6

B1 B2 B4 B5 B6

C1 C2 C4 C5 C6

D1 D2 D4 D5 D6

E1 E2 E4 E5 E6

F1 F2 F4 F5 F6

aa

B3

C3

D3

E3

F3

bb

cc

dd

ee ff gg hh

ba c

d e f g

h i j k

m n o p

l

q

Figure 4. Interpolation relationship.

3. Cubic Convolution Interpolation

3.1. The Cubic Convolution Function

The cubic convolution function was given in [11], which is

composed of piecewise cubic polynomials defined on the

subintervals (-2, -1), (-1, 0), (0, 1), and (1, 2). Outside the

interval (-2, 2), the function is zero. The function kernel must

be symmetric. As a consequence of this condition, the cubic

convolution function is defined by










+++

+++

=
 0

)(22

2

2

3

2

11

2

1

3

1

DtCtBtA

DtCtBtA

tR

 2 ,

21 ,

10 ,

t

t

t

≤
<≤
<≤

 (2)

where 1)0(=R , 0)2()1(=±=± RR and)(tR and)(tR′ are

continuous at t = 0, 1, 2 and 0)2(=±′R . In (2),

2221111 , , , , , , CBADCBA and 2D are eight unknown

coefficients. To solve these coefficients, Keys in [11]

supposes aA =2 , then the remaining seven unknown

coefficients can be determined in terms of a . That is, the

cubic-convolution function in (2) can be expressed in terms

of a as










−+−

++−+

=
 0

485

1)3()2(

)(
23

23

atatata

tata

tR

 2 ,

21 ,

10 ,

t

t

t

≤
<≤
<≤

 (3)

Figure 5. The CCI function.

Furthermore, Keys in [11] also uses A2 = a = -1/2, finally,

the cubic convolution function, shown in Fig. 5, is given by

() ()
() ()

3 2

3 2

 3/2 5 2 1, 0 t 1

1 2 5 2 4 2, 1 t 2

0, 2 t

t / t

R(t) / t / t t

 − + ≤ <

= − + − + ≤ <
 ≤


 (4)

For more details on this discussion, see Keys [11].

Journal of Electrical and Electronic Engineering 2014; 2(3): 47-54 50

3.2. 4-Tap Cubic Convolution Interpolation

Let τ be a fixed, positive integer. Also, let)(tX be the

full-pixel samples in the current frame, where 10 −≤≤ nt ,

and 10 ,, −nXX ⋯ be the n existing full-pixel samples in

the reference frame. The shift function of the cubic

convolution function can be defined as)()(τktRtRk −=

for 10 −≤≤ nk . Then the fractional-pixel displacement

)(ˆ tX in the reference frame by the cubic convolution

interpolation (CCI) as

∑∑
−

=

−

=
−==

1

0

1

0

)()()(ˆ
n

k

k

n

k

kk ktRXtRXtX τ (5)

where)(tR is the cubic convolution function in (4). The

fractional-pixel function)(ˆ tX in (5) is the CCI function of

the full-pixel samples 10 ,, −nXX ⋯ in the reference frame.

One can be find the function)(ˆ tX in (5) that minimize the

prediction error of)(ˆ tX to)(tX is defined by

∑
−

=
−=

1

0

)(ˆ)()(
n

t

tXtXte (6)

Thus, the sequence of n fractional-pixel values)(ˆ tX in

(5) can be obtained by the CCI function and used for the

1/2-pixel and 1/4-pixel displacements, respectively, in the

H.264/AVC motion compensation. Furthermore, the

fractional-pixel displacement)(ˆ
atX between the two

adjacent existing full-pixel samples kX and 1+kX in the

reference frame is illustrated in Fig. 6 and given by the sum

of the CCI function,

122

1111

for)(

)()()(=)(ˆ

+++

++−−

<<+
++

kakakk

akkakkakka

ttttRX

tRXtRXtRXtX
 (7)

kt 1+kt 3+kt
1−kt2−kt3−kt 4+kt

at

kX

1−kX 1+kX

2+kX

1−kR

kR

1+kR

2+kR

2+kt

)(ˆ tX

)(ˆ
atX

t∆

at∆

Figure 6. The fractional-pixel interpolation between samples.

In (7) and Fig. 6, let kk ttt −=∆ +1 and kaa ttt −=∆ ,

then the displacement from at to 1−kt , 1+kt and 2+kt are

tttt aka ∆+∆=− −1 , tttt aka ∆−∆=− +1 , and =− +2ka tt

tta ∆−∆ 2 , respectively.

Table 1. List of CCI coefficients for fractional-pixel displacement

fractional-pixel displacement CCI coefficients

1/2-pixel displacement [-1, 9, 9, -1]/16

1/4-pixel displacement [-9, 111, 29, -3]/128

3/4-pixel displacement [-3, 29, 111, -9]/128

In order to calculate the fractional-pixel displacement, if

we set 1=∆t and 2/1=∆ at , then the 1/2-pixel

displacement can be given by

()211 99
16

1
=)(ˆ

++− −++− kkkka XXXXtX (8)

Moreover, if we set 1=∆t and 4/1=∆ at , then the

1/4-pixel displacement can be given by

()211 3291119
128

1
=)(ˆ

++− −++− kkkka XXXXtX (9)

That is, if we set 1=∆t and
4/3=∆ at , then the 3/4-pixel

displacement can be given by

()211 9111293
128

1
=)(ˆ

++− −++− kkkka XXXXtX (10)

In (8)-(10), the CCI filter with four coefficients (4-tap CCI)

for the fractional-pixel (1/2-, 1/4- and 3/4-) displacements are

summarized in Table 1.

4. Using CCI in Motion Compensation

4.1. Motion Compensation with CCI

In the fractional-pixel motion compensation, there are two

processing steps in the H.264/AVC algorithm, shown in Fig.

3. In the first processing step, a fixed 6-tap Wiener filter is

used for the 1/2-pixel displacement. The second processing

step is to use the bilinear interpolation for the 1/4-pixel

displacement. In this paper, the CCI filter with four

coefficients (4-tap CCI) is proposed to reduce the

computational complexity of the Wiener filter with six

coefficients in the 1/2-pixel displacement. In Fig. 7, the first

interpolation step is filtered by the 4-tap CCI process for the

1/2-pixel displacement, and the second interpolation step is

then filtered by the 2-tap bilinear process for the 1/4-pixel

displacement. This is also our proposed method and labeled

as CCI+Bilinear. In Fig. 8, two processing steps are all

filtered by the 4-tap CCI interpolation for both 1/2- and

1/4-pixel displacements. This method is also labeled as CCI.

51 Lung-Jen Wang and Chia-Tzu Shu: An Efficient Fractional-Pixel Motion Compensation Based on

Cubic Convolution Interpolation

WI

Figure 7. The proposed CCI+Bilinear process.

WI

Figure 8. The CCI process.

4.2. The CCI Interpolation Computation

B2 B4 B5

C2 C4 C5

D2 D4 D5

E2 E4 E5

B3

C3

D3

E3

bb

cc

ff gg

b

h j l

q

Figure 9. 1/2-pixel CCI operations: full-pixel positions (black); 1/2-pixel

positions (gray).

In Fig. 9, the 4-tap CCI interpolation is used to interpolate

the 1/2-pixel positions and the 1/2-pixel CCI operations are

illustrated: full-pixel positions (black); 1/2-pixel positions

(gray). For example, b = (-C2 + 9C3 + 9C4 - C5) / 16. In

Figs. 10 and 11, the 4-tap CCI interpolation is also applied to

interpolate the 1/4-pixel and 3/4-pixel positions in horizontal

and vertical interpolations, respectively. Fig. 10 shows the

1/4-pixel and 3/4-pixel CCI operations in horizontal

interpolations: full-pixel (black); 1/2-pixel (gray); 1/4-pixel

(white); 3/4-pixel (blue). For example, a = (-9C2 + 111C3 +

29C4 – 3C5) / 128, and c = (-3C2 + 29C3 + 111C4 – 9C5) /

128, respectively. In addition, Fig. 11 shows the 1/4-pixel and

3/4-pixel CCI operations in vertical interpolations: full-pixel

(black); 1/2-pixel (gray); 1/4-pixel (white); 3/4-pixel (blue).

For example, d = (-9B3 + 111C3 + 29D3 – 3E3) / 128, and m

= (-3B3 + 29C3 + 111D3 – 9E3) / 128, respectively.

5. Experimental Results

The proposed CCI+Bilinear and CCI methods, which are

described in Section 4 and shown in Figs. 7 and 8, respectively,

are implemented in Microsoft visual C++ program and

compared with the H.264/AVC standard method (labeled as

Standard), which Wiener filter and bilinear filter are used for

the fractional-pixel displacement. These three algorithms are

based on the JM 18.0 [13]. For the simulation common

conditions of the H.264/AVC algorithm, the most important

settings are summarized in Table 2.

The objective performance is measured by the peak signal

to noise ratio (PSNR) and given by

2

10
255

10
Y

Y PSNR log (dB),
MSE

 
=  

 
 

 (11)

where MSEY is the mean-square error between the original Y

image and reconstructed Y image for the YUV format. Some

standard QCIF (Bridge(close), Crew, HarBour, Highway),

CIF (Bridge(close), Bridge(far), Foreman) and 4CIF (City,

Crew, HarBour) frame sequences are selected and shown in

Fig. 12. Performance comparisons are carried out on the

above these frame sequences. All the experimental results

(bit rates and PSNR performance) are computed from the

reconstructed Y images.

B2 B4 B5

E2 E4 E5

B3

E3

bb

cc

C2 C4 C5

D2 D4 D5

C3

D3

ff gg

ba c

h j l

q

i k

Figure 10. 1/4-pixel and 3/4-pixel CCI operations in horizontal

interpolation: full-pixel (black); 1/2-pixel (gray); 1/4-pixel (white); 3/4-pixel

(blue).

B2 B4 B5

E2 E4 E5

B3

E3

bb

cc

C2 C4 C5

D2 D4 D5

C3

D3

ff gg

ba c

d e f g

h i j k

m n o p

l

q

Figure 11. 1/4-pixel and 3/4-pixel CCI operations in vertical interpolation:

full-pixel (black); 1/2-pixel (gray); 1/4-pixel (white); 3/4-pixel (blue).

Journal of Electrical and Electronic Engineering 2014; 2(3): 47-54 52

Figure 12. Some standard video test sequences.

Table 2. Most important H.264/AVC coder settings [14]

Parameter Settings

Profile: High

Number of reference images: 4

Number of B coded frames: 2

Sequence type: I-B-B-P-B-B-P

Hierarchical Coding: off

Weighted prediction: on

Rate-distortion optimization: on

Search range: 32 for QCIF and CIF

 64 for 720p and 1080p

YUV format 4:2:0

Quantization parameter (I/P/B): 22/23/24, 27/28/29,

 32/33/34, 37/38/39

For the computational complexity of the fractional-pixel

displacement in the Standard (H.264/AVC), CCI+Bilinear and

CCI methods, the number of addition(+), multiplication(*),

and shift(>>) are estimated and compared in Table 3 and

Table 4. Obviously, in Table 3, the estimated operation

number of the proposed CCI+Bilinear method is less than

those of both Standard and CCI methods. That is, the proposed

CCI with bilinear (CCI+Bilinear) method is more fast and

efficient than those of the H.264/AVC standard (Standard) and

the CCI methods. In other words, for the number of operations,

CCI+Bilinear < Standard < CCI.

In Table 4, in terms of the number of addition(+),

multiplication(*) and shift(>>) operations, the CCI+Bilinear

method is less than the H.264/AVC standard (Standard)

method by 152064, 76032 and 76032 for QCIF sequence, by

608256, 304128 and 304128 for CIF sequence, and by

2433024, 1216512 and 1216512 for 4CIF sequence,

respectively. Thus, the proposed CCI+Bilinear method

achieves a superior performance in the fractional-pixel

displacement than the H.264/AVC standard method.

Table 3. Number of operations for three methods.

Methods Operations QCIF CIF 4CIF

Standard + 684288 2737152 10948608

(H.264/AVC) * 228096 912384 3649536

 >> 684288 2737152 10948608

CCI+Bilinear + 532224 2128896 8515584

 * 152064 608256 2433024

 >> 608256 2433024 9732096

CCI + 1140480 4561920 18247680

 * 1368576 5474304 21897216

 >> 2433024 9732096 38928384

Some experimental results of the rate-distortion curves for

the Standard (H.264/AVC), CCI+Binear and CCI methods are

compared and shown in Figs. 13, 14 and 15. As shown in

these three figures, the proposed CCI+Bilinear and CCI

methods obtain the better PSNR values of reconstructed Y

image than the Standard (H.264/AVC) method. That is, for the

same bit rates, the PSNR values of the Y images, obtained by

the CCI+Bilinear and CCI methods are higher than the

Standard (H.264/AVC) method by 0.05 dB and 0.02 dB for

QCIF sequence, by 0.04 dB and 0.02 dB for CIF sequence,

and by 0.14 dB and 0.06 dB for 4CIF sequence, respectively.

Table 4. Comparison of operations for Standard and CCI+Bilinear.

Methods Operations QCIF CIF 4CIF

Standard + 684288 2737152 10948608

(H.264/AVC) * 228096 912384 3649536

 >> 684288 2737152 10948608

CCI+Bilinear + 532224 2128896 8515584

 * 152064 608256 2433024

 >> 608256 2433024 9732096

“Standard” + 152064 608256 2433024

minus * 76032 304128 1216512

“CCI+Bilinear” >> 76032 304128 1216512

Figure 13. Rate-distortion comparison for QCIF sequence Bridge(close).

53 Lung-Jen Wang and Chia-Tzu Shu: An Efficient Fractional-Pixel Motion Compensation Based on

Cubic Convolution Interpolation

Figure 14. Rate-distortion comparison for CIF sequence Bridge(close).

Figure 15. Rate-distortion comparison for 4CIF sequence HarBour.

6. Conclusions

The H.264/AVC algorithm is the international standard for

video compression. In the H.264/AVC standard, the

fractional-pixel displacement is used in the motion

compensated prediction. There are two processing steps in the

fractional-pixel motion compensation. In the first step, a fixed

6-tap Wiener filter is used for the 1/2-pixel displacement. The

second step is to use the bilinear interpolation for the 1/4-pixel

displacement. In this paper, the 4-tap CCI filter is proposed to

reduce the computational complexity of the 1/4-pixel

displacement and also increase accurately the motion

compensated prediction. In addition, the derivation of CCI

filter and CCI combined with motion compensation are

discussed in detail. Finally, some computer simulations show

that the proposed CCI algorithm with the bilinear interpolation

can be used to speed up the H.264/AVC standard and also

obtains a superior performance for motion compensation.

Acknowledgements

This work was supported by the National Science Council,

R.O.C., under Grant NSC 102-2221-E-251-005.

References

[1] Z. N. Li and M. S. Drew, Fundamentals of Multimedia. Pearson
Prentice Hall, 2004.

[2] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE
Trans. on Circuits and Systems for Video Technology, vol. 13,
no. 7, pp. 560-576, July 2003.

[3] T. Wiegand and G. J. Sullivan, “The H.264/AVC video coding
standard [Standards in a Nutshell],” IEEE Signal Processing
Magazine, vol.24, no.2, pp.148-153, March 2007.

[4] T. Wedi, “Adaptive interpolation filter for motion compensated
hybrid video coding,” in Proc. Picture Coding Symposium
(PCS), Seoul, Korea, Jan. 2001.

[5] T. Wedi, “Adaptive interpolation filter for motion compensated
prediction,” in Proc. IEEE International Conference on Image
Processing (ICIP), Rochester, NY, pp. 502-509, Sept. 2002.

Journal of Electrical and Electronic Engineering 2014; 2(3): 47-54 54

[6] T. Wedi and H. G. Musmann, “Motion- and
aliasing-compensated prediction for hybrid video coding,”
IEEE Trans. on Circuits and Systems for Video Technology, vol.
3, no. 7, pp. 577-587, Jul. 2003.

[7] T. Wedi, “Adaptive interpolation filters and high-resolution
displacements for video coding,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 16, no. 4, pp. 484-491, Apr.
2006.

[8] Y. Vatis and J. Ostermann, “Adaptive interpolation filter for
H.264/AVC,” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 19, no. 2, pp. 179-192, Feb. 2009.

[9] T. K. Truong, L. J. Wang, I. S. Reed, and W. S. Hsieh, “Image
data compressing using cubic convolution spline
interpolation,” IEEE Trans. on Image Processing, vol.9, no.11,
pp.1988-1995, Nov. 2000.

[10] W. K. Pratt, Digital Image Processing, second edition. John
Wiley & Sons, Inc., New York, 1991.

[11] R. G. Keys, “Cubic convolution interpolation for digital image
processing,” IEEE Trans. on Acoustic, Speech, and Signal
Processing, vol. 29, no.6, pp.1153-1160, Dec. 1981.

[12] L. J. Wang and C. T. Shu, “A fast efficient fractional-pixel
displacement for H.264/AVC motion compensation,” in Proc.

of the 28th IEEE International Conference on Advanced
Information Networking and Applications (AINA-2014),
pp.25-30, Victoria, Canada, May 13-16, 2014.

[13] H.264/AVC Reference Software Version JM18.0, available
online at: http://iphome.hhi.de/suehring/tml/download/old_jm/

[14] T. K. Tan, G. Sullivan, and T. Wedi, Recommended simulation
common conditions for coding efficiency experiments, ITU-T
Q.6/SC16, Doc. VCEG-AE10, Jan. 2007.

[15] Y. Ye, G. Motta, and M. Karczewicz, “Enhanced adaptive
interpolation filters for video coding,” in Proc. Data
Compression Conference (DCC), pp. 435-444, March 2010.

[16] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal
processing: Part II-Efficient design and applications,” IEEE
Trans. Signal Processing, vol. 41, pp. 834-848, Feb. 1993.

[17] I. S. Reed and A. Yu, Optimal Spline Interpolation for Image
Compression, United States Patent, No. 5822456, Oct. 13,
1998.

[18] L. J. Wang, W. S. Hsieh, T. K. Truong, I. S. Reed, T. C. Cheng,
“A fast efficient computation of cubic-spline interpolation in
image codec,” IEEE Trans. on Signal Processing, vol.49, no.6,
pp.1189-1197, June 2001.

