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Abstract: The fractional-pixel motion compensation is used in the H.264/AVC algorithm, in order to improve the coding 

efficiency of fractional-pixel displacement, an efficient cubic convolution interpolation (CCI) with four coefficients is proposed. 

In this paper, the detailed derivation of the CCI filter and using CCI with fractional-pixel displacement are presented. It is 

shown by computer simulation that the presented method substantially reduces the computation complexity and also increases 

the precision of the motion compensation. 
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1. Introduction 

A video can be viewed as a time-ordered sequence of 

images-frames [1]. In general, the volume of uncompressed 

video data is so large that the use of video compression is 

almost mandatory. In High Definition TV (HDTV), if 

uncompressed, the bitrate could easily exceed 1Gbps. 

Therefore, video compression allows the video to be 

transmitted over the Internet in real time. Also it reduces the 

requirements for video storage. 

The H.264/AVC algorithm is one of the latest international 

standard for the video compression technique, which was 

jointly implemented by ITU-T video coding experts group 

(VCEG) and ISO/IEC motion picture experts group (MPEG) 

[2][3]. In order to improve the precision for motion 

compensation prediction in the H.264/ AVC algorithm [4]-[8], 

the fractional-pixel displacement is calculated, which is used 

the interpolation process to estimate the fractional-pixel (1/2- 

and 1/4-) positions between the existing positions. In the 

H.264/ AVC standard, there are two processing steps in the 

fractional-pixel displacement. First, a fixed 6-tap Wiener 

filter is calculated for the 1/2-pixel displacement, and then 

the bilinear interpolation is used for the 1/4-pixel 

displacement. The disadvantage of the H.264/ AVC standard 

is that the computations required for 1/2-pixel displacement 

with 6-tap Wiener filter are substantially increased. The 6-tap 

Wiener filter requires not only huge computational cost, but 

also its accuracy is not guaranteed in the fractional-pixel 

displacement [7]. 

Interpolation is the process of estimating the intermediate 

values of a continuous event from discrete samples. It is used 

extensively in image processing to magnify or reduce images 

and to correct spatial distortions. Because of the amount of 

image data, an efficient interpolation algorithm is essential. 

Rigorously speaking, the process of decreasing the data rate 

is called decimation and increasing the data samples is 

termed interpolation [9]-[11][16]-[18]. It is well known that 

several decimation and interpolation functions such as linear 

interpolation [10], cubic convolution interpolation [11], cubic 

B-spline interpolation [16], linear spline interpolation [17], 

cubic spline interpolation [9][18], etc. can be used in the 

image processing. 

The authors proposed a cubic convolution interpolation 

(CCI) with four coefficients in [12], in order to reduce the 

computation complexity of the fractional-pixel displacement 

in the H.264/AVC standard. This paper proposes more 

detailed descriptions for the CCI and the fractional-pixel 

motion compensation prediction for the H.264/ AVC 

algorithm. That is, the detailed derivation of CCI and 

combination with motion compensation are presented in this 

paper. Finally, experimental results show that the proposed 

CCI method is used to speed up the 6-tap Wiener filter in the 

H.264/AVC standard and still obtain a superior performance 

for motion compensation. The primary advantage of the CCI 

method is that it increases the precisions and also 

substantially reduces the computation complexity for the 

fractional-pixel displacement.  
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This paper is organized as follows. Section 2 describes the 

background of this work for the interpolation function, 

H.264/AVC algorithm and interpolation in fractional-pixel 

displacement. Then the proposed CCI filter with four 

coefficients (4-tap CCI) is presented in Section 3. In this 

section, the cubic convolution function and 4-tap CCI are 

discussed in detail. In Section 4, the proposed CCI combined 

with motion compensation is illustrated for the H.264/AVC 

algorithm. The motion compensation with CCI and the CCI 

interpolation computation are also described in detail. Finally, 

experimental results and conclusions are discussed in 

Sections 5 and 6, respectively. 

2. Background of this Work 

2.1. Interpolation Functions 

An interpolation function is a special type of 

approximating function. A fundamental property of 

interpolation functions is that they must coincide with the 

sampled data at the interpolation nodes, or sample points. In 

other words, if f is a sampled function, and if f̂  is the 

corresponding interpolation function, then )()(ˆ
kk xfxf =  

whenever kx  is an interpolation node [11]. Thus, an 

interpolation function can be expressed in the following 

form. 

∑
=

−=
N

k

kkk xxRcxf
1

)()(ˆ           (1) 

where )( kk xfc =  are the coefficients to be determined 

from the input data, )(xRk  is the chosen interpolation basis 

function, x and kx  represent continuous and discrete value, 

respectively, and N is the number of given data points. There 

are several interpolation functions, shown in Fig. 1, such as 

linear function, cubic B-spline function, sinc function, and 

cubic convolution function [10][11]. 
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Figure 1. Several interpolation functions. 

The linear function provides the first-order linear sample 

interpolation with triangle-shaped interpolation waveforms. 

This linear function may be considered to be the result of 

convolving a square function with itself. It requires only one 

addition and one shift in each interpolation. The convolution 

of the linear function with itself yields a cubic B-spline 

function. The cubic B-spline function is a particularly 

attractive candidate for image interpolation because of its 

properties of continuity and smoothness at the sample points 

[10]. The sinc convolution function uses many sample points 

for each interpolation point. It provides an exact 

reconstruction, but it cannot be physically generated by an 

incoherent optical filtering system [10]. It is possible to 

approximate the sinc function by truncating its tails. That is to 

say if we only consider the sinc function with a four sample 

interval. The problem is that the slope discontinuity at the 

ends of the sinc waveform will lead to amplitude ripples in a 

reconstructed function. In order to eliminate amplitude ripples 

in a reconstructed function, the cubic convolution 

interpolation is developed to force the slope of the ends of 

interpolation to be zero [11]. 

2.2. The H.264/AVC Algorithm 

The H.264/AVC standard is the latest algorithm of video 

compression technique [2][3]. The block diagram of the 

H.264/AVC encoder is shown in Fig. 2. In this figure, the 

input video frame is partitioned into some blocks. For each 

block of input video frame, the H.264/AVC encoder applies 

either intra-frame prediction or inter-frame prediction to 

process the video signal. In the intra-frame prediction, each 

block is converted by the DCT transform into the DCT 

coefficients. Next the quantization (Q) and the entropy 

coding (ENC) are used for the DCT coefficients. In the 

inter-frame prediction, which is also called as the motion 

compensated prediction or temporal prediction, the motion 

estimation uses the current frame block from reference 

frames to predict the content of the current frame block [15]. 

Furthermore, the de-quantization (Q
-1

) and the inverse DCT 

(IDCT) transform are used to obtain the reconstructed video 

frame. 

2.3. Interpolation in Fractional-Pixel Displacement 

In the H.264/AVC algorithm, the displacement vectors with 

fractional-pixel resolution are applied to perform the motion 

compensated prediction. In order to estimate and compensate 

the fractional-pixel displacement, the two-step interpolation 

process is used in [7]. In H.264/AVC, the block diagram of 

the two-step interpolation process is shown in Fig. 3. In the 

first step, the sampling rate of image I  is increased by a 

factor of 2 and filtered by the 6-tap Wiener filter with the six 

coefficients: [1, -5, 20, 20, -5, 1]/32 is used to interpolate the 

1/2-pixel positions in this step and an image 
wI  is generated 

after the first step. In the second step, the sampling rate of the 

resulting image 
wI  is also increased by a factor of 2 and 

filtered by a simple 2-tap bilinear interpolation filter with the 
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two coefficients: [1, 1]/2 is used to interpolate the 1/4-pixel 

positions and an image I ′  is generated after the second step.  

In Fig. 4, the interpolation relationship between the 

full-pixel positions (black), the 1/2-pixel positions (gray) and 

the 1/4-pixel positions (white) are shown. In this figure, at 

first, the 1/2-pixel positions aa, bb, b, q, cc, dd, and ee, ff, h, l, 

gg, hh are calculated, using a horizontal or vertical 6-tap 

Wiener filter, respectively. For example, aa = (A1 - 5A2 + 

20A3 + 20A4 - 5A5 + A6) / 32, and ee = (A1 – 5B1 + 20C1 + 

20D1 – 5E1 + F1) / 32, respectively. Using the same Wiener 

filter applied at 1/2-pixel positions aa, bb, b, q, cc, and dd, the 

1/2-pixel position j is obtained as: j = (aa – 5bb + 20b + 20q – 

5cc + dd) / 32. In the second step, the remaining 1/4-pixel 

positions are computed using the bilinear interpolation filter 

based on the calculated 1/2-pixel positions and existing 

full-pixel positions [8]. For example, a = (C3 + b) / 2 and d = 

(C3 + h) / 2 in horizontal and vertical interpolations, 

respectively. 

 

Figure 2. Block diagram of the H.264/AVC encoder. 

WI

 

Figure 3. Two-step interpolation process used in H.264/AVC. 
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Figure 4. Interpolation relationship. 

3. Cubic Convolution Interpolation 

3.1. The Cubic Convolution Function 

The cubic convolution function was given in [11], which is 

composed of piecewise cubic polynomials defined on the 

subintervals (-2, -1), (-1, 0), (0, 1), and (1, 2). Outside the 

interval (-2, 2), the function is zero. The function kernel must 

be symmetric. As a consequence of this condition, the cubic 

convolution function is defined by  
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where 1)0( =R , 0)2()1( =±=± RR and )(tR and )(tR′ are 

continuous at t  = 0, 1, 2 and 0)2( =±′R . In (2), 

2221111  , , , , , , CBADCBA  and 2D  are eight unknown 

coefficients. To solve these coefficients, Keys in [11] 

supposes aA =2 , then the remaining seven unknown 

coefficients can be determined in terms of a . That is, the 

cubic-convolution function in (2) can be expressed in terms 

of a  as  
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Figure 5. The CCI function. 

Furthermore, Keys in [11] also uses A2 = a  = -1/2, finally, 

the cubic convolution function, shown in Fig. 5, is given by  

( ) ( )
( ) ( )

3 2

3 2
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1 2  5 2  4 2,  1 t 2   
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  (4) 

For more details on this discussion, see Keys [11]. 
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3.2. 4-Tap Cubic Convolution Interpolation 

Let τ  be a fixed, positive integer. Also, let )(tX  be the 

full-pixel samples in the current frame, where 10 −≤≤ nt , 

and 10 ,, −nXX ⋯  be the n  existing full-pixel samples in 

the reference frame. The shift function of the cubic 

convolution function can be defined as )()( τktRtRk −=  

for 10 −≤≤ nk . Then the fractional-pixel displacement 

)(ˆ tX  in the reference frame by the cubic convolution 

interpolation (CCI) as  

∑∑
−

=

−

=
−==

1

0

1

0

)()()(ˆ
n

k

k

n

k

kk ktRXtRXtX τ       (5) 

where )(tR  is the cubic convolution function in (4). The 

fractional-pixel function )(ˆ tX  in (5) is the CCI function of 

the full-pixel samples 10 ,, −nXX ⋯  in the reference frame. 

One can be find the function )(ˆ tX  in (5) that minimize the 

prediction error of )(ˆ tX  to )(tX  is defined by 

∑
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Thus, the sequence of n fractional-pixel values )(ˆ tX  in 

(5) can be obtained by the CCI function and used for the 

1/2-pixel and 1/4-pixel displacements, respectively, in the 

H.264/AVC motion compensation. Furthermore, the 

fractional-pixel displacement )(ˆ
atX  between the two 

adjacent existing full-pixel samples kX  and 1+kX  in the 

reference frame is illustrated in Fig. 6 and given by the sum 

of the CCI function,  
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Figure 6. The fractional-pixel interpolation between samples. 

In (7) and Fig. 6, let kk ttt −=∆ +1  and kaa ttt −=∆ , 

then the displacement from at to 1−kt , 1+kt and 2+kt  are  

tttt aka ∆+∆=− −1 , tttt aka ∆−∆=− +1 , and =− +2ka tt  

tta ∆−∆ 2 , respectively.  

Table 1. List of CCI coefficients for fractional-pixel displacement 

fractional-pixel displacement CCI coefficients 

1/2-pixel displacement [-1, 9, 9, -1]/16 

1/4-pixel displacement [-9, 111, 29, -3]/128 

3/4-pixel displacement [-3, 29, 111, -9]/128 

In order to calculate the fractional-pixel displacement, if 

we set 1=∆t and 2/1=∆ at , then the 1/2-pixel 

displacement can be given by  

( )211 99
16

1
=)(ˆ

++− −++− kkkka XXXXtX          (8) 

Moreover, if we set 1=∆t and 4/1=∆ at , then the 

1/4-pixel displacement can be given by  

( )211 3291119
128

1
=)(ˆ

++− −++− kkkka XXXXtX        (9) 

That is, if we set 1=∆t and 
4/3=∆ at , then the 3/4-pixel 

displacement can be given by  

( )211 9111293
128

1
=)(ˆ

++− −++− kkkka XXXXtX        (10) 

In (8)-(10), the CCI filter with four coefficients (4-tap CCI) 

for the fractional-pixel (1/2-, 1/4- and 3/4-) displacements are 

summarized in Table 1. 

4. Using CCI in Motion Compensation 

4.1. Motion Compensation with CCI 

In the fractional-pixel motion compensation, there are two 

processing steps in the H.264/AVC algorithm, shown in Fig. 

3. In the first processing step, a fixed 6-tap Wiener filter is 

used for the 1/2-pixel displacement. The second processing 

step is to use the bilinear interpolation for the 1/4-pixel 

displacement. In this paper, the CCI filter with four 

coefficients (4-tap CCI) is proposed to reduce the 

computational complexity of the Wiener filter with six 

coefficients in the 1/2-pixel displacement. In Fig. 7, the first 

interpolation step is filtered by the 4-tap CCI process for the 

1/2-pixel displacement, and the second interpolation step is 

then filtered by the 2-tap bilinear process for the 1/4-pixel 

displacement. This is also our proposed method and labeled 

as CCI+Bilinear. In Fig. 8, two processing steps are all 

filtered by the 4-tap CCI interpolation for both 1/2- and 

1/4-pixel displacements. This method is also labeled as CCI. 
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Figure 7. The proposed CCI+Bilinear process. 
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Figure 8. The CCI process. 

4.2. The CCI Interpolation Computation 
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Figure 9. 1/2-pixel CCI operations: full-pixel positions (black); 1/2-pixel 

positions (gray). 

In Fig. 9, the 4-tap CCI interpolation is used to interpolate 

the 1/2-pixel positions and the 1/2-pixel CCI operations are 

illustrated: full-pixel positions (black); 1/2-pixel positions 

(gray). For example, b = (-C2 + 9C3 + 9C4 - C5) / 16. In 

Figs. 10 and 11, the 4-tap CCI interpolation is also applied to 

interpolate the 1/4-pixel and 3/4-pixel positions in horizontal 

and vertical interpolations, respectively. Fig. 10 shows the 

1/4-pixel and 3/4-pixel CCI operations in horizontal 

interpolations: full-pixel (black); 1/2-pixel (gray); 1/4-pixel 

(white); 3/4-pixel (blue). For example, a = (-9C2 + 111C3 + 

29C4 – 3C5) / 128, and c = (-3C2 + 29C3 + 111C4 – 9C5) / 

128, respectively. In addition, Fig. 11 shows the 1/4-pixel and 

3/4-pixel CCI operations in vertical interpolations: full-pixel 

(black); 1/2-pixel (gray); 1/4-pixel (white); 3/4-pixel (blue). 

For example, d = (-9B3 + 111C3 + 29D3 – 3E3) / 128, and m 

= (-3B3 + 29C3 + 111D3 – 9E3) / 128, respectively.  

5. Experimental Results 

The proposed CCI+Bilinear and CCI methods, which are 

described in Section 4 and shown in Figs. 7 and 8, respectively, 

are implemented in Microsoft visual C++ program and 

compared with the H.264/AVC standard method (labeled as 

Standard), which Wiener filter and bilinear filter are used for 

the fractional-pixel displacement. These three algorithms are 

based on the JM 18.0 [13]. For the simulation common 

conditions of the H.264/AVC algorithm, the most important 

settings are summarized in Table 2.  

The objective performance is measured by the peak signal 

to noise ratio (PSNR) and given by 

2

10
255

10  
Y

Y PSNR log ( dB ),
MSE

 
=  

 
 

        (11) 

where MSEY is the mean-square error between the original Y 

image and reconstructed Y image for the YUV format. Some 

standard QCIF (Bridge(close), Crew, HarBour, Highway), 

CIF (Bridge(close), Bridge(far), Foreman) and 4CIF (City, 

Crew, HarBour) frame sequences are selected and shown in 

Fig. 12. Performance comparisons are carried out on the 

above these frame sequences. All the experimental results 

(bit rates and PSNR performance) are computed from the 

reconstructed Y images.  
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Figure 10. 1/4-pixel and 3/4-pixel CCI operations in horizontal 

interpolation: full-pixel (black); 1/2-pixel (gray); 1/4-pixel (white); 3/4-pixel 

(blue). 
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Figure 11. 1/4-pixel and 3/4-pixel CCI operations in vertical interpolation: 

full-pixel (black); 1/2-pixel (gray); 1/4-pixel (white); 3/4-pixel (blue). 
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Figure 12. Some standard video test sequences. 

Table 2. Most important H.264/AVC coder settings [14] 

Parameter Settings 

Profile: High 

Number of reference images: 4 

Number of B coded frames: 2 

Sequence type: I-B-B-P-B-B-P 

Hierarchical Coding: off 

Weighted prediction: on 

Rate-distortion optimization: on 

Search range: 32 for QCIF and CIF 

 64 for 720p and 1080p 

YUV format 4:2:0 

Quantization parameter (I/P/B): 22/23/24, 27/28/29, 

 32/33/34, 37/38/39 

For the computational complexity of the fractional-pixel 

displacement in the Standard (H.264/AVC), CCI+Bilinear and 

CCI methods, the number of addition(+), multiplication(*), 

and shift(>>) are estimated and compared in Table 3 and 

Table 4. Obviously, in Table 3, the estimated operation 

number of the proposed CCI+Bilinear method is less than 

those of both Standard and CCI methods. That is, the proposed 

CCI with bilinear (CCI+Bilinear) method is more fast and 

efficient than those of the H.264/AVC standard (Standard) and 

the CCI methods. In other words, for the number of operations, 

CCI+Bilinear < Standard < CCI.  

In Table 4, in terms of the number of addition(+), 

multiplication(*) and shift(>>) operations, the CCI+Bilinear 

method is less than the H.264/AVC standard (Standard) 

method by 152064, 76032 and 76032 for QCIF sequence, by 

608256, 304128 and 304128 for CIF sequence, and by 

2433024, 1216512 and 1216512 for 4CIF sequence, 

respectively. Thus, the proposed CCI+Bilinear method 

achieves a superior performance in the fractional-pixel 

displacement than the H.264/AVC standard method.  

Table 3. Number of operations for three methods. 

Methods Operations QCIF CIF 4CIF 

Standard + 684288 2737152 10948608 

(H.264/AVC) * 228096 912384 3649536 

 >> 684288 2737152 10948608 

CCI+Bilinear + 532224 2128896 8515584 

 * 152064 608256 2433024 

 >> 608256 2433024 9732096 

CCI + 1140480 4561920 18247680 

 * 1368576 5474304 21897216 

 >> 2433024 9732096 38928384 

Some experimental results of the rate-distortion curves for 

the Standard (H.264/AVC), CCI+Binear and CCI methods are 

compared and shown in Figs. 13, 14 and 15. As shown in 

these three figures, the proposed CCI+Bilinear and CCI 

methods obtain the better PSNR values of reconstructed Y 

image than the Standard (H.264/AVC) method. That is, for the 

same bit rates, the PSNR values of the Y images, obtained by 

the CCI+Bilinear and CCI methods are higher than the 

Standard (H.264/AVC) method by 0.05 dB and 0.02 dB for 

QCIF sequence, by 0.04 dB and 0.02 dB for CIF sequence, 

and by 0.14 dB and 0.06 dB for 4CIF sequence, respectively. 

Table 4. Comparison of operations for Standard and CCI+Bilinear. 

Methods Operations QCIF CIF 4CIF 

Standard + 684288 2737152 10948608 

(H.264/AVC) * 228096 912384 3649536 

 >> 684288 2737152 10948608 

CCI+Bilinear + 532224 2128896 8515584 

 * 152064 608256 2433024 

 >> 608256 2433024 9732096 

“Standard” + 152064 608256 2433024 

minus * 76032 304128 1216512 

“CCI+Bilinear” >> 76032 304128 1216512 

 

 

Figure 13. Rate-distortion comparison for QCIF sequence Bridge(close). 
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Figure 14. Rate-distortion comparison for CIF sequence Bridge(close). 

 

Figure 15. Rate-distortion comparison for 4CIF sequence HarBour. 

6. Conclusions 

The H.264/AVC algorithm is the international standard for 

video compression. In the H.264/AVC standard, the 

fractional-pixel displacement is used in the motion 

compensated prediction. There are two processing steps in the 

fractional-pixel motion compensation. In the first step, a fixed 

6-tap Wiener filter is used for the 1/2-pixel displacement. The 

second step is to use the bilinear interpolation for the 1/4-pixel 

displacement. In this paper, the 4-tap CCI filter is proposed to 

reduce the computational complexity of the 1/4-pixel 

displacement and also increase accurately the motion 

compensated prediction. In addition, the derivation of CCI 

filter and CCI combined with motion compensation are 

discussed in detail. Finally, some computer simulations show 

that the proposed CCI algorithm with the bilinear interpolation 

can be used to speed up the H.264/AVC standard and also 

obtains a superior performance for motion compensation. 
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