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Abstract 

Background: CT examinations are commonly utilized for the diagnosis of internal diseases. The X-rays emitted during CT scans 

can elevate the risks of developing solid cancers by causing DNA damage. The risk of CT scan-induced solid cancers is 

intricately linked to the organ doses specific to each patient. The Support Vector Regression (SVR) algorithm exhibits the 

capability to swiftly and accurately predict organ doses. Kernel functions, including linear, polynomial, and radial basis (RBF) 

functions, play a crucial role in the overall performance of SVR when predicting patient-specific organ doses from CT scans. 

Therefore, it is imperative to investigate the influence of kernel selection on the comprehensive predictive effectiveness of SVR. 

Purpose: This study investigates the impact of kernel functions on the predictive performance of SVR models trained by 

radiomics features, and to pinpoint the optimal kernel function for predicting patient-specific organ doses from CT scans. 

Methods: CT images from head and abdominal CT scans were processed using DeepViewer, an auto-segmentation tool for 

defining regions of interest (ROIs) within their organs. Radiomics features were extracted from the CT data and ROIs. 

Benchmark organ doses were calculated through Monte Carlo simulations. SVR models, utilizing the radiomics features, were 

trained with linear-, polynomial-, and RBF kernels to predict patient-specific organ doses from CT scans. The robustness of the 

SVR prediction was examined by applying 25 random sample splits with each kernel. The mean absolute percentage error 

(MAPE) and coefficient of determination (R2) were compared among the kernels to identify the optimal kernel. Results: The 

linear kernel obtains better overall predictive performance than the polynomial and RBF kernels. The SVR trained with the linear 

kernel function achieves lower MAPE values, below 5% for head organs and under 6.8% for abdominal organs. Furthermore, it 

shows higher R2 values exceeding 0.85 for head organs and going beyond 0.8 for abdominal organs. Conclusions: Kernel 

selection severely impact the overall performance of SVR models. The optimal kernel varies with CT scanned parts and organ 

types indicating the necessity to conduct organ-specific kernel selection. 
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1. Introduction 

Widely utilized for diagnostic purposes across various 

medical conditions, computed tomography (CT) has emerged 

as a valuable tool, providing detailed cross-sectional visuals 

of internal organs and tissue structures [1-4]. Its significance 

lies in the detection of an array of pathological conditions, 

encompassing infectious, traumatic, inflammatory, and hem-

orrhagic disorders [5-7]. Nonetheless, the administration of 

CT scans exposes patients to ionizing radiation, resulting in 

absorbed doses to vital organs. This radiation exposure has the 

potential to increase the risk of developing solid and hema-

tological malignancies [8-11]. The necessity arises to predict 

patient-specific organ doses due to CT examinations. 

At present, neural networks (NN) [12-15] has outperformed 

size-specific dose estimates (SSDE) [16-19] in terms of ac-

curacy in predicting patient-specific organ dose from CT 

scans by considering a broader spectrum of patient charac-

teristics. However, NN-based models might be sensitive to 

outliers that are not uncommon due to individual variations 

and anomalies in patient conditions, potentially compromis-

ing the model's overall performance. Besides, NN-based 

models may require huge amount of patient samples to 

achieve consistent and accurate predictive performance with 

variations in the patient dataset because of extensive param-

eterization. [20, 21] 

In the realm of medical data, limitations often arise due to 

privacy constraints and the intricate nature of obtaining la-

beled data. [22, 23] Support Vector Regression (SVR) exhib-

its obvious advantages in handling limited patient datasets. 

[24] SVR's straightforward structure and emphasis on pivotal 

support vectors render it more resistant to overfitting, ensur-

ing dependable predictions even when dealing with con-

strained patient data. Additionally, SVR excels in its robust-

ness to outliers, further increasing its advantage in achieving 

consistent performance across diverse patient datasets. 

The kernel function is pivotal in SVR as it transforms input 

data into a higher-dimensional space, allowing the algorithm 

to capture complex patterns. [25] SVR relies on this function 

for non-linear regression by mapping data into a space where 

linear regression is effective. Choosing the appropriate kernel 

(linear, polynomial, radial basis, sigmoid) is crucial, impact-

ing the model's ability to accurately generalize and predict on 

unseen dataset. A well-selected kernel enhances performance, 

while an inappropriate one can lead to poor results, empha-

sizing the critical role of the kernel in SVR for robust regres-

sion models. 

To date, our previous study has investigated the predicted 

head organ doses with SVR models trained by radiomics 

features. [26] The study just employed a fixed kernel function, 

specifically the radial basis function (RBF). But, the study did 

not adopt kernel function selection as a crucial procedure in 

maximizing SVR’s performance as much as possible. Thus, it 

is necessary to investigate the effect of kernel functions on 

SVR’s performance in predicting patient-specific organ doses 

from CT scans so as to pinpoint the optimal kernel function 

for each organ. Unlike previous studies, this study respec-

tively applied linear, polynomial, and RBF to train 

SVR-based patient-specific organ dose prediction models 

using radiomics features, and compared the regression metrics 

including mean absolute percentage error (MAPE) and the 

coefficient of determination (R2), among the SVR models 

trained by the three kernel functions for each investigated 

organ. The optimal kernel function was selected as the one 

that made the SVR model achieve the highest R2 and lowest 

MAPE. 

2. Materials and Methods 

2.1. Patient Data Collection and Input Data 

Processing 

This study analyzed a substantial cohort of 237 head and 

235 abdominal scans at Shanghai Zhongye Hospital. Em-

ploying the automated segmentation software traded with 

DeepViewer [27], CT images were segmented to identify 

regions of interest (ROIs) encompassing vital anatomical 

structures. The segmented organs include brain, left eye, right 

eye, left lens, right lens, liver, left kidney, right kidney, and 

bowel. The delineation of ROIs facilitated radiomics feature 

extraction. For this purpose, acquired CT images and corre-

sponding ROIs were transformed from Digital Imaging and 

Communications in Medicine (DICOM) to Neuroimaging 

Informatics Technology Initiative (NIFTI) format using the 

"dcmstruct2nii" tool [28]. This conversion is crucial for gen-

erating essential CT and mask data. Maintaining a standard-

ized scan voltage of 120 kilo electronvolts (keV) across all 

examinations ensured uniformity in the imaging process, 

minimizing potential confounding factors in radiomics feature 

extraction and subsequent data analysis. 

In this study, radiomics features were extracted from CT 

images and ROIs using the Pyradiomics module [29]. The 

process involved image preprocessing, feature computation, 
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and feature selection. During preprocessing, CT images and 

masks were spatially standardized through resampling to (1, 1, 

3) for head scans, (1, 1, 5) for abdominal scans by setting the 

"resamplePixelSpacing" parameter. Data augmentation [25] 

was adopted to enhance the diversity of input radiomics fea-

tures during SVR model training. For each organ, 107 radi-

omics features were extracted across seven categories, cap-

turing aspects like correlation, homogeneity, and contrast 

within ROIs. The f-regression function was applied to identify 

the most relevant features by calculating and comparing 

F-value and p-value [31], indicating strong, significant linear 

relationships with the y values. The top 100 radiomics fea-

tures were adopted as inputs to train the SVR-based organ 

dose prediction models. The extraction and selection were 

accomplished in the Anaconda 3 [32] environment with dou-

ble AMD EPYC 7551 CPUs. 

2.2. Benchmark Organ Dose 

This study employed the GPUGeant4-based Monte Carlo 

Simulations (GGEMS) for precise and efficient computation 

of reference organ doses from CT images and masks. [33] 

GGEMS excels in managing complex geometries, diverse 

materials, and multiple radiation sources (photons and elec-

trons), surpassing CPU-based MC simulation codes in speed 

and maintaining high precision. The GPU-calculated organ 

doses, achieved using Nvidia RTX4090 graphics cards, 

served as references for training SVR models to predict doses 

for seven organs. MC simulations with an error threshold 

below 2% per voxel ensured dependable organ dose estima-

tions, considering the auto-tube current effect. This 

SVR-based approach, utilizing GGEMS, provides a reliable 

alternative to neural network models for predicting organ 

doses based on GPU-accelerated MC simulations. 

2.3. Metrics for Assessing SVR Performance 

We employed regression metrics such as MAPE and R2. 

MAPE measures the mean absolute percentage disparities 

between real and predicted values, offering a gauge for the 

proximity of predictive outputs to actual values in percentage 

terms, irrespective of error direction. The expression for 

MAPE can be expressed as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ ∣

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
∣

𝑛

𝑖=1
× 100%          (1) 

where n is the patient count, 𝑦𝑖 represents the actual refer-

ence organ dose, and 𝑦̂𝑖 denotes the anticipated organ dose. 

R2 reveals the proportion of variance in the output variable 

attributed to the impact of input variables. Its primary function 

is to quantify the goodness-of-fit of the regression model to 

the dataset, with a higher R2 value indicating a more effective 

model fit. The mathematical expression for R2 is as follows: 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̄)2𝑛
𝑖=1

                 (2) 

2.4. SVR Algorithm and Kernel Function 

Selection 

SVR, a potent machine learning algorithm in the support 

vector machines (SVMs) family, differs from traditional re-

gression models by prioritizing control over the margin of 

error. It excels in handling complex and nonlinear relation-

ships between input variables and output. Built on SVM 

principles for classification, SVR extends them to regression, 

aiming to find a hyperplane that optimally captures this rela-

tionship. Utilizing a kernel trick, SVR can map input features 

into a higher-dimensional space, facilitating the capture of 

intricate patterns. This flexibility makes SVR well-suited for 

various real-world regression problems, particularly those 

involving nonlinear relationships. Its inherent robustness to 

outliers, courtesy of the margin concept, renders SVR effec-

tive for datasets with noisy or irregular patterns. 

Kernel functions will influence the interpretation of SVR 

and modelling the underlying relationships among the data. 

Different kernel functions have various effects on the shape 

and flexibility of the hyperplane that SVR seeks to find in the 

transformed feature space. SVR uses various kernel functions 

including linear, polynomial, and RBF kernel to map the input 

data into a higher-dimensional space, enabling the algorithm 

to capture complex relationships. The linear kernel represents 

a simple dot product between the input features, preserving 

linear relationships. It is suitable when the underlying rela-

tionship between variables is assumed to be linear. Its 

mathematical expression can be written as: 

( , ') 'K x x x x                    (3) 

where x and x’ stand for the input data and mapped data, 

respectively. The polynomial kernel introduces non-linearity 

by computing a polynomial function of degree d of the dot 

product between input features, where c is a constant. It is 

capable of capturing polynomial relationships between vari-

ables. Its mathematical expression can be written as: 

( ) (, )dK x x x x c                  (4) 

The RBF kernel, also known as the Gaussian kernel, in-

troduces a non-linear transformation based on the radial dis-

tance between data points. The parameter γ determines the 

width of the radial basis function and influences the flexibility 

of the decision boundary. It is effective in capturing complex, 

non-linear relationships. Its mathematical expression can be 

written as: 

2, |( ( |) | | )K x x exp x x               (5) 
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The choice of kernel function can significantly impact 

SVR's performance, especially when dealing with datasets 

exhibiting nonlinear relationships. The selection of a kernel 

function in SVR is crucial as it determines the transformation 

applied to the input features, allowing SVR to capture com-

plex relationships between variables. The kernel function 

essentially serves as a mathematical technique to implicitly 

map the input features into a higher-dimensional space, 

making it possible to identify and model intricate patterns that 

may not be apparent in the original feature space. 

As shown in Fig. 1, we employed three prediction models for 

estimating patient-specific organ doses using SVR for each 

organ. These models, labeled as SVR_1, SVR_2, and SVR_3, 

were trained with distinct kernels: linear, polynomial, and RBF. 

To assess the reliability of each SVR model, we conducted 25 

random patient sample splits, maintaining an 80:20 ratio be-

tween the training set and test set. We then calculated the mean 

and standard deviation of regression metrics (MAPE and R2) 

for SVR_1, SVR_2, and SVR_3. The optimal kernel was 

identified as the one that resulted in the SVR model achieving 

the highest R2 and the mean MAPE. We trained the SVR pre-

diction models by using the Scikit-learn module when setting 

the regulation parameter (C value) as 5. Referring to equations 

4 and 5, we employed the default values for 'c' (set to 0) and ’d’ 

(set to 3) as specified in the Scikit-learn module, and the γ value 

was automatically calculated as the reciprocal of the total 

number of input radiomics features during the training of SVR 

using the Scikit-learn module. 

 
Figure 1. General workflow for selecting the kernel functions and constructing optimal SVR models for predicting patient-specific organ doses 

for head and abdominal patients. 

3. Results 

In this study, we evaluated the performance of the trained 

SVR model for each investigated organ, including the brain, 

left eye, right eye, left lens, right lens, liver, left kidney, right 

kidney, and bowel. The results, presented in subsections 3.1 

and 3.2, consist of the MAPE and R2 values, respectively, 

obtained from 25 random patient sample splits. Box chart 

plots were adopted to depict the overall performance ac-

companying the robustness, which revealed the SVR-based 

model’s predictive stability against patient sample variations. 

Figures 2 and 3 show the regression metrics of the head or-

gans and abdominal organs, respectively. 

In Figures 2 and 3, each box chart plot displays a chart 

where the central box signifies the interquartile range (IQR), 

spanning from the first quartile (Q1) to the third quartile (Q3). 

The lower and upper edges of the box correspond to the 25th 
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percentile (Q1) and 75th percentile (Q3) of the dataset, re-

spectively. The box's length visually represents the dispersion 

of the central 50% of the data. Inside the box, a horizontal line 

denotes the median, which is the middle value in an ordered 

dataset. The median serves as a robust measure of central 

tendency, unaffected by extreme values, providing insight 

into the distribution's center. The empty square in the box 

chart represents the mean. Whiskers extend from the box 

edges, indicating the data range. The lower whisker reaches 

the minimum data point of the 1st percentile. The upper 

whisker reaches the maximum data point of the 99th percen-

tile. 

3.1. Regression Metrics for the Head Organs 

As shown in Figures 2a and 2b for the brain, the mean 

values of MAPE across 25 random sample splits are 1.3%, 

1.6%, and 2.0%, and the mean values of R2 are 0.9, 0.85, and 

0.8 for the linear, polynomial, and RBF kernels, respectively. 

This suggests that SVR-based model with the linear kernel 

shows the best overall performance in both accuracy and 

generality in predicting patient-specific brain doses. For the 

left lens (see Figure 2h), there are few predictive data points 

with the values of R2 smaller than 0.5, indicating a slightly 

low robustness in predictive generality across diverse patient 

sample splits for the linear kernel, but this did not lead the 

obvious compromising in MAPE. This suggests the linear 

kernel-based SVR’s predictive performance is hardly to be 

deteriorated by patient sample allocation in prediction brain 

doses. Thus, to utilize the high overall performance from 

applying the linear kernel to train SVR models, the robustness 

in R2 across multiple patient sample splits should be verified 

to discard the rare splits with worse regression metrics, and to 

pinpoint the appropriate sample split strategies. 
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Figure 2. Regression metrics of the SVR models with linear, polynomial, and RBF kernels for the investigated head organs including the brain’s 

MAPE (a), brain’s R2 (b), left eye’s MAPE (c), left eye’s R2 (d), right eye’s MAPE (e), right eye’s R2 (f), left lens’ MAPE (g), left lens’ R2 (h), right 

lens’ MAPE (e), right lens’ R2 (f). 
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As plotted in Figures 2c and 2d, the left eye exhibited mean 

MAPE values of 5.3%, 5.5%, and 5.8% across 25 random 

sample splits, with corresponding mean R2 values of 0.8, 0.76, 

and 0.75 for the linear, polynomial, and RBF kernels. This 

implies that the SVR-based model with the linear kernel ex-

cels the overall performance among the three kernels when 

predicting patient-specific brain doses. In Figure 2d, few data 

points of low R2 (<0.5) were also observed, which suggests 

the necessity to conduct R2 robustness among different sam-

ple splits to get rid of ineffective sample splits. As illustrated 

in Figures 1e-1j, similar to the brain and left eye, linear ker-

nel-based SVR achieved better overall performance for the 

right eye, left lens, and right lens as well. Thus, to maximize 

SVR’s overall performance, the linear kernel could be applied 

to predict head organs in presence of R2 robustness assess-

ments. 

3.2. Regression Metrics for the Abdominal 

Organs 

Displayed in Figures 3a and 3b are the computed regression 

metrics for the bowel, revealing mean MAPE values of 6.4%, 

6.7%, and 6.3% across 25 random sample splits for the linear, 

polynomial, and RBF kernels, respectively. Correspondingly, 

mean R2 values were observed to be 0.85, 0.84, and 0.81 for 

linear, polynomial, and RBF kernels, respectively. The 

SVR-based model trained with the polynomial kernel exhibits 

better accuracy and generality when predicting bowel doses. 

For the bowel, it is suggested to evaluate the robustness in R2 

for the linear kernel across different patient sample splits, 

dismissing those with inferior regression metrics and identi-

fying appropriate sample splits. 
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Figure 3. Regression metrics of the SVR models with linear, polynomial, and RBF kernels for the investigated organs including the bowel’ 

MAPE (a), bowel’s R2 (b), left kidney’s MAPE (c), left kidney’s R2 (d), right kidney’s MAPE (e), right kidney’s R2 (f), liver’s MAPE (g), liver’s 

R2(h). 

In Figures 3c and 3d, the left kidney displays the mean 

MAPE values of 7.5%, 8.4%, and 7.7%, accompanied by 

mean R2 values of 0.68, 0.61, and 0.6 for linear, polynomial, 

and RBF kernels, respectively. This suggests that the 

SVR-based model with the linear kernel outperformed the 

other kernels when predicting patient-specific brain doses. 

Thus, the linear kernel makes the SVR achieve the best 

overall performance for the left kidney. As illustrated in Fig-

ures 2e-2j, similar to the bowel and left kidney, the linear 

kernel-based SVR demonstrates superior overall performance 

for the right kidney and liver. 

4. Discussion 

Ionizing radiation emitted during CT scans exposes pa-

tients’ organs, potentially increasing the risk of cancers to 

individuals underwent CT examinations. Developing SVR 

models based on radiomics features has proven to be an ef-

fective strategy for rapidly predicting patient-specific organ 

doses from CT scans. However, the previous study neglected 

kernel function selection, a crucial factor in maximizing 

SVR's predictive potential. Therefore, it is essential to explore 

SVR's predictive capabilities and further enhance the per-

formance in predicting patient-specific organ doses. In 

recognition of the limitations of the previous study, this re-

search applied linear, polynomial, and RBF kernels to con-

struct SVR-based organ dose prediction models for each 

investigated organ. The goal is to pinpoint the optimal kernel 

function type for each organ. 

To date, the previous study has adopted the RBF kernel to 

train SVR-based organ dose prediction models for head or-

gans such as eyes, lens, and brain. The results of previous 

studies show that the MAPE in prediction head organs using 

the RBF-based SVR model is lower than 6%, and the R2 larger 

than 0.7, suggesting satisfied performance in predictive ac-
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curacy, generality, and robustness. However, the results of 

this study reveal that the linear could make the SVR achieve 

better overall performance than the RBF kernel for the brain, 

eyes, and lens. For the bowel, linear kernel exhibited better 

overall performance than RBF and polynomial kernels. Thus, 

kernel selection should be deemed as a required step when 

train SVR models based on radiomics features to predict head 

and abdominal organ doses. This is essential to maximize the 

predictive potential SVR-based models. 

This research has certain limitations that should be 

acknowledged. Firstly, this kernel function selection study 

primarily focused on the CT scans of adult brains and abdo-

mens, necessitating the development of a specialized predic-

tion model for personalized organ doses in pediatric cases 

using the proposed SVR method. Secondly, we exclusively 

investigated five head organs (i.e. brain, left eye, right eye, 

left lens, right lens) and four abdominal organs (i.e. bowel, left 

kidney, right kidney, liver). Thus, the results of this study are 

mainly applicable to the nine investigated organs. It is still 

necessary to study other organs beyond the nine investigated 

organs, because organ type significantly impacts the kernel 

selection. Additionally, the proficiency of the optimized SVR 

model with the optimal kernel in predicting patient-specific 

organ doses was established in patients undergoing brain and 

abdominal CT scans at only one institution. However, to 

effectively apply this method elsewhere, different institutions 

need to train and optimize a new, institution-specific SVR 

model, taking into account their unique CT scanning param-

eters. 

5. Conclusions 

In this study, we optimized SVR models for pa-

tient-specific organ dose prediction from CT scans by con-

ducting kernel function selection among the linear, polyno-

mial, and RBF. The optimal kernel function significantly 

depends on organ types and CT scanned parts. Results show 

that the linear kernel achieves better overall performance in 

both accuracy (MAPE) and generality (R2) than the polyno-

mial and RBF kernels for most of the head and abdominal 

organs. Thus, it is essential to perform the organ-specific 

kernel function through kernel selection process to make use 

of SVR’ predictive potential in predicting patient-specific 

organ doses from CT scans as much as possible while ensur-

ing accuracy, generalizability, and robustness. 

Abbreviations 

SVR Support Vector Regression 

MAPE Mean Absolute Percentage Error 

R2 R-squared 

RBF Radial Basis Function 

IQR Interquartile Range 
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