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Abstract 

A microgrid is an autonomous system that can realize self-control, protection, and management and is composed of distributed 

power sources, energy storage devices, loads, and control and protection devices. To achieve low operation costs, this paper a 

multi-strategy enhanced dwarf mongoose optimization algorithm (EDMO) for microgrid scheduling problem is proposed. In 

EDMO, the convergence speed is accelerated by introducing the golden Sine strategy, which generally makes it difficult to find 

new excellent solutions at a later stage, lead to a reduction in the population diversity and limiting the development capability, 

as well as introducing adaptive t-distribution variation to increase the population diversity and the introduction Lévy flight to 

enhance the algorithm's ability to jump out of the local optimum. The EDMO was compared with other nine algorithms applied 

to the microgrid optimal scheduling problem. The experimental results show that the proposed EDMO can achieved the lowest 

total cost, exhibits good performance and robustness, and is an effective method for solving the microgrid scheduling problem. 
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1. Introduction 

With the transformation of the economic growth model of 

modern society, the structure of electric power production is 

also changing, along with the upgradation of industrial and 

energy structures. In recent years, the global emphasis on 

new energy has increased, which is in line with the devel-

opment of the times to eliminate the dependence on a single 

source of energy but also to contribute to the improvement of 

the ecological environment. In the face of changes in the 

power supply and demand, microgrids [1-3] have become the 

choice for power systems to cope with energy security and 

low-carbon development. Microgrids involve the compre-

hensive utilization of wind, solar, natural gas, electricity, and 

other energy sources, and their scheduling problem is com-

plex. Microgrid optimal scheduling refers to the reduction of 

operating costs, improvement of new energy utilization, en-

hancement of the stability of the power grid, reduction of 

environmental pollution, energy loss, etc., by rationally ar-

ranging the power of each power source and load of the mi-

crogrid under the premise of ensuring the safe and stable 

operation of the system. 

The microgrid scheduling problem is a classical 

unit-combination (UC) problem. So far, there are many 

http://www.sciencepg.com/journal/ijiis
http://www.sciencepg.com/journal/135/archive/1351402
http://www.sciencepg.com/
https://orcid.org/0009-0000-2693-7457
https://orcid.org/0009-0004-5177-760X
https://orcid.org/0000-0003-4404-952X


International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis 

 

27 

scholars have conducted research on microgrid (MG) sched-

uling problems, such as Lagrangian relaxation [4], 

mixed-integer linear programming [5], metaheuristic opti-

mization algorithms [6], et al. In [7], an improved quantum 

particle swarm optimization (QPSO) using a differential 

evolutionary algorithm was proposed, the experiments show 

that the improved QPSO has better performance and is more 

suitable than the QPSO and CLQPSO to solve the demand 

problem of microgrids. In [8], an improved real-coded ge-

netic algorithm (GA) and enhanced mixed-integer linear 

programming (MILP)-based, developed GA-based, and 

MILP-based optimizers were proposed for application to a 

test microgrid model under different operating strategies. 

The experimental results show that voltage and load viola-

tions can be corrected very accurately. In [8], a hybrid im-

proved GSA-PSO was proposed by combining the gravita-

tional search algorithm (GSA) and particle swarm optimiza-

tion (PSO) algorithms (MGSA-PSO), which implements and 

analyzes load scheduling optimization. Experimental results 

demonstrate the effectiveness of the proposed scheme by 

analyzing the effects of different numbers of electric vehicles 

and different charging modes. In [9], a chaotic cuckoo search 

SVR (SVRCCS) model based on the tent chaotic mapping 

function was proposed. The numerical results from the da-

taset tests show that the proposed SVRCCS model outper-

forms other alternative models. In [10], an improved mayfly 

algorithm incorporating Levy flights is proposed, the exper-

imental results demonstrate that the proposed IMA algorithm 

can solve the CEED problem in grid-connected microgrids. 

In [11], a cuckoo search algorithm (CSA) was used to opti-

mize the economic dispatch of microgrids, the experimental 

results show that CSA has good global convergence and pro-

vides a better optimal solution and emission costs. In [12], an 

enhanced population-aware particle swarm optimization 

(QS-PSO) was used to determine the full-cycle optimal 

scheduling solution for microgrids, the experimental results 

demonstrate the effectiveness of the proposed scheduling 

model and QS-PSO application. In [13], a metaheuristic 

adaptive elephant swarm optimization (SA-EHO) was pro-

posed for the implementation of an ideal scheduling model 

for microgrids (MGs) with EVs and RESs. The experimental 

results demonstrate that the proposed algorithm performed 

well. In [14], a variant of the Non-dominated Sorting Genetic 

Algorithm (NSGA)-II algorithm was used along with the 

introduction of an external penalty function to deal with the 

constraints and facilitate the solution of the multi-objective 

optimization model. The proposed algorithm was applied to 

the dynamic economic dispatch model of a microgrid. The 

economy of the proposed scheme was verified by comparing 

its economic dispatch effects under different operating con-

ditions. In [15], a BSA based on an adaptive taxing flight 

strategy (LF-BSA) was proposed, the experimental results 

verify the feasibility of LF-BSA and the effectiveness of 

multi-objective optimization. In [16], the Whale Optimiza-

tion Algorithm (WOA) was used to perform all ELDs, emis-

sion scheduling, and CEEDs on islanded and renewable en-

ergy-integrated microgrids, the experimental results demon-

strate that the proposed method outperforms other optimiza-

tion techniques. In [17], a symbiotic organism search 

(SOS)-based staging algorithm and an improved mul-

ti-intelligent actor (MA) consensus algorithm (IMACA) were 

proposed, the experimental results verify that the proposed 

algorithm has superior performance and can obtain the most 

economically efficient solution. In [18], an improved PSO 

algorithm with adaptive inertia weights and shrinkage factors 

was proposed, the results show that the improved PSO algo-

rithm effectively reduces the comprehensive objective cost 

and achieves better optimization results. In [19], an improved 

butterfly optimization algorithm (IBOA) based on a partial 

tent chaotic map, Cauchy variation, and simplex method was 

proposed, the experimental results show that the IBOA can 

effectively reduce the system cost of electricity, promote the 

effective utilization of renewable energy, and improve the 

operational stability of the microgrid cluster system. In [20], 

Giza pyramid construction (GPC) is proposed to realize the 

optimal design of isolated microgrids. Net current cost 

(NPC), levelized cost of energy (LCOE), loss of power 

probability and availability index are used as objective 

functions. In [21], an improved mayfly optimization algo-

rithm was proposed for solving microgrid problems. These 

results were compared with those of recent state-of-the-art 

algorithms using the same microgrid model. Experimental 

results show that the proposed algorithm is competitive 

and robust. 

This paper a multi-strategy enhanced dwarf mongoose op-

timization algorithm (EDMO) for microgrid scheduling 

problem is proposed. The main contributions are as follows: 

(1) The dwarf mongoose optimization algorithm was en-

hanced with the golden sine strategy, adaptive t-distribution 

variational strategy, and Lévy flight strategy. 

(2) A multi-strategy enhanced dwarf mongoose optimiza-

tion algorithm (EDMOA) was proposed. 

(3) Comparison with well-known algorithms, and it is ex-

perimentally verified that the proposed EDMOA performs 

better than the other algorithms. 

(4) The EDMOA was successfully applied to solve the 

microgrid optimal scheduling problem. 

2. Microgrid Model 

In this section, the mathematical model of the microgrid 

optimal dispatch problem is proposed which includes the 

wind turbine, photovoltaic, diesel generator, micro gas tur-

bine, battery, and the objective functions. The main objective 

of optimal microgrid scheduling is to minimize the operating 

cost of the microgrid in grid-connected mode. 

2.1. Wind Turbine Model 

A wind turbine (WT) [22], which is mathematically mod-
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eled as shown in Eq. (1): 

3 2

                  0,             

,     

                  ,            

                  0,              

ci

ci r
WT

r r co

co

v v

av bv cv d v v v
P

P v v v

v v




    
 

 
 

        (1) 

In Eq. (1), PWT is the output power of the wind turbine, 

Pr is the rated power of the wind turbine, vci is the cut-in 

wind speed of the wind turbine, vr denotes the rated wind 

speed of the wind turbine, and vco denotes the cut-out wind 

speed of the wind turbine, a, b, c, and d denote the wind 

speed parameters. 

2.2. Photovoltaic Power Generation Model 

The mathematical model of the PV output power [23] is 

given by Eq. (2). 

1 ( )T
pv pv pv p c stc

STC

I
P R q T T

I
                (2) 

where Ppv denotes the PV power output, Rpv denotes the PV 

power output under the standard test, qpv denotes the derating 

coefficient of the PV, IT denotes the actual solar irradiation 

intensity, ISTC denotes the solar irradiation intensity under the 

standard test, αp denotes the temperature coefficient of the 

PV panels, Tc denotes the temperature of the PV panels in 

the current time interval, and Tstc denotes the temperature of 

the PV cells under the standard test. PV cell temperature 

under test. 

2.3. Diesel Generator Model 

The diesel generator [24] is a type of power machine that 

uses diesel fuel and a diesel engine as the prime mover to 

drive the generator to generate electricity. The entire set is 

generally composed of a diesel engine, generator, control 

box, fuel tank, starting and control batteries, protection de-

vice, emergency cabinet, and other components. Diesel gen-

erators are economical and efficient power generation 

equipment with a wide range of applications in modern soci-

ety. The model is given in Eq. (3). 
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where CDM(t), CDF(t), and CDN(t) denote the operation and 

maintenance, fuel, and pollution treatment costs of the diesel 

generator at moment t, respectively. PDE(t) denotes the power 

generation of the diesel generator at time t, KDM denotes the 

coefficient of operation and maintenance cost of the diesel 

generator, denotes the amount of release of the k pollutants 

generated by the operation of the diesel generator, Ck de-

notes the treatment of the k pollutant cost coefficient, and 

denotes the coefficient of the diesel generator. 

2.4. Micro Turbine Model 

A microturbine (MT) [25, 26] is a gas turbine with a pow-

er range of 25–300kW. It is characterized by its small size, 

light weight, high power density, low noise, low emission, 

high reliability, and low maintenance cost compared to con-

ventional gas turbines and has broad application prospects in 

the fields of distributed power generation, standby power 

generation, cogeneration, and mobile power. The working 

principle of a micro gas turbine is the same as that of a tradi-

tional gas turbine, which converts the thermal energy gener-

ated by fuel combustion into mechanical energy and then 

converts it into electric energy through a generator. It is 

mainly composed of four core components: compressor, 

combustion chamber, turbine, and generator. The output 

power of the micro gas turbine was adjustable and exhibited 

a high response speed. The model is given in Eq. (4). 
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where ηMT (t) represents the operating efficiency of the mi-

cro-gas turbine, and is the active output power of the mi-

cro-gas turbine. The operation and maintenance costs, pollu-

tant treatment costs and fuel costs will be generated during 

the operation of the micro-gas turbine, and the model is 

shown in Eq. (5). 
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where CMM (t), CMF (t), and CMN (t) denote the operation and 

maintenance, fuel, and pollution treatment costs of the diesel 

generator at moment t, respectively. PMT (t) denotes the 

power generation of the diesel generator at moment t, KM 

denotes the operation and maintenance cost coefficient of the 

diesel generator, KM denotes the amount of k pollutant re-

leases generated by the operation of the diesel generator, Ck 

denotes the cost factor for treating k pollutant releases, and 

Ck denotes the cost factor for treating k pollutants. Cost coef-

ficient of pollutant treatment. 
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2.5. Battery Model 

Storage batteries work by using electrochemical reactions 

to convert chemical energy into electrical energy [27]. When 

the battery is discharged, the electrochemical reaction causes 

the active substances inside the battery to change, thereby 

releasing electrical energy. When the battery was recharged, 

the electrical energy provided by the external power supply 

restored the active material inside the battery to its original 

state. The role of the battery as a reserve energy, in the case 

of renewable energy, cannot meet the load of the microgrid 

system for the system energy supply, thereby stabilizing the 

system power supply and ensuring stable and safe operation 

of the system. The model is given in Eq. (6). 
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where SOC (t) indicates the remaining capacity of the battery 

at moment t and Pbess (t) indicates the charging and dis-

charging power of the battery at time t. When the result is 

positive, it indicates charging, and when the result is nega-

tive, it indicates discharging, which indicates the charging 

efficiency, which indicates the discharging efficiency. 

2.6. Constraints 

(1) Power-balance constraint 

Power constraint is one of the most important constraints 

in power system dispatching, which can ensure the safe and 

stable operation of the power grid and improve its economic 

operation of the power grid. This requires the sum of the 

generation power and load power of each node in the grid to 

be equal. The model is given in Eq. (7). 

( ) ( ) ( ) ( ) ( ) ( ) ( )pv WT grid DE MT bess LP t P t P t P t P t P t P t       (7) 

(2) Diesel generator output constraints: 

The diesel generator output constraints refer to the diesel 

generator set in the operation process, and its output does not 

exceed a certain limit. The role of diesel generator output 

constraints is to ensure the safe operation of diesel generator 

sets, extend the service life of diesel generator sets, and im-

prove their economic efficiency of diesel generator sets. The 

diesel generator output constraints are an important con-

straint in the operation of diesel generator sets, and the safe, 

reliable, and economic operation of diesel generator sets 

plays a vital role. The model is given in Eq. (8). 
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(3) The micro gas turbine Output constraints 

The output force constraint of a micro gas turbine is an 

important constraint in the operation process of a micro gas 

turbine and plays a vital role in the safe, reliable, and eco-

nomical operation of micro gas turbines. The model is given 

in Eq. (9). 
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(4) Transmission power constraints for the contact lines 

The transmission power constraint of the contact line re-

fers to the fact that the transmission power of the contact line 

does not exceed a certain limit under normal operation con-

ditions. The model is given in Eq. (10). 

min max( ) ( ) ( )grid grid gridP t P t P t         (10) 

(5) Energy storage device constraints 

The energy storage device constraint refers to the fact that 

during the operation of the energy storage device, parameters 

such as output power, charging and discharging power, volt-

age, and current must not exceed certain limit values to en-

sure the safe operation of the energy storage device. The 

model is given in Eq. (11). 

min max
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( ) ( ) ( )
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SOC t SOC t SOC t
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
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      (11) 

In Eqs. (7)-(11), max ( )DEP t , min ( )DEP t represent the upper and 

lower limits of the output power of the diesel engine, and 
max ( )MTP t , min ( )MTP t represent the upper and lower limits of the 

output power of the micro-gas turbine; DEr , MTr  represent 

the upper limit of the climbing power of the diesel generator 

and the upper limit of the climbing power of the micro-gas 

turbine; and
max ( )gridP t ,

min ( )gridP t  represent the upper and lower 

limits of the power transmitted by the contact line, respec-

tively; max ( )bessP t ,
min ( )gridP t  denote the upper and lower limits 

of the output power of the energy storage device, and the 

positive value indicates the power input, while the negative 

value indicates the power output; SOCmax(t) and SOCmin(t) 

denote the upper and lower limits of the energy storage ca-

pacity at the time of t, respectively. 

2.7. Objective Function of the Microgrid 

Optimal Dispatch Problem 

(1) The microgrid operating cost 

The mathematical model of the microgrid operating cost is 

expressed by Eq. (12). 
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where Cgrid(t), Cbess(t), CMT(t), and CDE(t) denote the total cost 

of interaction between the microgrid and the main grid at 

moment t, the cost of maintenance of the energy storage, the 

total operating cost of the microgas turbine, and the total 

operating cost of the diesel generator, respectively; Pbess(t) 

denotes the power of the energy storage at moment t. Psell(t) 

and Pbuy(t) denote the power sold and purchased at moment t 

for the microgrid and the large grid, respectively; and cbuy (t) 

and csell (t) denote the price of electricity purchased and the 

price of electricity sold at moment t for the microgrid and the 

large grid, respectively. 

(2) The microgrid Environmental protection cost 

The model of the environmental protection cost of mi-

crogrid is given by Eq. (13). 
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where CGN(t) denotes the pollutant treatment cost of the large 

power grid, denotes the release amount of pollutants of type 

k generated by the operation of the large power grid, and Ck 

denotes the cost coefficient of treating pollutants of type k. 

(3) Objective function of the microgrid optimal schedul-

ing. 

The objective function of the microgrid optimal schedul-

ing problem model is to minimize the total cost, including 

the operating and environmental costs. The model is given in 

Eq. (14). 

1 2Z f f                        (14) 

3. Dwarf Mongoose Optimization 

Algorithm 

The Dwarf Mongoose Optimization (DMO) Algorithm is 

proposed by Jeffrey O. in 2022 [28]. It is inspired by the 

group foraging behavior of dwarf mongooses and mainly 

simulates the foraging, scouting, and babysitting behaviors 

of dwarf mongooses. 

3.1. Population Initialization 

The initialization of the DMO starts with the selection of 

candidate meerkat individuals that are randomly generated 

between the upper and lower bounds of the given problem. 

The population is initialized as shown in Eq. (15): 
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           (15) 

where X denotes the candidate solution, Xi,j denotes the posi-

tion of the ith mongoose in the jth dimension, and the 

mathematical model is given by Eq. (16). N and d denote the 

population and dimension sizes of the problem, respectively. 

, ( , , )i jX unifrnd lb ub d              (16) 

where unifrnd is used to generate uniformly distributed ran-

dom numbers and ub and lb denote the upper and lower 

bounds of the given problem, respectively. d denotes the 

dimensional size of the problem. 

3.2. Alpha Group 

The foraging routes of the dwarf mongoose were deter-

mined by the alpha females produced in the alpha group. The 

probability that each female individual in the alpha group 

will become a leader is determined using Eq. (17): 

1

( )

( )
n

i

fit i

fit i








                  (17) 

The number of mongooses in the alpha group corresponds 

to the n-bs. Where bs is the number of babysitters; fit(i) de-

notes the fitness value of the ith individual, the alpha fe-

male’s vocalization that keeps the family within a path is 

denoted by peep. Each individual in the alpha group forages 

for food, and the formula for updating the location of the 

food source is shown in Eq. (18): 

i 1 ( )i i kX X phi peep X X               (18) 

where Xi, j denote the location of the new food source, Xi de-

notes the location of the ith individual, and phi is a random 

number between [-1, 1]; the female alpha keeps the whole 

group within a path by making a sound, denoted by "peep,” 

and the value of peep is set to 2 in this paper. xk denotes the 

alpha group of Xk denotes the attendant individuals in the 

alpha group. 

Sleeping mounds are the resting places of the dwarf mon-

goose population and are calculated using the following 
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formula: 

 
( 1) ( )

max ( 1), ( )
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 
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
          (19) 

The formula for calculating the mean value of a sleep 

mound is as follows: 

1

n
i

i
sm

n
 
                (20) 

3.3. Scout Group 

Members of the scouting group were responsible for find-

ing the next sleeping mound, as the dwarf mongoose would 

not return to a place where it had previously slept, which 

ensured that territories were explored and that scouting and 

foraging took place simultaneously. This movement was 

modeled as an overall success or failure assessment for find-

ing a new sleeping mound. In other words, this movement 

depends on the overall performance of the dwarf mongoose. 

The rationale is that if the dwarf mongoose colony forages 

far enough away, it will find a new sleep mound. The for-

mula for updating the position of an individual in a scouting 

group is as follows. 
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 (21) 

where C denotes the parameter controlling the mobility of 

the dwarf meerkat population, which decreases linearly with 

the number of iterations, as shown in Eq. (22), phi is a ran-

dom number between [-1, 1], r represents a random number 

between [0, 1], M is the direction vector determining the 

movement of the dwarf meerkat towards the new sleep 

mound, as shown in Eq. (23) and φ is given by Eq. (20). 

(2 )
_(1 )

_

t

Max tt
C

Max t
                (22) 

where t denotes the number of iterations, and Max_t denotes 

the maximum number of iterations. 

1

n i i

i i

X sm
M

X


                (23) 

where n denotes the number of members in the scout group, 

Xi denotes the position of the ith individual, and smi denotes 

the value of the sleep mound. 

 

3.4. Babysitters Group 

Babysitters are usually subordinate group members who 

stay with the pups and rotate periodically so that the alpha 

female can lead the rest of the group in daily foraging. The 

alpha female usually returns to the nurse the pups at midday 

and evening. The number of nannies depends on the size of 

the population, and they affect the algorithm by reducing the 

overall population size by a set percentage. This population 

was modeled by a percentage reduction in the number of 

nanny groups. The nanny exchange parameter was used to 

reset the scouting and food source information held by fami-

ly members. The babysitter fitness weight was set to zero, 

which ensured that the alpha group's average weight was 

reduced in the next iteration, implying that the group's 

movement was impeded, thus emphasizing exploitation. 

4. Enhanced Dwarf Mongoose 

Optimization Algorithm 

4.1. Golden Sine Strategy 

The Gold-SA [29] (Gold-SA) is proposed by Tanyildizi et 

al. in 2017, which is inspired by the sine function in mathe-

matics. The advantages of gold-SA are fast convergence, 

good robustness, and ease of implementation. Gold-SA uti-

lizes the sine function and the unit circle relationship to the 

unit circle to search for the unit circle. The position update 

formula is given in Eq. (24). 

1 2 1 1 2( 1) ( ) sin( ) sin( ) ( ) ( )i i i iX t X t r r r D t x X t x     (24) 

where r1 is the determining parameter of the moving distance 

of the next-generation individual, r1 is a random number 

between [0, 2π], r2 is the parameter that determines the 

moving direction of the next-generation individual, and the 

range of the value is [0, π]; and x1, x2 are the golden section 

coefficients, and their mathematical expressions are shown in 

Eq. (25). 

1

2

(1 )

(1 )

5 1

2

x a t bt

x at b t

t

  


  




              (25) 

where a = − π, b = π, and t is the golden fraction ratio. 

4.2. Adaptive t-distribution Mutation Strategy 

Adaptive t-distribution mutation [30] (ATS) is a mutation 

operator for optimization problems. It is a mutation operator 

based on t-distribution, in the iterative process of the algo-

rithm, the parameter of the degrees of freedom of the 
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t-distribution will be adaptively adjusted according to the 

progress of the algorithm, in the early stage of the algorithm, 

n is smaller, the t-distribution of the t-distribution of the 

t-distribution of the tail is longer, with a larger jump ability, 

which is conducive to the algorithm to jump out of the local 

optimal solution. In the later stages of the algorithm, n is 

larger, and the t-distribution has a shorter tail, which has a 

strong local search ability and is conducive to the algorithm 

converging to the global optimal solution. The mathematical 

model is given by Eq. (26). 

24*( )

( )

t

Tfreen e

trnd freen


 


                 (26) 

where t denotes the current iteration number, T denotes the 

maximum iteration number, and trnd() denotes the 

t-distribution. 

4.3. Levy Flight Strategy 

The Lévy flight is a heuristic strategy for solving optimi-

zation problems [31]. This method adopts a Lévy distribution 

to realize stochastic search, integrates short-range search and 

long-range exploration, effectively enhances the global 

search capability of the algorithm, and improves the effi-

ciency of jumping out of the local optimum. The model is 

given in Eq. (27). 

( )levy d                         (27) 

where d denotes the dimensions of the problem. 

4.4. Location Update Methods for EDMO 

(1) Position update method for the alpha group 

After the introduction of the adaptive t-distribution varia-

tion strategy and Levy flight strategy, the position update 

method for the alpha group is given by Eq. (28). 

1 ( ) ( ) ( )i i i kX X trnd freen p peep X X levy d         (28) 

(2) Position updating method of the scout group 

After the introduction of the adaptive t-distribution varia-

tion strategy and Levy flight strategy, the position update 

method of the reconnaissance group is given by Eq. (29) and 

Eq. (30). 

1 ( ) ( ) ( )i i i kX X trnd freen p peep X X levy d         (29) 

1  

1

( ) ( )          

( ) ( )         

i i i i

i

i i

X trnd freen levy d C p r X M if
X

X trnd freen levy d C p r X M else

 



        


 
      



  (30) 

4.5. Proposed EDMO Algorithm 

The golden sine strategy can be used to solve various con-

tinuous, discrete, and multi-objective optimization problems. 

It can effectively find the optimal or near-optimal solution to 

a problem. It exhibits the characteristics of fast convergence 

and good robustness. The dwarf Mongoose optimization 

algorithm was combined with the golden sine strategy, and 

the performance of the algorithm was improved by combin-

ing adaptive T-distribution variation and Levy flight. Table 1 

and Figure 1 show the flow chart of the EDMO algorithm. 

Table 1. Pseudo code of EDMO algorithm. 

Pseudo-code of the EDMO 

1. 

Initialization 

Set the Mongoose populations(search agents): n 

Set the number of babysitters: bs 

Set n=n-bs 

Set babysitter exchange parameters L 

 Set the values of parameters Max_t, t, N 

2. Step 2. Main loop 

3. while t   Max_t 

4. Calculate the value of C using Eq. (22) 

5. for i =1: nAlphaGroup 

6. Calculate the position Xi+1 using Eq. (28) and  i+1 using Eq. (20) 

7. Calculate the Xi+1’fitness and update the fit_best 

8. end 
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Pseudo-code of the EDMO 

9. for i=1: nScout 

10. Calculate the position Xi+1 using Eq. (29) and  i+1 using Eq. (20) 

11. Calculate the smi using Eq. (19) 

12. end 

13. for i=1: nBabysitter 

14. Exchange members of the babysitters group and alpha group. If C > L 

15. End 

16 for i=1: N 

17 Calculate the position Xi+1 using Eq. (24) 

18. end while 

19. Step 3. Return fit_best and Xbest 

 
Figure 1. Flowchart of EDMO. 
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5. Experimental Results and Analysis 

5.1. Experimental Parameter Settings 

Table 2. Parameters set. 

Parameters 
Upper limit of power 

(/kW) 

Lower limit of power 

(/kW) 

Climbing power upper limit 

(/kW/min) 

Unit cost of operation and 

maintenance (Yuan/kWh) 

Diesel Generators 30 6 1.5 0.128 

Turbine 100 0 0 0 

Photovoltaic 50 0 0 0 

Main network 30 -30 0 0 

Gas turbine 30 3 1.5 0.0293 

Table 3. Pollutant emission coefficients and treatment costs. 

Pollutant types Types CO2 SO2 NO3 

Governance fees (yuan/kg)  0.023 6 8 

Pollutant release coefficient (g/kWh) 

PV 0 0 0 

WT 0 0 0 

DE 680 0.306 10.09 

Grid 889 1.8 1.6 

MT 724 0.0036 0.2 

Table 4. Energy storage parameters. 

Types Parameters Value Parameters Value 

Storage battery 

Maximum capacity (kWh) 150 Initial energy storage capacity (kWh) 50 

Minimum capacity (kWh) 5 Maximum output power (/kW) 30 

Maximum input power (/kW) 30 Charging and discharging power 0.9 

 

The experimental parameters set are listed in the following 

Table 2. In addition, this experiment uses MATLAB2021b, 

and a Windows 10 64-bit operating system PC with an Intel 

Core i7-9700 processor @3.00GHz and 16.0 GB RAM 

served as the experimental platform. The proposed 

DMOWOA parameter settings: n=50, bs=3, Max_t=1500, 

t=0, N=20; L=8. Cited references related to all algorithm 

parameters compared. 

 

Table 5. Price list for buying and selling electricity. 

Time 

Buying electricity pric-

es from the power grid 

(Yuan/degree) 

Selling electricity prices to 

the power grid (Yu-

an/degree) 

1 0.3800 0.3600 

2 0.3800 0.3600 

3 0.3800 0.3600 
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Time 

Buying electricity pric-

es from the power grid 

(Yuan/degree) 

Selling electricity prices to 

the power grid (Yu-

an/degree) 

4 0.3800 0.3600 

5 0.3800 0.3600 

6 0.3800 0.3600 

7 0.8200 0.3600 

8 0.8200 0.3600 

9 0.8200 0.3600 

10 1.3500 0.3600 

11 1.3500 0.3600 

12 1.3500 0.3600 

13 1.3500 0.3600 

14 1.3500 0.3600 

15 0.8200 0.3600 

16 0.8200 0.3600 

17 0.8200 0.3600 

18 1.3500 0.3600 

19 1.3500 0.3600 

20 1.3500 0.3600 

21 1.3500 0.3600 

22 1.3500 0.3600 

23 0.3800 0.3600 

24 0.3800 0.3600 

5.2. Experimental Results Analysis 

To verify the performance of EDMO in solving the mi-

crogrid optimal scheduling problem, EDMO was compared 

with the ABC [32], AOA [33], ChOA [34], GWO [35], MPA 

[36], PSO [37], SA [38], SWO [39], and WOA [40]. For 

fairness of the comparison, the maximum number of itera-

tions for each algorithm was 15000 and 20 independent runs. 

Four indicators were selected as statistical criteria: minimum 

(Min), maximum (Max), mean (Mean), and standard devia-

tion (SD). Wilkerson's signed rank test [41] was used for 

statistical analysis, with the symbol "+" indicating better than 

the comparison algorithm, the symbol "-" indicating worse 

than the comparison algorithm, and the symbol "≈" indicates 

the comparison algorithm. 

Table 6 shows the statistics of the results of 20 independ-

ent runs of each algorithm, from Table 5.6, it shows that 

EDMO is ranked first in the minimum value, followed by SA, 

SWO, PSO, DMO, MPA, ABC, GWO, WOA, ChOA, and 

the worst one is AOA. EDMO is ranked first in terms of the 

maximum value, mean value, and standard deviation. This 

verifies that EDMO outperformed the compared algorithms. 

Table 6. Indicators of solution results of each algorithm. 

Algorithm Min Max Mean SD 

EDMO 48659.468 48756.429 48705.649 19.611 

DMO 48978.638 49119.950 49055.622 39.066 

ABC 49461.484 49663.384 49584.333 59.591 

AOA 102158.293 114684.488 109974.031 2841.778 

ChOA 96666.137 104215.045 100533.918 1746.452 

GWO 50218.807 51519.838 50694.681 364.571 

MPA 49101.468 50538.822 49382.887 297.005 

PSO 48763.043 49027.188 48878.559 67.604 

SA 48682.557 48858.215 48771.110 49.252 

SWO 48697.393 49037.761 48814.131 98.056 

WOA 77814.013 93653.616 86675.015 5214.493 

The results of Wilkerson's signed-rank test are shown in 

Table 7, from which it can be seen that EDMO is statistically 

superior to DMO, ABC, AOA, ChOA, GWO, MPA, PSO, 

SA, SWO, and WOA. Therefore, it can be statistically veri-

fied that EDMO is an effective method for solving the opti-

mal dispatch problem of microgrid. 

Table 7. Details of Wilkerson test for EDMO and other algorithms. 

Algorithms R
+
 R

-
 P-value ±/≈ 

EDMO vs DMO 210 0 6.757e-08 + 

EDMO vs ABC 210 0 6.757e-08 + 

EDMO vs AOA 210 0 6.767e-08 + 

EDMO vs ChOA 210 0 6.766e-08 + 

EDMO vs GWO 210 0 6.757e-08 + 

EDMO vs MPA 210 0 6.767e-08 + 

EDMO vs PSO 210 0 6.767e-08 + 

EDMO vs SA 191 19 2.220e-06 + 

EDMO vs SWO 174 36 1.798e-05 + 

EDMO vs WOA 210 0 6.767e-08 + 
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Figure 2. Box diagram of each algorithm. 

 
Figure 3. Scheduling results for EDMO at the lowest total cost. 

Figure 2 shows the box-line plots of each algorithm, from 

which it can be seen that the data fluctuation of EDMO for 

20 independent runs is very small, indicating that the algo-

rithm is stable. This is followed by SA, DMO, and PSO. The 

data fluctuations of AOA, ChOA, and WOA were very large, 

indicating weak stability. Thus, the stability and robustness 

of EDMO were verified. 

 
Figure 4. Predicted EDMO values for PV, wind, and load power at 

lowest total cost. 

 
Figure 5. Convergence curves for each algorithm. 
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                           (a) EDMO                                        (b) ABC 

 
                          (c) AOA                                           (d) ChOA 

 
                          (e) DMO                                            (f) GWO 
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                          (g) MPA                                             (h) PSO 

 

                          (i) SA                                      (j) SWO 

 
(k) WOA 

Figure 6. Unit power scheduling with the lowest total cost for each algorithm. 
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                           (a) EDMO                                         (b) ABC 

 
                           (c) AOA                                            (d) ChOA 

 
                           (e) DMO                                          (f) GWO 
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                           (g) MPA                                           (h) PSO 

 
                              (i) SA                                           (j) SWO 

 
(k) WOA 

Figure 7. Fitting curves of the predicted values of each algorithm. 

Figure 5 shows the convergence graphs of each algo-

rithm, from which it can be seen that EDMO obtains the 

minimum cost and converges faster. Figure 3 shows the 

scheduling results of each unit for EDMO with the mini-

mum total cost, and Figure 4 shows the predicted values of 

PV, wind, and load power for EDMO with the minimum 

total cost. Figure 6 shows the unit power scheduling for 

each algorithm in the case of total cost minimization. Fig-
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ure 7 shows the fitted curve plot of the predicted values of 

each algorithm, from which it can be seen that EDMO and 

SA have the best fit between the predicted and actual 

curves, and the predictive ability of EDMO basically 

matches the actual power generation, which verifies that 

EDMO has good predictive ability. 

6. Conclusion and Future Work 

For the microgrid optimal scheduling problem, this paper 

an EDMO is proposed. In the EDMO, the golden sinusoidal 

strategy is introduced, which utilizes the relationship be-

tween the sinusoidal function and the unit circle, searches the 

unit circle, and narrows the search space through the golden 

ratio to approximate the optimal solution of the algorithm. In 

addition, an adaptive t-distribution variation strategy was 

introduced to improve the population diversity in the late 

stage of the algorithm, and the Lévy flight strategy was in-

troduced to enhance the ability of the algorithm to jump out 

of the local optimum. The EDMO was applied to the mi-

crogrid optimal scheduling problem. The experimental re-

sults show that the EDMO yields the least costly economic 

scheduling scheme compared to other well-known algo-

rithms, it can accurately predict the generation power of each 

unit. According to the Wilcoxon signed-rank test, EDMO 

exhibits good robustness and excellent optimization-finding 

ability. Therefore, the validity and superior performance of 

EDMO for solving the microgrid optimal scheduling prob-

lem is verified, and it is an effective alternative method for 

solving this problem. In future work, other strategies will be 

to improve the performance of the proposed algorithm to 

solve problems in other energy fields. 

Abbreviations 

EDMO Enhanced Dwarf Mongoose Optimization 

UC Unit-combination 

MG Microgrid 

QPSO Quantum Particle Swarm Optimization 

GA Genetic Algorithm 

MILP Mixed-integer Linear Programming 

GSA Gravitational Search Algorithm 

PSO Particle Swarm Optimization 

CSA Cuckoo Search Algorithm 

NSGA Non-dominated Sorting Genetic Algorithm 

WOA Whale Optimization Algorithm 

SOS Symbiotic Organism Search 

MA Multi-intelligent Actor 

IMACA Improved Multi-intelligent Actor Consensus 

Algorithm 

IBOA Improved Butterfly Optimization Algorithm 

GPC Giza Pyramid Construction 

NPC Net Current Cost 

LCOE Levelized Cost of Energy 

ATS Adaptive t-distribution Mutation 

MT Microturbine 

ABC Artificial Bee Colony 

AOA Arithmetic Optimization Algorithm 

ChOA Chimp Optimization Algorithm 

GWO Grey Wolf Optimizer 

MPA Marine Predators Algorithm 

SA Simulated Annealing 

SWO Spider Wasp Optimizer. 
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