
International Journal of Intelligent Information Systems

2025, Vol. 14, No. 1, pp. 7-19

https://doi.org/10.11648/j.ijiis.20251401.12

*Corresponding author:

Received: 6 March 2025; Accepted: 18 March 2025; Published: 31 March 2025

Copyright: © The Author(s), 2025. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Article

Next-Generation K-Means Clustering: Mojo-Driven

Performance for Big Data

Touhidul Alam Seyam
1

, Md. Sazzad Hossain
2

, Rajib Ghose
3

,

Mekhriddin Nurmamatov
4

, Nazarov Fayzullo
4

, Zarin Hadika
5

,

Abhijit Pathak
5, *

1
Department of Computer Science and Engineering, Begum Gul Chemonara Trust University Bangladesh, Chattogram,

Bangladesh
2
Faculty of Intelligent Systems and Computer Technologies, Samarkand State University, Samarkand, Uzbekistan

3
Department of Computer Science and Engineering, Military Institute of Science and Technology (MIST), Dhaka,

Bangladesh
4
Faculty of Artificial Intelligence and Information Systems, Samarkand State University, Samarkand, Uzbekistan

5
Department of Computer Science and Engineering, Sonargaon University, Dhaka, Bangladesh

Abstract

K-means clustering, a fundamental unsupervised machine learning technique, is widely used in anomaly detection, image

recognition, and customer segmentation. Traditional Python implementations, especially those using NumPy, face performance

challenges with large, high-dimensional datasets due to Python’s interpreted nature and dynamic typing. This paper introduces an

innovative approach using the Mojo programming language, designed for AI development, to significantly improve the

performance of the k-means clustering. Mojo combines Python’s usability with the performance of system programming

languages by offering features like vectorization, parallelization, and strong typing. We compare a NumPy-based Python

implementation with an optimized Mojo implementation, detailing the translation process and optimization techniques,

including Mojo’s support for Single Instruction, Multiple Data (SIMD) operations, explicit memory management, and efficient

data structures. These features significantly accelerate distance calculations crucial to the k-means algorithm. Benchmarks on

synthetic datasets with varying sample sizes, feature counts, and cluster numbers demonstrate that the Mojo implementation

consistently outperforms both the standard Python implementation and the highly optimized sci-kit-learn k-means, achieving

speedups of 6x to 250x. These results highlight Mojo’s potential as a powerful tool for high-performance data analysis,

particularly for computationally demanding algorithms like k-means clustering, and contribute to high-performance computing

in machine learning. This research sets the stage for further exploration of Mojo’s applicability to other algorithms and

hardware-specific optimizations for modern computing architectures.

Keywords

K-means Clustering, Mojo Programming Language, Scikit-learn, Machine Learning, NumPy

http://www.sciencepg.com/journal/ijiis
http://www.sciencepg.com/journal/135/archive/1351401
http://www.sciencepg.com/
https://orcid.org/0009-0007-7512-1893
https://orcid.org/0009-0003-1351-7287
https://orcid.org/0009-0007-4409-6509
https://orcid.org/0000-0002-9619-5791
https://orcid.org/0000-0003-3925-406X
https://orcid.org/0009-0002-3204-7244
https://orcid.org/0000-0001-7734-0271

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

8

1. Introduction

Unsupervised machine learning relies heavily on clustering,

a fundamental technique that helps reveal underlying struc-

tures, relationships, and patterns in data without pre-assigned

labels. K-means clustering is a well-known and widely used

algorithm in this field due to its ease of use and effectiveness,

with numerous applications across several domains, includ-

ing:

Anomaly detection: Identifying data points that deviate

substantially from defined clusters, such as fraudulent trans-

actions, network intrusions, or manufacturing flaws [3].

(1) Image Recognition

(2) Customer Segmentation

Although Python has become popular for implementing

k-means and other algorithms due to its rich ecosystem of

machine learning libraries like NumPy [4] and scikit-learn [5],

its interpreted nature frequently causes performance issues

when working with large and complex contemporary datasets.

These issues arise primarily from:

(1) Interpreted Execution: Python code is executed line by

line, introducing significant overhead compared to

compiled languages that translate the entire codebase

into machine instructions beforehand.

(2) Dynamic Typing: Variables in Python do not require

explicit type declarations, leading to runtime type

checking that hinders performance, particularly in

computationally intensive loops.

(3) Memory Management: Python’s dynamic memory al-

location and garbage collection, while convenient, can

introduce overhead and impact performance predicta-

bility, especially with large datasets.

These drawbacks are particularly noticeable in k-means

clustering, as the algorithm’s iterative nature and reliance on

calculating distances between centroids and data points de-

mand high processing efficiency. This work proposes a novel

solution: a k-means algorithm implementation using the Mojo

programming language [6]. Mojo, specifically designed for

AI development, seamlessly combines Python’s usability with

the performance of systems programming languages like C++.

Mojo achieves this by leveraging:

(1) Vectorization: Performing operations on multiple data

points simultaneously using Single Instruction, Multi-

ple Data (SIMD) instructions, available on modern

CPUs.

(2) Parallelization: Distributing computations across mul-

tiple processor cores to accelerate execution, especially

beneficial for large datasets and high cluster counts.

(3) Strong Typing: Enforcing explicit type declarations al-

lows for more efficient code generation and compiler

optimization.

(4) Explicit Memory Management: Providing greater con-

trol over memory allocation and access patterns, re-

ducing overhead, and improving cache locality.

This paper demonstrates how Mojo’s language features

translate into concrete performance gains for k-means clus-

tering. We provide a detailed comparison with a

NumPy-based Python implementation, highlighting key op-

timization techniques employed during the code translation

process [1]. Through comprehensive benchmarks on synthetic

datasets, we quantify the performance improvements, show-

casing Mojo’s potential as a powerful tool for developing

high-performance data analysis solutions. The findings have

broader implications for accelerating other computationally

intensive machine learning algorithms and pave the way for

efficient and scalable data analysis on modern hardware ar-

chitectures.

2. Literature Review

The BigVNSClust algorithm enhances K-means clustering

for big data by integrating Variable Neighborhood Search

(VNS), significantly improving accuracy and efficiency. This

novel heuristic fuses data streaming with global optimization,

optimizing partial objective function landscapes to refine

clustering results. It employs local search and Variable

Neighborhood Descent (VND) procedures, achieving a

threefold accuracy improvement over traditional K-means.

Through 7,366 experiments, cyclic neighborhood changes

demonstrated slight accuracy enhancements. By combining

global optimization with big data clustering techniques,

BigVNSClust represents a significant advancement in scala-

ble clustering algorithms [1].

The study proposes a simplified Map-Reduce architecture

for implementing the K-means algorithm on FPGA, achieving

a 28.74 Gbps throughput and a 3.93x speedup over existing

FPGA-based implementations. By leveraging algorithmic

segmentation, data path elaboration, and high-level synthesis

techniques, the approach enhances computational efficiency

and meets the performance demands of big data applications.

This optimization significantly improves the scalability and

execution speed of K-means clustering in FPGA environ-

ments [2].

Li et al., introduces a coarse-grained Map-Reduce archi-

tecture to optimize the K-means algorithm on FPGA,

achieving 28.74 Gbps throughput and a 3.93x speedup over

existing implementations. By leveraging algorithmic seg-

mentation, data path elaboration, and automatic control op-

timization, the approach enhances computational efficiency

and scalability, effectively addressing the performance de-

mands of big data applications [3].

The study presents a privacy-preserving K-means algo-

rithm designed for horizontally partitioned data, utilizing a

cryptography-free multiparty additive scheme to enhance

efficiency and security. The proposed sk-means algorithm

maintains constant running time and stable computational

overhead compared to traditional K-means while ensuring

privacy against passive adversaries in distributed environ-

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

9

ments. This approach effectively balances data security and

computational efficiency without relying on cryptographic

methods [4].

The study introduces KMSR, a novel K-means formulation

that enhances clustering stability through joint spectral em-

bedding and spectral rotation, effectively improving dis-

cretization. Additionally, the generalized model (KMSR-G)

integrates advanced data similarity measures, further refining

clustering performance. Experimental results demonstrate

that both models outperform existing K-means and spectral

clustering methods on benchmark datasets, highlighting their

effectiveness in improving clustering accuracy and stability

[5].

The study focuses on enhancing K-means clustering by

optimizing the entanglement of learned latent representations

using soft nearest neighbor loss. By introducing an annealing

temperature factor, the approach improves the clustering

quality of autoencoder-learned representations. Experimental

results demonstrate superior performance, achieving 96.2%

accuracy on the MNIST dataset and outperforming baseline

models across multiple datasets, highlighting its effectiveness

in clustering optimization [6].

The study introduces PNN-smoothing, a meta-method for

K-means initialization, which enhances clustering efficiency

and cost-effectiveness. This approach involves splitting the

dataset into random subsets, clustering them individually, and

merging results using the pairwise-nearest-neighbor (PNN)

method. Experimental results show that PNN-smoothing

consistently improves clustering costs, outperforming

K-means++ in both speed and effectiveness, making it a su-

perior seeding strategy for K-means clustering [7].

The study introduces a neural-processor-based K-means

clustering technique utilizing mobile machine learning to

enhance clustering efficiency for big data. By leveraging

parallel clustering and distributed processing, the approach

achieves up to two times faster performance compared to

traditional laptop/desktop processors. Experimental results

demonstrate that neural engine processors significantly im-

prove K-means clustering speed, making them a promising

solution for real-time, high-performance clustering on mobile

devices [8].

The study presents an enhanced K-means clustering algo-

rithm integrating the Equilibrium Optimization Algorithm

(EOA) to dynamically adjust the number of clusters and select

optimal attributes. The proposed EOAK-means algorithm

outperforms traditional K-means and CVK-means methods,

demonstrating improved intra-cluster distances (ICD) and

Rand index (RI) scores across five benchmark datasets. Ex-

perimental results confirm its superior clustering effective-

ness compared to conventional approaches [9].

The study explores parallelizing the K-means algorithm

using OpenMP and OpenACC to improve big data clustering

performance by reducing computation time while maintaining

accuracy. The research compares OpenMP flat synchronous

and GPU-based OpenACC parallelization, addressing chal-

lenges like thread safety and race conditions. Results indicate

that OpenACC outperforms OpenMP in computation time

savings, demonstrating significant speedup and efficiency

improvements in large-scale clustering tasks [10].

The study introduces a stochastic optimization approach to

K-means clustering, redefining its optimization process by

focusing on individual sample-level adjustments. A new tar-

get function is proposed to minimize pairwise distances

within clusters, leading to a faster convergence and improved

local minimum quality. Experimental results demonstrate

significant performance improvements over traditional

K-means variants, including hierarchical and sequential

K-means, across various datasets [11].

The study presents an improved K-means algorithm de-

signed for enhanced performance and efficiency, particularly

for large datasets. The proposed approach incorporates a data

formatting step to optimize cluster selection based on frame

size and distance between means, leading to faster conver-

gence and improved clustering accuracy. Experimental results

demonstrate that the method outperforms both standard and

modified K-means algorithms, making it a more effective

solution for large-scale clustering tasks [12].

The study introduces the Boundary Weighted K-means

(BWKM) algorithm, a recursive and parallel approximation to

K-means clustering, designed to enhance scalability and effi-

ciency for large datasets. By utilizing small, weighted sets of

representative points, BWKM reduces the number of distance

computations while maintaining high solution quality, par-

ticularly in challenging clustering regions. Experimental re-

sults demonstrate that BWKM outperforms state-of-the-art

methods, achieving an optimal balance between computa-

tional efficiency and clustering accuracy [13].

3. Methodology

3.1. Understanding K-Means Clustering

K-means clustering is an iterative algorithm that partitions

a dataset into k distinct, non-overlapping clusters. The core

principle is to group data points based on their proximity to

centroids, which represent the center of each cluster. The

algorithm aims to minimize the total inertia, defined as the

sum of squared distances between each data point and its

assigned centroid. This section details the key steps and

concepts underlying the k-means algorithm [14].

3.1.1. Algorithm

Given a dataset with M data points and N features, and a

desired number of clusters k:

(1) Initialization: Select k initial centroids. A common

method is the k-means++ algorithm [4], which strate-

gically selects well-separated initial centroids, pro-

moting faster and better convergence.

(2) Lloyd’s Iteration: Repeat until convergence:

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

10

a. Cluster Assignment: For each data point, calculate its

distance to all k centroids. Assign the point to the

cluster with the closest centroid.

b. Centroid Update: For each cluster, recalculate the

centroid by computing the mean of all data points

assigned to that cluster.

3.1.2. K-Means++ Initialization

Randomly selecting initial centroids can lead to suboptimal

convergence. K-means++ addresses this with a probabilistic

approach:

(1) Choose one data point uniformly at random as the first

centroid.

(2) For each remaining centroid:

a. Calculate the squared Euclidean distance between

each data point and the closest existing centroid.

b. Choose a new data point as a centroid with probabil-

ity proportional to its squared distance. This favor

points farther from existing centroids [16].

3.1.3. Convergence Criteria

The iterative process stops when a predefined convergence

criterion is met:

(1) Maximum Iterations: Limits the maximum number of

iterations to prevent infinite loops.

(2) Inertia Change Threshold: Stops when the change in

inertia between consecutive iterations falls below a

specified threshold, indicating minimal improvement.

3.1.4. Inertia

Inertia measures cluster compactness and serves as a per-

formance metric. It is calculated as:

Inertia = Σ (distance (data point, centroid)2)

where the summation iterates over all data points, and dis-

tance typically refers to the Euclidean distance. Lower inertia

generally indicates tighter, more well-separated clusters.

K-means clustering iteratively refines cluster assignments

and centroids to minimize inertia. Understanding these

components—initialization, iteration, convergence criteria,

and inertia—is crucial for effective application and optimiza-

tion.

3.2. Implementation in Python and Mojo

This section details the practical implementation of the

k-means algorithm in both Python and Mojo. We compare the

code side-by-side, highlighting key differences and demon-

strating how Mojo’s features enable significant performance

gains.

Both implementations center around a K-means class (Py-

thon) and a K-means struct (Mojo). These structures encap-

sulate the algorithm’s hyperparameters and provide a fit

method for clustering [15].

(1) Type System: Mojo uses a strong, static type system,

unlike Python’s dynamic typing. This enables the Mojo

compiler to optimize code more effectively and per-

form compile-time type checks, improving safety and

performance.

(2) Memory Management: Mojo offers a more explicit

memory management model, granting finer control

over data structures and memory allocation. This fi-

ne-grained control reduces memory overhead and im-

proves cache locality.

(3) Vectorization & Parallelization: Mojo supports

low-level optimizations like vectorization and paral-

lelization for concurrent data processing. Python often

relies on external libraries like NumPy, which can in-

troduce overhead.

3.2.1. Code Comparison

This section presents a side-by-side code comparison, fo-

cusing on two critical parts of the k-means implementation:

(1) Distance Calculation (distance _norm)

(2) K-Means++ Initialization (kmeans _plus _plus)

Python (NumPy)

Figure 1. K-Means++ Centroid Initialization in Python.

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

11

Figure 2. K-Means++ Centroid Initialization Using Typed Data Structures.

3.2.2. Differences and Similarities Analysis

Similarities

(1) Initialization: Both start by randomly selecting the first

centroid.

(2) Loop for Subsequent Centroids: Both iterate k−1 times

to select the remaining centroids, using distances to

determine selection probabilities.

(3) Probabilistic Selection: Both calculate probabilities

based on squared distances from the nearest centroid.

(4) Difference:

1). Syntax and Data Structures:

a. Python (NumPy): Uses NumPy arrays and lever-

ages Python’s random. choice and broadcasting.

b. Mojo: Employs specific data structures (Matrix,

Array), includes a type hint system (dtype), and

implements a custom random number generator

(random si64).

2). Distance Calculation:

a. Python (NumPy): Calculates distances directly

using np.linalg.norm and NumPy broadcasting.

b. Mojo: Uses a custom function (distance norm),

potentially with more detailed manual calculation

or optimization specific to Mojo’s data structures.

3). Intermediate Data Storage:

a. Python (NumPy): Uses a temporary variable dis-

tance.

b. Mojo: Initializes a Matrix to store distances, pos-

sibly optimizing memory layout and access.

4). Code Structure:

a. Python (NumPy): Implements the logic inline

within the loop.

b. Mojo: Likely uses more helper functions and ex-

plicit memory management.

Overall, both implementations aim for efficient centroid

initialization using k- means++. However, they utilize dif-

ferent paradigms and optimizations suited to their respective

programming environments. The Python implementation is

straightforward, leveraging high-level abstractions. The Mojo

version is more detailed and potentially optimized for higher

performance [17].

3.3. Benchmarking and Performance

Evaluation

To quantify Mojo’s performance benefits, we conducted

benchmarks comparing it against a NumPy-based Python

implementation. We evaluated the impact of three key pa-

rameters: number of clusters, dataset size, and data dimen-

sionality.

Benchmark Setup We used synthetically generated datasets

with varying numbers of samples, features, and clusters using

scikit-learn’s make blobs function, ensuring a controlled en-

vironment. Benchmarks were performed on:

(1) Processor: Apple M2 Air

(2) Memory: 16 GB

Benchmarking Parameters To isolate each parameter’s

impact, we varied one parameter at a time while keeping

others constant:

(1) Number of Clusters (k): 5, 10, 15,... 180 (incrementing

by 5)

(2) Number of Samples (M): 2000, 4000, 6000,... 22000

(incrementing by 2000)

(3) Number of Features (N): 200, 400, 600,... 3800 (in-

crementing by 200)

Metrics

We recorded the execution time of the fit method for both

Mojo and Python implementations (in milliseconds). To

demonstrate performance gains, we calculated the speedup

using the following formula:

Speedup =
Execution Time (Python)

Execution Time (Mojo)
 (1)

4. Results

The following figures depict the benchmark results.

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

12

4.1. Result Plots

Figure 3. Execution time Mojo vs Python + NumPy K-Means (Samples 2000 Features 200).

Figure 4. Speedup Mojo vs Python + NumPy K-Means (Samples 2000 Features 200).

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

13

Figure 5. Execution time Mojo vs Python + NumPy K-Means (Samples 4000 Clusters 5).

Figure 6. Speedup Mojo vs Python + NumPy K-Means (Samples 4000 Clusters 5).

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

14

Figure 7. Execution time Mojo vs Python + NumPy K-Means (Cluster 80 Features 200).

Figure 8. Speedup Mojo vs Python + NumPy K-Means (Cluster 80 Features 200).

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

15

4.2. Benchmark Results

The benchmark results, visualized in Figures 3-8, demon-

strate Mojo’s significant performance advantage over the

NumPy-based Python implementation across a range of sce-

narios.

(1) Figures 3 & 4 (Samples: 2000, Features: 200):

a. Figure 3 shows that Mojo’s execution time increases

much more slowly than Python’s as the number of

clusters grows.

b. Figure 4 quantifies this, showing speedups ranging

from approximately 11x to over 250x as the number

of clusters increases from 5 to 180. This indicates

Mojo’s superior efficiency, especially with a larger

number of clusters.

(2) Figures 5 & 6 (Samples: 4000, Clusters: 5):

a. Figure 5 illustrates that increasing the number of

features has a less pronounced impact on Mojo’s

execution time compared to Python.

b. Figure 6 shows speedups consistently around 6x to

13x, demonstrating Mojo’s ability to handle higher

dimensionality relatively well, although the speedup

is less dramatic than in the previous case.

(3) Figures 7 & 8 (Clusters: 80, Features: 200):

a. Figure 7 highlights Mojo’s efficiency with a large

number of clusters and a mod- erate number of fea-

tures. Mojo’s execution time remains significantly

lower than Python’s as the number of samples in-

creases.

b. Figure 8 shows substantial speedups, ranging from

roughly 130x to nearly 200x, emphasizing Mojo’s

advantage in scenarios with many clusters.

4.3. Analysis

The benchmark results consistently demonstrate the supe-

rior performance of the Mojo K-means implementation.

(1) Impact of Number of Clusters: As the number of clus-

ters increases, Mojo’s speedup becomes more pro-

nounced, especially with larger datasets. This high-

lights Mojo’s efficient vectorization and parallelization,

effectively handling increased distance calculations.

(2) Impact of Dataset Size: Mojo’s performance advantage

is increasingly evident with larger datasets, indicating

efficient memory management and scalability. This is

crucial for handling the growing size of real-world da-

tasets.

(3) Impact of Data Dimensionality: While Mojo maintains

a significant advantage across varying feature counts,

the speedup decreases slightly as dimensionality in-

creases. This suggests that data movement and memory

access overhead, which typically grow with higher

dimensionality, may impact Mojo’s performance,

though it still outperforms the Python implementation.

This is an area for potential future optimization.

A performance comparison between Mojo, Python with

NumPy, and scikit-learn for K-means clustering reveals sig-

nificant differences. Mojo consistently outperforms Python

with NumPy in execution time and speedup across all data

configurations. This is attributed to Mojo’s compiled nature,

efficient memory management, vectorization, and parallel-

ization capabilities.

While scikit-learn, a highly optimized library, offers better

performance than basic NumPy implementations, Mojo still

maintains a considerable performance edge, particularly as

data scale and complexity increase. This highlights Mojo’s

design advantages for high-performance computing and AI

workloads.

4.4. Cluster Visualization

To illustrate the correctness of the K-means implementa-

tions, we visualize the clusters generated from a sample da-

taset with 2000 samples, 10 features, and 5 clusters. We ap-

plied Principal Component Analysis (PCA) to reduce the

dimensionality to two for visualization. The plot (Figure 9)

shows the data points colored according to their assigned

cluster, along with the centroids identified by both the Mojo

and Python implementations.

The close alignment of the centroids and the clear separa-

tion of clusters visually confirm that Mojo’s implementation

produces accurate clustering results, mirroring the results of

the Python implementation.

5. Discussion and Future Work

This research presents a compelling case for Mojo as a

high-performance language for implementing data-intensive

algorithms like K-means clustering. The benchmarks

demonstrate a significant performance advantage over tradi-

tional Python implementations, with Mojo achieving

speedups ranging from 6x to 250x. This substantial im-

provement is largely attributed to Mojo’s core language fea-

tures and design choices.

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

16

Figure 9. Scatter Plot of Data Points with Centroid.

5.1. A. Mojo’s Performance Advantage

(1) Efficient Vectorization: Mojo leverages SIMD instruc-

tions through vectorization, accelerating distance cal-

culations—the computational bottleneck of K-means.

Processing multiple data points concurrently within a

single CPU instruction reduces overhead.

(2) Effective Parallelization: Mojo’s parallelization fea-

tures, while not extensively explored in this imple-

mentation, offer avenues for further performance gains,

especially with larger datasets and more clusters. Dis-

tributing computations across multiple cores can sig-

nificantly reduce execution time.

(3) Optimized Memory Management: Mojo’s explicit

memory management allows finer-grained control over

data structures and memory allocation, leading to re-

duced overhead compared to Python’s garbage collec-

tion. This enables optimization strategies like data lo-

cality, improving cache utilization, and reducing

memory access times.

(4) Strong Typing Benefits: Mojo’s strong typing system

plays a crucial role in enabling performance optimiza-

tions. Knowing data types at compile time allows the

compiler to generate more efficient machine code,

eliminating runtime type checks and enabling more

aggressive optimizations.

5.2. B. Comparative Analysis with Existing

Solutions

While Mojo demonstrates superior performance compared

to a basic NumPy-based Python implementation, highly op-

timized libraries like scikit-learn leverage sophisticated algo-

rithms and data structures. However, even compared to

scikit-learn, Mojo maintains a considerable edge, particularly

as the data scale grows. This suggests Mojo’s performance

advantages stem not only from low-level optimizations but

also from its design as a language tailored for

high-performance computing and AI workloads.

5.3. C. Trade-offs and Considerations

Performance often involves trade-offs. While Mojo deliv-

ers impressive speedups, there’s a learning curve associated

with mastering its systems programming features. Developers

accustomed to Python’s ease of use might find Mojo’s explicit

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

17

memory management and type annotations initially less intu-

itive. However, the performance gains can justify this learning

investment, especially for performance-critical applications.

5.4. D. Implications for Data Analysis and

Machine Learning

Mojo’s performance improvements have broader implica-

tions for data analysis and machine learning. As datasets grow,

the need for high-performance computing solutions becomes

increasingly paramount. Mojo’s ability to bridge the gap be-

tween Python’s expressiveness and the performance of sys-

tems programming languages positions it as a valuable tool.

5.5. E. Future Research Directions

This research serves as a starting point for further explora-

tion of Mojo’s capabilities. Future research directions include:

(1) Investigating Mojo’s performance on diverse hardware

platforms: Exploring Mojo’s performance scaling on

different CPU architectures, GPUs, and potentially

specialized AI accelerators.

(2) Applying Mojo to other machine learning algorithms:

Evaluating Mojo’s performance on other computation-

ally intensive algorithms (e.g., support vector machines,

deep learning models, graph algorithms) to demonstrate

its generalizability.

(3) Developing a comprehensive benchmarking suite:

Creating a standardized benchmark suite specifically

for evaluating Mojo’s performance across a diverse

range of machine learning tasks and datasets.

6. Conclusion

This work presented a performance-oriented implementa-

tion of the k-means clustering algorithm in Mojo, demon-

strating significant speedups over traditional Python imple-

mentations. By leveraging Mojo’s unique combination of

Python-like syntax and systems programming features (vec-

torization, parallelization, explicit memory management), we

achieved substantial reductions in execution time, particu-

larly for larger datasets and a higher number of clusters. The

benchmarks highlight Mojo’s ability to bridge the gap be-

tween Python’s ease of use and the performance demands of

data-intensive workloads. Speedups achieved by the Mojo

implementation, ranging up to 250x compared to the baseline

Python implementation, underscore the potential of this

emerging language for developing high-performance data

analysis solutions. While this work focused on k-means

clustering, the core principles and optimization tech- niques

can be readily applied to other machine learning algorithms.

As Mojo matures, we anticipate even greater performance

gains through ongoing compiler optimizations and expanded

hardware support. The development of a comprehensive

ecosystem of libraries and tools for Mojo will further solidify

its position as a compelling alternative for AI practitioners

seeking to unlock the full potential of their hardware and

accelerate their data analysis pipelines. Mojo represents an

exciting step forward in programming languages for AI, em-

powering developers to write high-level, expressive code

without sacrificing performance. The ability to seamlessly

integrate with existing Python codebases lowers the barrier

to entry, enabling incremental adoption and facilitating a

smooth transition to a high-performance environment.

Abbreviations

KMC K-Means Clustering

ML Machine Learning

HPC High-Performance Computing

SIMD Single Instruction, Multiple Data

VNS Variable Neighborhood Search

PCA Principal Component Analysis

FPGA Field-Programmable Gate Array

AI Artificial Intelligence

CPU Central Processing Unit

GPU Graphics Processing Unit

UV Ultraviolet

Author Contributions

Touhidul Alam Seyam: Conceptualization, Resources,

Project Administration, Writing - Review & Editing

Md. Sazzad Hossain: Data Curation, Methodology,

Software, Visualization

Rajib Ghose: Formal Analysis, Investigation, Validation

Mekhriddin Nurmamatov: Software, Writing - Original

Draft, Data Curation

Nazarov Fayzullo: Methodology, Investigation, Supervi-

sion

Zarin Hadika: Validation, Writing - Original Draft, Visu-

alization

Abhijit Pathak: Supervision, Funding Acquisition, Writ-

ing - Review & Editing

Funding

This work is not supported by any external funding.

Data Availability Statement

The data supporting the outcome of this research work has

been reported in this manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

18

References

[1] Shah, S. M., Sonawane, H. N., & Patil, D. D. (2015). A brief

survey on clustering techniques. International Journal of Sci-

ence and Research (IJSR), 4(6), 2319-7064.

[2] Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2008). Image re-

trieval: Ideas, influences, and trends of the new age. ACM

Computing Surveys (CSUR), 40(2), 1-60.

[3] Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly

detection: A survey. ACM Computing Surveys (CSUR), 41(3),

1-58.

[4] Harris, C. R., Millman, K. J., Van Der Walt, S. J., et al. (2020).

Array programming with NumPy. Nature, 585(7825),

357-362.

[5] Pedregosa, F., Varoquaux, G., Gramfort, A., et al. (2011).

Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12, 2825-2830.

[6] Modular AI. (2023). Mojo Programming Language.

https://docs.modular.com/mojo/

[7] Cap ó, M., P érez, A., & Lozano, J. A. (2020). An efficient

K-means clustering algorithm for tall data. Data Mining and

Knowledge Discovery.

https://doi.org/10.1007/S10618-020-00678-9

[8] Islam, S., Balasubramaniam, S., Goyal, P., Sultana, A., Bhutani,

L., Raje, S., & Goyal, N. (2019). A rapid prototyping approach

for high performance density-based clustering.

https://doi.org/10.1109/DSAA.2019.00041

[9] Liu, Y., Du, X., & Ma, S. (2021). Innovative study on cluster-

ing center and distance measurement of K-means algorithm:

Mapreduce efficient parallel algorithm based on user data of

JD mall. Electronic Commerce Research.

https://doi.org/10.1007/S10660-021-09458-Z

[10] Kruliˇs, M., & Kratochv´ıl, M. (2020). Detailed analysis and

optimization of CUDA K-means algorithm.

https://doi.org/10.1145/3404397.3404426

[11] Wang, X., Chen, R.-C., Yan, F., Zeng, Z., & Hong, C. (2019).

Fast adaptive K- means subspace clustering for

high-dimensional data. IEEE Access.

https://doi.org/10.1109/ACCESS.2019.2907043

[12] Clustering big data based on distributed fuzzy K-medoids: An

application to geospatial informatics. (2022). IEEE Access.

https://doi.org/10.1109/access.2022.3149548

[13] Dai, D.-B., Ma, Y., & Zhao, M. (2021). Analysis of big data job

requirements based on K-means text clustering in China. PLOS

ONE. https://doi.org/10.1371/JOURNAL.PONE.0255419

[14] Wen, Z., & Tzerpos, V. (2003). An optimal algorithm for Mo-

Jo distance. https://doi.org/10.1109/WPC.2003.1199206

[15] Alam, T. S., Jowthi, C. B. & Pathak, A. Comparing

pre-trained models for efficient leaf disease detection: a study

on custom CNN. Journal of Electrical Systems and Inf Tech-

nol 11, 12 (2024).

https://doi.org/10.1186/s43067-024-00137-1

[16] Seyam, T. A., Pathak, A. AgriScan: Next.js powered

cross-platform solution for automated plant disease diagnosis

and crop health management. Journal of Electrical Systems

and Inf Technol 11, 45 (2024).

https://doi.org/10.1186/s43067-024-00169-7

[17] A. Pathak et al., "Application of Machine Learning K-Means

Clustering and Linear Regression in Determining the Risk

Level of Pulmonary Tuberculosis," 2024 IEEE International

Conference on Computing, Applications and Systems

(COMPAS), Cox's Bazar, Bangladesh, 2024, pp. 1-6,

https://doi.org/10.1109/COMPAS60761.2024.10796963

Biography

Touhidul Alam Seyam is a passionate Software Engineer and Research Assistant with expertise in full-stack de-

velopment, machine learning, and applied research. He works at BGC Trust University Bangladesh and Hello World

Communications Limited. His research focuses on AI in healthcare and agriculture, with publications on leaf dis-

ease detection, tuberculosis risk, and cardiovascular prediction in SCOPUS and Springer journals. Proficient in

Next.js, Django, React, Golang, and PostgreSQL, he builds robust web applications. Seyam holds certifications

from IBM, Google, and HackerRank, and actively engages in competitive programming. His work reflects a strong

dedication to solving real-world problems through AI and software innovation.

Md. Sazzad Hossain is a distinguished professor, researcher, and academic advisor with vast experience in the ICT

sector. He is currently a Visiting Professor at Samarkand State University, Uzbekistan, and Head of International

Education Development at Synergy University, Moscow. He earned his Ph.D. and M.S. in Electrical and Computer

Engineering from Portland State University, USA, with his doctoral work focusing on Quantum Computing, inte-

grating concepts from physics, math, computer science, and biology. He completed his B.Sc. in Electrical System

Network Engineering from Moscow Technical University. He is also an accomplished writer contributing to global

academic and scientific communities.

http://www.sciencepg.com/journal/ijiis

International Journal of Intelligent Information Systems http://www.sciencepg.com/journal/ijiis

19

Rajib Ghose is a distinguished researcher in computational intelligence, with expertise in formal verification, cryp-

tography, and cloud security. His research spans optimization algorithms and AI ethics, contributing to advance-

ments in secure computing, distributed systems, and bioinformatics. He has published extensively in reputed scien-

tific journals, with impactful work in knowledge representation and formal analysis. Rajib actively mentors students

and researchers in AI-driven cyber security and computational complexity. His interdisciplinary approach bridges

theory and application, shaping modern methodologies for secure, intelligent data processing. Through his academic

and research contributions, he continues to influence the evolution of trustworthy and efficient computational sys-

tems.

Mekhriddin Nurmamatov, PhD in Technical Sciences, is an Associate Professor specializing in predictive model-

ing, multi-parameter optimization, and intelligent data analysis using Machine Learning and Deep Learning. He has

authored over 50 scientific articles, with more than five indexed in SCOPUS and Web of Science. He has also writ-

ten five textbooks and manuals, contributing significantly to academic development. His research focuses on fore-

casting population employment and optimizing complex systems through AI-driven methodologies. Actively en-

gaged in collaboration, he mentors students and partners with researchers to advance computational solutions for

real-world challenges in data science and intelligent decision-making systems.

Nazarov Fayzullo Makhmadiyarovich, PhD in Technical Sciences, is an Associate Professor whose research fo-

cuses on enhancing payment data reliability using Blockchain and intelligent data analysis through Machine Learn-

ing and Deep Learning. He has authored over 100 scientific articles, with more than 20 indexed in SCOPUS and

Web of Science. He has also written around 10 textbooks and manuals that support the advancement of technical

sciences. His work significantly contributes to secure financial transactions, AI-driven analytics, and the application

of emerging technologies. Committed to innovation and education, he continues to drive progress in secure, intelli-

gent, and practical computing solutions.

Zarin Hadika is a dedicated university lecturer in Computer Science and Engineering, with a strong passion for

teaching and research. Her primary focus lies in image processing and computer vision, with notable work on

cross-modal person re-identification using HOG, addressing complex challenges in pattern recognition. She is cur-

rently exploring Cloud Computing and Artificial Intelligence to expand her technical expertise. Zarin is deeply

committed to academic growth, inspiring students through innovative teaching and continuous learning. Outside the

classroom, she enjoys reading, researching, and engaging in meaningful discussions, aiming to make impactful

contributions to the dynamic and evolving world of technology.

Abhijit Pathak is an Assistant Professor in Computer Science and Engineering at Sonargaon University with over

16 years of academic and research experience. His expertise spans IoT, Machine Learning, AI, and Software De-

velopment. He has published 30+ papers in top-tier journals and conferences, with a Google Scholar h-index of 9

and over 600 citations. Recognized among the top 7 scientists globally from BGC Trust University Bangladesh by

AD Scientific Index 2024, he mentors students and leads AI and IoT projects. A Commonwealth Scholar, he has

received multiple awards for academic excellence and innovation in interdisciplinary technological researchaca-

demic excellence and leadership in technological innovation.

Research Field

Touhidul Alam Seyam: Artificial intelligence, Machine learning, Cybersecurity, Smart cities, Big data analytics,, Fault-tolerant computing,

AI-driven surveillance, Human-robot interaction.

Md. Sazzad Hossain: Quantum computing, Data science, Computational intelligence, Internet of Things, Pattern recognition, Deep

learning, Computer vision, Reinforcement learning, Edge computing, Secure computing, Privacy-preserving AI, Neural networks.

Rajib Ghose: Formal verification, Computational complexity, Cryptography, Artificial intelligence, Machine learning, AI ethics,

Knowledge representation, Bioinformatics, Distributed computing, Algorithmic game theory.

Mekhriddin Nurmamatov: Embedded systems, Cyber-physical systems, Hardware security, FPGA design, Software verification, Quan-

tum cryptography, Real-time systems, High-performance computing, Blockchain technology, Secure AI applications.

Nazarov Fayzullo: Natural language processing, Speech recognition, Computational linguistics, Text mining, AI-powered translation,

Sentiment analysis, Explainable AI, Knowledge graphs, Conversational AI, Information retrieval.

Zarin Hadika: Computational neuroscience, AI-assisted healthcare, Biomedical data analysis, Artificial intelligence, Machine learning,

Digital signal processing, AI-driven diagnostics, Emotion recognition, Computational psychology, Assistive technologies.

Abhijit Pathak: Artificial intelligence, Machine learning, Parallel computing, Neuromorphic computing, Complex systems modeling,

Adaptive algorithms, Evolutionary computation, AI-driven simulations, Computational fluid dynamics, AI for space research.

http://www.sciencepg.com/journal/ijiis

