
International Journal of Data Science and Analysis 

2025, Vol. 11, No. 2, pp. 23-45 

https://doi.org/10.11648/j.ijdsa.20251102.12  

 

 

*Corresponding author:  

Received: 22 April 2025; Accepted: 3 May 2025; Published: 10 June 2025 

 

Copyright: © The Author(s), 2025. Published by Science Publishing Group. This is an Open Access article, distributed 

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which 

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. 
 

 

Research Article 

TweetGuard: Combining Transformer and Bi-LSTM 

Architectures for Fake News Detection in Large-Scale 

Tweets 

Kowshik Sankar Roy* , Farhana Akter Bina  

Department of Statistics and Data Science, Jahangirnagar University, Savar, Dhaka, Bangladesh 

 

Abstract 

The proliferation of misinformation on platforms like Twitter, where rapid dissemination can significantly impact public 

discourse, underscores the urgent need for effective automated fake news detection systems. These systems are crucial in 

preventing the spread of falsehoods and maintaining informational integrity. Traditionally, one of the challenges in developing 

such systems has been the lack of comprehensive benchmark datasets, which are essential for reliably training and testing 

detection models. Additionally, the rapid evolution of deceptive tactics makes traditional methods less effective, necessitating 

new approaches that can adapt to emerging misinformation patterns. In response to the challenges, a robust model named 

"TweetGuard" has developed, leveraging the 'TruthSeeker' dataset, a recently published benchmark offering a rich collection of 

annotated tweets. This dataset provides a solid foundation for training and refining our detection techniques. The proposed model 

employs a novel classification architecture that integrates transformer and Bi-LSTM technologies in a concatenation mode, 

enhanced by advanced preprocessing steps, including BERTweet, for effective tokenization and contextual understanding. An 

ablation study highlights the individual contributions of the Bi-LSTM and Transformer components, as well as their combined 

effect, demonstrating their critical roles in enhancing the model's performance. Compared to conventional classifiers, including 

various CNN, LSTM, Bi-LSTM, BERT and Transformer configurations, the proposed model demonstrates superior 

performance, as evidenced by comprehensive statistical testing. TweetGuard achieves an accuracy of 94.02%, an F1-score of 

93.84%, and a ROC-AUC score of 0.9614 on the TruthSeeker dataset. Additional metrics, such as a Matthews Correlation 

Coefficient (MCC) of 0.8802 and a fake news detection rate of 93.70%, also demonstrate the model's stability and robustness. Its 

effectiveness and generalizability are further validated through rigorous testing across three additional fake news datasets, 

confirming its reliability and adaptability in diverse informational settings. This evaluation not only highlights our model's 

superior ability to identify and classify misinformation accurately but also establishes a new benchmark for automated fake news 

detection on social media platforms. 
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1. Introduction 

In the age of digitalization, the rise of social media plat-

forms has revolutionized the way information is disseminated 

and consumed, enabling users to share news, opinions, and 

updates in real-time. It's the medium of communication, in-

formation dissemination, networking, marketing & advertis-

ing, entertainment, education, social activism, and so on. 

According to the January 2024 global overview by Datare-

portal, social media usage continues to surge, representing an 

astounding 62.3% of the worldwide population now active on 

social platforms. The total number of users has reached 5.04 

billion, marking a significant increase of 266 million new 

users within the past year [1]. Alongside the benefits of instant 

connectivity, social media has also become a breeding ground 

for the rapid spread of misinformation, commonly referred to 

as "fake news." Misinformation or Fake content poses a sig-

nificant threat to public discourse, trust in institutions, and 

democratic processes, as false or misleading information can 

influence public opinion, sway elections, and even incite 

violence [2]. 

Misinformation, defined as incorrect or misleading infor-

mation, is increasing online, facilitated by technological ad-

vancements that make it easier to manipulate photos and 

videos. Researchers at MIT have discovered that fake news 

spreads up to 10 times faster than accurate reporting on social 

media platforms. This phenomenon occurs because sensa-

tional and misleading posts often garner more attention and 

engagement than subsequent corrections. Algorithms on so-

cial media platforms further exacerbate the spread of misin-

formation by prioritizing content that generates high levels of 

interaction, thereby fueling networks of ongoing misinfor-

mation. These algorithms are designed to prioritize engage-

ment rather than ensuring access to high-quality information, 

resulting in the rapid dissemination of sensationalized stories 

and opinions [3]. 

The term "fake news," although only officially added to the 

Oxford English Dictionary in 2019, has seen a significant 

increase in usage, with a 365% rise from 2016 to 2017 alone. 

A poll conducted in January 2020 across multiple countries 

revealed that only 38% of respondents trust news most of the 

time, indicating a decline in public trust in news sources. 

Moreover, more than half of the global sample expressed 

concerns about the accuracy of information on the internet, 

particularly regarding news [4, 5]. Statistics further illustrate 

the pervasive nature of misinformation. In the United States, 

67% of individuals have encountered fake news on social 

media, with 10% knowingly sharing such content. This 

widespread dissemination of misinformation is increasingly 

recognized as a significant societal issue, with Min-Seok Pang, 

an associate professor at Temple University’s Fox School of 

Business, describing it as a "life-and-death" matter that erodes 

trust and respect within society [6]. Min-Seok Pang's research 

sheds light on disseminating fake news, revealing that social 

media users who verify their identity and receive a verified 

badge often contribute to spreading misinformation. Addi-

tionally, fake news posts containing videos are more likely to 

be reported by users, indicating a more significant skepticism 

towards video content online [7]. In 2023, the prevalence of 

misinformation across digital and traditional media formats 

has become a pressing concern. Surveys indicate that 66% of 

U.S. consumers perceive most social media news as biased, 

with bots contributing significantly to the spread of 

COVID-19 misinformation online. This pervasive dissemi-

nation of false information poses significant risks to public 

health and democracy. Journalists recognize misinformation 

as a severe threat to public discourse, with 94% viewing fab-

ricated news as a significant problem in America. Despite 

concerns about potential constraints on press freedoms, trust 

in mainstream news media remains polarized, emphasizing 

the need for collaborative solutions to combat misinformation 

and preserve journalistic integrity. The influence of social 

media platforms in disseminating misinformation is substan-

tial, with billions of users worldwide. Surveys indicate that a 

significant percentage of U.S. news consumers unknowingly 

share fake news or misinformation on social media, under-

scoring the urgent need for solutions to address this issue and 

restore trust in information sources [8]. 

X, formerly and colloquially known as Twitter, is a prom-

inent social media platform with a user base exceeding 500 

million, placing it among the world's largest social networks. 

Users can share text messages, images, and videos, histori-

cally referred to as "tweets." The platform boasts over 330 

million monthly active users and more than 192 million daily 

active users, generating around 500 million tweets per day. 

Regarding news consumption, 23% of Americans use Twitter 

as a news source, with 12% regularly accessing news content 

on the platform, ranking it the fifth-most-popular social net-

work for news consumption in the United States. It serves as a 

medium for spreading misinformation or fake news, particu-

larly concerning sensitive topics such as the US election, 

political issues, COVID-19, the Russia-Ukraine war, and 

similar issues. The challenge of detecting fake news is par-

ticularly acute on platforms like Twitter, where the brevity of 

posts, the rapid pace of information dissemination, and the 

prevalence of user-generated content make it difficult to dis-

tinguish between factual news and fabricated stories. Tradi-

tional approaches to fake news detection, such as manual 

fact-checking and rule-based algorithms, are often la-

bor-intensive, time-consuming, and limited in scalability. 

Despite ongoing efforts by researchers and practitioners to 

combat fake news, its detection remains a complex and 

evolving problem, particularly within the context of social 

media platforms like Twitter. In this study, we aim to address 

the pressing need for effective fake news detection on Twitter 

by leveraging advanced natural language processing (NLP) 

techniques and deep learning algorithms. By focusing on the 

unique challenges posed by social media platforms, such as 
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the brevity of tweets, the presence of user-generated content, 

and the rapid dissemination of information, we aim to con-

tribute to the growing body of literature on fake news detec-

tion and advance our understanding of how state-of-the-art 

NLP models can be applied to address real-world challenges 

in online misinformation detection. In order to address these 

challenges, researchers and practitioners have turned to ad-

vanced natural language processing (NLP) techniques and 

machine learning algorithms, particularly RNN. Some ad-

vanced RNN or CNN algorithms, such as Long-Short-Term 

Memory (LSTM), Gated Recurrent Unit (GRU), and Con-

volutional Neural Network (CNN), have been used to perform 

text analysis. CNN is used for spatial information extraction, 

while RNNs are utilized for capturing long-term dependen-

cies and temporal patterns [9]. In most recent years, Trans-

former-based models, such as BERT (Bidirectional Encoder 

Representations from Transformers) and GPT (Generative 

Pre-trained Transformer), have emerged as powerful tools for 

language understanding and generation tasks. These models, 

which leverage self-attention mechanisms to capture 

long-range dependencies in text data, have achieved 

state-of-the-art performance on various NLP benchmarks, 

including language translation, sentiment analysis, and text 

classification [10]. 

In this research, we propose a novel hybrid model of fake 

news detection system from tweet using transformer and 

Bidirectional LSTM in a concatenation mode. Here trans-

former block serves as the default backbone of the proposed 

hybrid in architecture. The research utilizes a newly published 

benchmark dataset, "TruthSeeker," which is notable for its 

inclusion in this work as it is new and not yet widely adopted 

in the latest literature. The overall contribution of this work 

has been established around five folds. These are stated be-

low: 

A novel hybrid architecture named “TweetGuard”, has 

been developed that combines Transformer and Bidirectional 

LSTM architectures in a concatenation mode, with the 

Transformer block serving as the backbone, tailored for de-

tecting fake news on Twitter. This approach leverages the 

strengths of both architectures to effectively handle short, 

noisy, and context-rich textual data. 

Advanced text processing techniques have been introduced 

to optimize the accuracy of fake news detection. A robust 

pipeline for text cleaning and standardization was imple-

mented, coupled with BERTweet tokenization. This integra-

tion enhances the model's ability to capture nuanced contex-

tual information crucial for accurate classification of misin-

formation in tweets. 

An ablation study has been conducted to highlight the in-

dividual contributions of the Bi-LSTM and Transformer 

components, as well as their combined effect. This study 

demonstrates the critical roles these components play in en-

hancing the model's performance for detecting fake news. 

Thorough evaluations have been conducted using multiple 

newly integrated datasets focused on fake news detection. 

This comprehensive approach demonstrates the robustness 

and generalizability of the model across various types of 

content and data sources, reinforcing its reliability in re-

al-world applications. 

A detailed benchmarking analysis has been included 

against several models currently used in the field. Through 

rigorous comparative assessments with statistical tests, the 

superior performance and adaptability of the hybrid model in 

different scenarios have been highlighted, underscoring its 

potential as a leading solution for detecting misinformation on 

social media platforms like Twitter. 

The structure of the remainder of this paper is outlined as 

follows: Section 2 reviews related works in the field. Section 

3 presents the complete architecture of our proposed model 

along with a description of the datasets used. Section 4 details 

all the experimental evaluations conducted in this study. Ex-

perimental settings are discussed in Section 5, while Section 6 

provides a comprehensive analysis of the experimental results 

and discusses the implications of the findings. The paper 

concludes with a summary of the work and final thoughts in 

Section 7. 

2. Related Works 

The detection of fake news, a crucial challenge in the do-

main of digital information, has garnered significant attention 

due to its profound impact on society, politics, and public 

opinion. This section reviews existing research and method-

ologies developed to identify and mitigate the spread of false 

information. Firstly, it examines the various definitions and 

classifications of fake news as proposed by scholars, provid-

ing a foundational understanding necessary for exploring 

detection techniques. Subsequently, the review focuses on the 

evolution of these detection methods, ranging from early 

manual fact-checking processes to advanced computational 

approaches leveraging machine learning and natural language 

processing. Through this exploration, the section highlights 

key advancements and discusses the comparative effective-

ness of different strategies in various contexts. 

The concept of fake news detection as a distinct field of 

study began to gain significant attention in the early 21st 

century, particularly around the mid-2010s. However, efforts 

to identify and combat misinformation are not entirely new 

and have roots in various historical contexts where propa-

ganda and misinformation were prevalent. In terms of for-

malized approaches and the application of technology to 

detect fake news, this area really began to develop alongside 

the rise of social media platforms, which became prevalent in 

the late 2000s and early 2010s. The 2016 U.S. presidential 

election was a pivotal moment that thrust the issue of fake 

news into the global spotlight [11]. This event underscored the 

potential for misinformation to spread widely and rapidly, 

influencing public opinion and political outcomes on a large 

scale. The technological response to detect and mitigate fake 

news started to incorporate more sophisticated tools from 
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fields such as artificial intelligence and machine learning 

shortly thereafter. Researchers and technologists began to 

systematically apply computational techniques to identify 

patterns and indicators of misinformation. This included the 

development and implementation of algorithms that could 

analyze vast amounts of data quickly, a necessity given the 

scale and speed of information dissemination on platforms 

like Facebook, Twitter, and others. Thus, while the roots of 

identifying false information go back much further, the fo-

cused academic and technological pursuit of fake news de-

tection as we understand it today really began to emerge in the 

2010s, with significant developments occurring over the past 

decade. 

The rule-based approach to detecting fake news involves 

creating manually crafted rules to identify patterns and 

anomalies typically found in false information, such as sen-

sational language or contradictions to verified facts [12]. 

Initially effective, this method relies heavily on expert input 

and can quickly become outdated as misinformation evolves. 

Consequently, rule-based systems have been largely sup-

planted by machine learning (ML) techniques, which learn 

from large datasets to recognize subtle patterns indicative of 

fake news. These ML models offer greater scalability and 

adaptability, automatically updating their understanding as 

new information becomes available, thus maintaining rele-

vance in the face of evolving misinformation tactics [13]. 

Conventional machine learning (ML) approaches to fake 

news detection typically involve feature engineering followed 

by the application of algorithms such as logistic regression, 

support vector machines, or decision trees [14, 15]. These 

techniques require manual extraction of relevant features from 

the data, such as word frequency, style markers, or metadata, 

which are then used to train a model to classify news as fake 

or real [16]. While effective, conventional ML approaches can 

be limited by the quality and comprehensiveness of the 

manually selected features, which may not capture all nuances 

of deceptive content [17]. In [18] a system for fake news 

detection is proposed using machine learning techniques. 

Term frequency-inverse document frequency (TF-IDF) of bag 

of words and n-grams are used as the feature extraction tech-

nique, and Support Vector Machine (SVM) is employed as the 

classifier. Additionally, a dataset of fake and true news is 

proposed for training the system. In [19], authors proposed a 

classification study, where four traditional methods were 

applied to extract features from texts: term frequency-inverse 

document frequency (TF-IDF), count vector, character level 

vector, and N-Gram level vector. Ten different machine 

learning and deep learning classifiers were employed to cat-

egorize the fake news dataset: Random Forest (RF), 

K-Nearest Neighbors (KNN), Linear Support Vector Machine 

(LSVM), Logistic Regression (LR), Naive Bayes (NB), 

Adaboost, XGBoost, Artificial Neural Network (ANN), Re-

current Neural Network with Long Short-Term Memory 

(RNN+LSTM), and Convolutional Neural Network with 

Long Short-Term Memory (CNN+LSTM). The results 

demonstrated that fake news with textual content can be ef-

fectively classified, with CNN+LSTM showing particularly 

strong performance. The study achieved an accuracy range of 

81% to 100% across different classifiers. The limitation of 

traditional machine learning approaches has led to the adop-

tion of deep learning techniques, which can automatically 

discover the representations needed for detection from raw 

data, bypassing the need for manual feature engineering. Deep 

learning models, particularly those using architectures like 

recurrent neural networks (RNNs) and convolutional neural 

networks (CNNs), leverage large volumes of data to learn 

complex patterns and dependencies that are highly indicative 

of fake news. The shift to deep learning has resulted in models 

that are not only more accurate but also better at generalizing 

across different datasets, thereby significantly enhancing the 

robustness and effectiveness of fake news detection systems 

[20]. The study by [21] evaluates deep learning methods for 

fake news detection using CNN, Bi-LSTM, and Res-Net 

architectures combined with pre-trained word embeddings. 

The models were trained on four datasets enhanced by data 

augmentation through back-translation to address class im-

balances. Results showed that Bi-LSTM outperformed the 

other models on all datasets due to its superior ability to an-

alyze contextual information from sequences, crucial for 

identifying the complex language in fake news. 

The transformer-based approach, exemplified by 

pre-trained models like BERT (Bidirectional Encoder Rep-

resentations from Transformers), leverages attention mecha-

nisms to capture contextual relationships between words, 

significantly enhancing fake news detection. Unlike RNNs 

and LSTMs that process data sequentially and struggle with 

long sequences, transformers handle all words simultaneously, 

improving both speed and contextual understanding. These 

models, pre-trained on vast datasets, can be efficiently fi-

ne-tuned with specific fake news data, providing robust de-

tection capabilities while addressing the scalability and la-

tency issues associated with older models [22, 23]. The study 

analyzed emotion in ideological and political education by 

integrating a gated recurrent unit (GRU) with an attention 

mechanism. Leveraging BERT's strengths, a bidirectional 

GRU with a long focusing attention mechanism was used to 

extract both specific and global information. This comple-

mentary approach improved the accuracy of emotion detec-

tion. The model's validity and adaptability were confirmed 

using several fine-grained, publicly available emotion da-

tasets [24]. The authors of [25] explore the performance of 

various machine learning techniques, including fine-tuning 

pre-trained models like BERT and COVID-Twitter-BERT 

(CT-BERT), for detecting COVID-19 related fake news. By 

evaluating the efficacy of additional neural network layers 

such as CNN and Bi-GRU on top of these models, the study 

finds that the combination of Bi-GRU with CT-BERT, espe-

cially with selective parameter adjustments, delivers excep-

tional results, achieving a state-of-the-art F1 score of 98%. In 

[26], authors propose a Textual Similarity Analysis (TSA) 
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method that leverages pre-trained models like GloVe and 

BERT, along with transformer based Seq2Seq, to assess the 

authenticity of news content. Their results indicate that these 

pre-trained models significantly outperform traditional en-

coding methods, achieving 98% accuracy compared to 

77%-93%. Furthermore, the study evaluates various deep 

learning techniques, finding that transformers with 8 and 16 

multi-heads outperform LSTM and GRU models, with accu-

racies of 98% and 97% respectively. This research under-

scores the effectiveness of advanced encoding and trans-

former architectures in TSA-based fake news detection, 

providing a robust foundation for future studies in this area. 

The field of fake news detection is increasingly attracting 

attention, yet it faces significant challenges, primarily due to 

the scarcity of high-quality resources. This includes limited 

availability of comprehensive datasets and a dearth of pub-

lished literature, which are crucial for developing and testing 

detection methods [27]. These constraints hinder progress by 

complicating the training and validation of algorithms de-

signed to identify and counteract fake news effectively. This 

research addresses the challenge of automatically detecting 

fake content on social media platforms like Twitter, where 

manual fact-checking is impractical due to the volume of 

daily tweets. The authors of [28] addressed the challenge of 

automatically detecting fake content on social media plat-

forms like Twitter, where manual fact-checking is impractical 

due to the volume of daily tweets. The research involved 

creating a comprehensive ground-truth dataset using a com-

bination of Politifact, expert labeling, and crowdsourcing via 

Amazon Mechanical Turk, resulting in over 180,000 labeled 

tweets from 2009 to 2022. This dataset facilitated both five- 

and three-label classifications. Various machine learning and 

deep learning models, particularly those based on BERT, 

were applied to assess the accuracy of detecting real versus 

fake tweets. Additionally, the DBSCAN text clustering algo-

rithm and the YAKE keyword creation algorithm were used to 

analyze topics and their relationships. The research also in-

cluded an analysis of Twitter users in the dataset, evaluating 

their bot score, credibility score, and influence score to iden-

tify any patterns related to the truthfulness of tweets. The 

findings demonstrate significant improvements in model 

performance for short-length texts in real-life classification 

tasks, such as detecting fake content on twitter. 

Recent advancements in fake news detection have been 

significantly driven by fine-tuned transformer-based models. 

BERT (Bidirectional Encoder Representations from Trans-

formers) and its variants, such as RoBERTa and DistilBERT, 

have been widely adopted for their ability to capture deep 

contextual semantics and achieve high accuracy across vari-

ous NLP tasks. Several studies have demonstrated the effec-

tiveness of such models in misinformation classification. For 

instance, the GBERT framework combines the strengths of 

BERT and GPT to achieve a high F1-score of 96.23% on 

real-world datasets, showing the power of hybrid transformer 

models in capturing generative and contextual features [29]. 

Another notable work, DeepTweet, leverages transform-

er-based embeddings and a tailored attention mechanism to 

outperform traditional deep learning approaches in fake news 

detection on Twitter, further confirming the efficacy of 

transformer-only architectures in handling social media text 

[30]. However, despite their strong performance, these 

transformer-based models tend to be computationally inten-

sive and less efficient for real-time applications. This creates a 

trade-off between performance and efficiency. The proposed 

hybrid model aims to bridge this gap by combining a trans-

former encoder with a Bi-LSTM, leveraging both contextual 

attention and sequential dependency, while maintaining 

competitive performance with lower computational cost. 

3. Proposed Approach 

In this research, we introduce a novel hybrid method for 

detecting fake news using a combination of transformer ar-

chitecture and Bi-LSTM. To provide a comprehensive over-

view and insight into the entire workflow and architecture of 

our proposed approach, this section is subdivided into three 

consecutive sub-sections. Section 3.1 provides a summary of 

the proposed model and its overarching structure. Section 3.2 

details the properties of the dataset utilized in the research. In 

Section 3.3, an in-depth description of the text cleaning 

pre-processing steps for the model is presented. A compre-

hensive analysis of the hybrid model developed for fake news 

detection is subsequently discussed in Section 3.4. 

3.1. Proposed Architecture 

As depicted in the Figure 1, our proposed model comprises 

two primary components: a text pre-processing unit and a 

hybrid transformer model for the classification stage. The 

initial segment of the pre-processing unit is pivotal for text 

analysis, involving tweet cleaning. Subsequently, in the sec-

ond segment, the cleaned tweets are transformed into tokens, 

which are then converted into vectors. Following the com-

pletion of the pre-processing unit, the numeric representations 

of the texts are fed into the hybrid transformer model, which 

plays a central role in recognizing misinformation. 
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Figure 1. Flow diagram of overall process of the proposed method. 

3.2. Dataset Description 

In order to assess the effectiveness and reliability of any 

text analysis model, the availability of an appropriate dataset 

is crucial. Such a dataset should encompass a sufficient 

quantity of accurately labeled data reflecting real-world net-

works. Typically, researchers acquire data from social media 

platforms to conduct semantic analysis, yet the availability of 

benchmark datasets online remains scarce. The TruthSeeker 

dataset stands out as one of the most comprehensive bench-

mark datasets, comprising over 180,000 labeled Tweets 

spanning from 2009 to 2022 [31]. 

The data for the TruthSeeker dataset was obtained through the 

crawling of tweets related to real and fake news sourced from the 

Politifact Dataset. By utilizing ground truth values and con-

ducting targeted crawling for tweets associated with these topics 

(achieved by manually generating keywords linked to the news 

under scrutiny to be input into the Twitter API), over 186,000 

tweets were extracted (prior to final processing). These tweets 

encompassed 700 instances each of real and fake news. 

Subsequently, employing crowdsourcing via Amazon 

Mechanical Turk, a majority opinion regarding the degree of 

alignment between the tweet content and the authenticity of 

the news source statement was generated. Following this, a 

majority agreement algorithm was applied to ascertain the 

validity of the associated tweets, resulting in classification 

into three and five category columns based on their alignment 

with the real or fake news source statements. 

The main dataset directory, named "TruthSeeker2023" 

comprises two distinct.csv files: 

1) Truth_Seeker_Model_Dataset: This file contains the 

features described in the preceding section on the 

TruthSeeker Dataset. It is tailored for utilization with 

Transformer model-based NLP models. 

2) Features_For_Traditional_ML_Techniques: This file 

encompasses the 50+ features outlined in the Feature 

Dataset section. It is intended for use with classical 

machine learning techniques that require numerous 

features as input rather than generating features from 

data. 

In this research, our focus is primarily on the first dataset, 

which is predominantly suitable for transformer-based models 

or large language models (LLMs). Below is the description of 

each feature of the 'Truth_Seeker_Model_Dataset', as pre-

sented in Table 1. 

Table 1. Dataset description. 

Feature List Description 

author Represents the author of the statement. 

statement Denotes the headline of a news article. 
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Feature List Description 

target Indicates the ground truth value of the statement. 

BinaryNumTarget Target is converted to binary where True encoded as 1 and False encoded as 0. 

manual_keywords Comprises manually created keywords utilized for searching Twitter. 

tweet Contains Twitter posts related to the associated manual keywords. 

5_label_majority_answer Presents the majority answer utilizing 5 labels: Agree, Mostly Agree, Disagree, Mostly Disagree, Unrelated. 

3_label_majority_answer Displays the majority answer utilizing 3 labels: Agree, Disagree, Unrelated. 

 

3.3. Pre-processing Stage 

The pre-processing unit begins with cleaning the tweet, 

which is essential in NLP and LLM tasks for normalizing text, 

reducing noise, removing irrelevant information, and stand-

ardizing word representations, thereby leading to more accu-

rate analysis and modeling results. This procedure conducts a 

sequence of essential text pre-processing steps to ready tweet 

data for analysis and modeling. Initially, it converts the tweet 

text to lowercase to ensure uniformity in representation. Then, 

it removes URLs and hashtags to eliminate extraneous in-

formation. Additionally, mentions are replaced with a generic 

"@user" tag to anonymize user identities and maintain pri-

vacy. Optionally, emojis are removed to further streamline the 

text. Punctuation is stripped to focus on the core content, 

while extra spaces are eliminated to enhance readability. Stop 

words, such as common words like "the" or "and" can be 

optionally removed to reduce noise in the data. Finally, 

lemmatization reduces words to their base form for con-

sistency and simplifies subsequent analysis. These procedures 

collectively ensure that the tweet data is standardized, cleaned, 

and optimized for various NLP tasks, facilitating more accu-

rate and effective analysis and modeling processes. Table 2 is 

a step-by-step example to illustrate the tweet cleaning stage. 

Table 2. Preprocessing Steps for Tweet Text. 

Step Operation Tweet Processed Tweet 

1 Lowercase the text 

"President @official announced new COVID-19 

restrictions! Visit https://govupdates.com for 

details. #COVID19 #StaySafe 😊" 

"president @official announced new 

covid-19 restrictions! visit 

https://govupdates.com for details. #covid19 

#staysafe 😊" 

2 Remove URLs and hashtags 

"president @official announced new covid-19 

restrictions! visit https://govupdates.com for de-

tails. #covid19 #staysafe 😊" 

"president @official announced new covid-19 

restrictions! visit for details. 😊" 

3 Remove mentions 
"president @official announced new covid-19 

restrictions! visit for details. 😊" 

"president @user announced new covid-19 

restrictions! visit for details. 😊" 

4 Remove emojis 
"president @user announced new covid-19 re-

strictions! visit for details. 😊" 

"president @user announced new covid-19 

restrictions! visit for details. " 

5 Remove punctuation 
"president @user announced new covid-19 re-

strictions! visit for details. " 

"president @user announced new covid19 

restrictions visit for details " 

6 Remove extra spaces 
"president @user announced new covid19 re-

strictions visit for details " 

"president @user announced new covid19 

restrictions visit for details" 

7 Remove stop words 
"president @user announced new covid19 re-

strictions visit for details" 

"president @user announced new covid19 

restrictions visit details" 

8 Perform lemmatization 
"president @user announced new covid19 re-

strictions visit details" 

"president @user announce new covid19 

restriction visit detail" 
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Figure 2. Word Count Distribution in Genuine and Fake News Tweets. 

From Figure 2, it is observed that for each class, most 

pre-processed tweets are around 20 words long, and the 

longest tweets are well below the maximum context size of 

the transformer model. 

After tweet cleaning, tokenization becomes necessary to 

convert the text into a format suitable for natural language 

processing tasks. This step breaks down the text into indi-

vidual tokens or words, enabling the model to understand the 

context and semantics of the text. The use of an auto tokenizer 

simplifies this process by automatically selecting the appro-

priate tokenization strategy based on the input data. Choosing 

BERTweet as the auto tokenizer is significant because it is 

specifically designed for Twitter data, capturing the nuances 

and informal language often found in tweets. BERTweet's 

pre-trained model, based on the BERT architecture, offers 

contextualized embeddings that capture the semantic meaning 

of words in the context of a tweet. This makes BERTweet a 

suitable choice for fake news detection tasks, where under-

standing the subtleties of language is crucial. In the data flow 

process, the cleaned tweet is passed through the auto tokenizer, 

which tokenizes the text and converts it into 

BERTweet-compatible input format. The output consists of 

tokenized representations of the tweet, ready to be fed into 

padding and sequencing mechanism. Pad sequencing is nec-

essary to ensure that all input sequences have the same length, 

as neural networks require fixed-length inputs. This process 

involves adding padding tokens to shorter sequences and 

truncating longer sequences to a maximum length. In this 

context, the input consists of tokenized representations of 

tweets, while the output is a padded and sequenced format 

ready for further processing by the model. This step ensures 

consistency in the input data format, facilitating efficient 

training and inference. 

The subsequent task in the data pre-processing unit in-

volves creating a categorical label column, where a definitive 

truthfulness value is allocated. The criteria for label conver-

sion are outlined in Table 3. The truthfulness value has been 

then converted into a label-encoded format to pass through the 

classifier. 

Table 3. Conversion Table for Label Representation. 

Target Majority Answer Truthfulness (Label) 

True Agree True (0) 

True Disagree False (1) 

False Agree False (1) 

False Disagree True (0) 

The below Figure 3 illustrates that, after label conversion, 

the class distribution is nearly balanced, with fake news posts 

comprising 2% fewer instances than true news posts. 

 
Figure 3. Distribution of class labels for true and fake news within 

the dataset. 
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After label conversion, the padded and sequenced tweets 

were divided into training and test data. This division was 

conducted using a random seed of 42, ensuring reproducibil-

ity. The dataset was split 80% to 20% for training and testing. 

The breakdown of the dataset after splitting is provided in 

Table 4 below. 

Table 4. Breakdown of the dataset after splitting into train and test 

set. 

Tweet Category Total Train Set Test Set 

Fake News 65,213 52,154 13,059 

Genuine News 68,985 55,204 13,781 

Total News 134,198 107,358 26,840 

3.4. Proposed Model 

The proposed model for detecting fake news from tweets is 

a sophisticated hybrid neural network that integrates both 

recurrent and transformer-based architectures that have been 

visualized in Figure 4. It begins with an embedding layer that 

transforms the input tweet text into dense vector representa-

tions. These embeddings are processed by a Bidirectional 

LSTM layer to capture long-range dependencies in the se-

quence, followed by a Dropout layer to mitigate overfitting. 

Additionally, a Transformer block, designed to focus on dif-

ferent parts of the input sequence through self-attention 

mechanisms, processes the embeddings in parallel. The out-

puts from the LSTM and Transformer block are concatenated, 

combining the strengths of both architectures. This concate-

nated representation is then passed through a Global Max 

Pooling layer to extract the most significant features, followed 

by another Dropout layer for regularization. The final Dense 

layer, with a sigmoid activation function, performs the binary 

classification to distinguish between fake and real news. The 

model is optimized with the Adam optimizer and employs L2 

regularization to enhance generalization. The additional 

properties of the hybrid model have been demonstrated in 

Table 5. 

 
Figure 4. Architecture of the proposed hybrid model. 

The use of concatenation in the model is significant as it 

integrates the strengths of both LSTM and Transformer ar-

chitectures, creating a richer and more comprehensive feature 

set. The Bidirectional LSTM captures sequential dependen-

cies and temporal patterns, while the Transformer block ex-

cels at capturing long-range dependencies and global context 

through self-attention mechanisms. By concatenating their 

outputs, the model leverages diverse representations, en-

hancing feature extraction, robustness, and generalization. 

This combination allows the model to access complementary 

insights, making it more flexible in learning and better 

equipped to handle complex patterns in tasks particularly fake 

news detection. 
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Table 5. Hyperparameters and their values for the hybrid proposed 

model. 

Hyperparameters Functions / Values 

Embedding Dimension = 512 

Bi-LSTM Activation = tanh, Neurons = 64 

Transformer Block 
Number of Heads = 8, Embedding Dimen-

sion = 512, Feed Forward dimension = 2048 

Dense Activation = Sigmoid, Neuron = 1 

Regularization L2, λ=0.01 

Dropout 0.2 

Batch Size 128 

Learning Rate 0.01 

Epochs 10 

Optimizer Adam 

Cost Function Binary Cross Entropy 

3.4.1. Transformer Block 

The Transformer block in the model is like a super attentive 

reader that carefully weighs the importance of different words 

in a tweet, helping the model understand which parts are most 

crucial for detecting fake news. It's like having a detective 

who can spot subtle clues and connections between words, 

even if they're far apart in the text. By doing this, the model 

can create a detailed map of the tweet's meaning, making it 

better at distinguishing between real and fake news. This layer 

works alongside other components like the LSTM to provide 

a comprehensive understanding of the tweet's content, ulti-

mately boosting the model's accuracy in identifying misin-

formation. 

The transformer model architecture revolutionized the field 

of natural language processing (NLP). It’s a neural network 

architecture based entirely on attention mechanisms without 

any recurrent or convolutional layers. The core operation of a 

transformer model is mainly maintained by two parts, these 

are encoder stack and decoder stack. The operations of the 

layers are described in detail below, accompanied by the flow 

diagram shown in Figure 5. 

I. Encoder Stack: 

The encoder stack consists of multiple identical layers, 

each containing two main sub-layers: a multi-head 

self-attention mechanism and a position-wise fully connected 

feed-forward network. Each sub-layer has a residual connec-

tion around it, followed by layer normalization. This structure 

enables the Transformer to capture complex dependencies and 

contextual information from the input sequence. Here's a 

breakdown of the components in a typical Transformer en-

coder stack: 

i. Input Embeddings: The input to the Transformer model is 

a sequence of tokens, typically represented as word embed-

dings and each token is represented by a d-dimensional vector, 

where d is the embedding dimension. Let 𝑋={𝑥1, 𝑥2, … , 𝑥𝑛} 

be the input token sequence, where n is the sequence length, 

and each token is represented by a one-hot encoded vector. 

This vector has the same size as the vocabulary size 𝑉. 

The mathematical expression for obtaining the embedding 

vector 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (𝑥𝑖) for token 𝑥𝑖 from the input token 

sequence 𝑋 using and embedding matrix 𝐸 is: 

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (𝑥𝑖) = 𝐸[𝑉𝑜𝑐𝑎𝑏(𝑥𝑖)]            (1) 

𝐸  is an embedding matrix of size 𝑉 ∗ 𝑑𝑚𝑜𝑑𝑒𝑙  where 

𝑑𝑚𝑜𝑑𝑒𝑙  is the dimension of the model typically same as em-

bedding space, then 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (𝑥𝑖) is a vector of size 

𝑑𝑚𝑜𝑑𝑒𝑙  representing toke 𝑥𝑖  in the continuous embedding 

space. 

Here, 𝑉𝑜𝑐𝑎𝑏(𝑥𝑖) denote the index of toke 𝑥𝑖  in the vo-

cabulary. 

ii. Positional Encoding: Since the Transformer doesn't have 

recurrence or convolution to maintain order information, 

positional encodings are added to the input embeddings to 

provide information about the position of tokens in the se-

quence. The positional encoding is a vector added to the 

embedding of each token based on its position. 

Let's denote the positional encoding function as 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖) for the 2𝑖 -th dimension and 𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) 

for the (2𝑖 + 1) − 𝑡ℎ dimension, pos is the position and 𝑖 is 

the dimension index. The positional encoding for position 

𝑝𝑜𝑠 and dimension index 𝑖 is computed as follows: 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = sin(
𝑝𝑜𝑠

100002𝑖 𝑑𝑚𝑜𝑑𝑒𝑙 ⁄ )                  (2) 

𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) = cos(
𝑝𝑜𝑠

100002𝑖 𝑑𝑚𝑜𝑑𝑒𝑙 ⁄ )         (3) 

Here, the factor 
1

100002𝑖 𝑑𝑚𝑜𝑑𝑒𝑙 ⁄  ensures that each dimen-

sion of the positional encoding has a different frequency. 

So, the final positional encoding vector for position 𝑝𝑜𝑠 is 

the concatenation of 𝑃𝐸(𝑝𝑜𝑠, 2𝑖) and 𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) for 

all dimensions 𝑖: 

𝑃𝐸(𝑝𝑜𝑠) = [

 𝑃𝐸(𝑝𝑜𝑠, 0) 

 𝑃𝐸(𝑝𝑜𝑠, 1) 
⋮

 𝑃𝐸(𝑝𝑜𝑠, 𝑑𝑚𝑜𝑑𝑒𝑙 − 1) 

]        (4) 

This encoding is then added elementwise to the token em-

beddings before feeding them into the model. 

𝐹𝑖𝑛𝑎𝑙 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (𝑥𝑖) = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 (𝑥𝑖) + 𝑃𝐸(𝑥𝑖)  (5) 

iii. Multi-Head Self Attention Mechanism: The input of 

multi head attention sublayer of the first layer of the encoder 

stack is a vector that contains the embedding and the posi-

tional encoding of each word. This mechanism allows each 
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word in the sequence to attend to all other words, capturing 

dependencies and relationships within the sequence. The 

self-attention mechanism computes attention scores between 

each pair of words and generates weighted sums for each 

word, based on these scores. 

The input sequence 𝑋  is projected into three different 

vectors : 𝑄𝑢𝑒𝑟𝑦 (𝑄) , 𝐾𝑒𝑦(𝐾)  and 𝑉𝑎𝑙𝑢𝑒 (𝑉)  matrices. 

These matrices are obtained by multiplying the input se-

quence by learned weight matrices. Let 𝑊𝑄 ,𝑊𝐾 , and 𝑊𝑉  

denote the learned weight matrices for query, key, and value 

projections respectively. The projected sequences are denoted 

as, 

𝑄 = 𝑋.𝑊𝑄 , 𝐾 = 𝑋.𝑊𝐾, 𝑉 = 𝑋.𝑊𝑉             (6) 

Query represents the focus or interest at a specific point in 

the sequence. 

Key acts like a memory or index in the sequence. It encodes 

information about other parts of the sequence that might be 

relevant to the current query. 

Value holds the actual information from each position in 

the sequence. 

Each of the 𝑄𝑢𝑒𝑟𝑦 (𝑄), 𝐾𝑒𝑦(𝐾) and 𝑉𝑎𝑙𝑢𝑒 (𝑉) ma-

trices are split into h heads (multiple heads), resulting in 

𝑄𝑖 , 𝐾𝑖 , 𝑎𝑛𝑑 𝑉𝑖  𝑓𝑜𝑟 𝑖 = 1,2, … . . ℎ. This allows the model to 

attend to different parts of the input sequence independently. 

Mathematically, the splitting is done along the last dimen-

sion (embedding dimension) to obtain ℎ sets of query, key, 

and value matrices: 

𝑄𝑖 = 𝑆𝑝𝑙𝑖𝑡(𝑄, 𝑑𝑚𝑜𝑑𝑒𝑙 ℎ⁄ ), 𝐾𝑖 = 𝑆𝑝𝑙𝑖𝑡(𝐾, 𝑑𝑚𝑜𝑑𝑒𝑙 ℎ⁄ ), 𝑉𝑖 =

𝑆𝑝𝑙𝑖𝑡(𝑉, 𝑑𝑚𝑜𝑑𝑒𝑙 ℎ⁄ )                  (7) 

For each head 𝑖, attention weights are computed as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑖.𝐾𝑖

𝑇

√𝑑𝑘
) ∗ 𝑉𝑖      (8) 

Here 𝑑𝑘 is the dimensionality of the key vectors. 

The outputs from all heads are concatenated and then pro-

jected back to the original embedding dimension using a 

linear transformation. All outputs form each head are then 

concatenated and multiplied by another learned weight matrix 

𝑊0 to obtain the final output of the multi-head self-attention 

mechanism: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑂𝑢𝑡𝑝𝑢𝑡 =

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑂𝑢𝑡𝑝𝑢𝑡1, 𝑂𝑢𝑡𝑝𝑢𝑡2, … , 𝑂𝑢𝑡𝑝𝑢𝑡ℎ).𝑊0    (9) 

For each position 𝑖 in the sequence, the output of the mul-

ti-head self-attention mechanism is passed through a layer 

normalization operation. Generally, Layer normalization is 

applied to stabilize the training process. The operation is 

expressed as, 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚1(𝑀𝐻𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑂𝑢𝑡𝑝𝑢𝑡𝑖) =

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑀𝐻𝑂𝑢𝑡𝑝𝑢𝑡𝑖 + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙1)     (10) 

Where 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙1 represents the residual connection from 

the input to the multi-head self-attention mechanism. 

After the self-attention mechanism, each position applies a 

simple feed-forward neural network independently and iden-

tically. The FFNN consists of two linear transformations with 

ReLU activation function in between. The FFNN output is 

computed as, 

𝐹𝐹𝑁𝑁(𝑥) = 𝑅𝑒𝐿𝑈(𝑋.𝑊1 + 𝑏1).𝑊2 + 𝑏2        (11) 

Where 𝑊1,𝑊2, 𝑏1 𝑎𝑛𝑑 𝑏2 are learnable parameters. 

The output of the feed-forward neural network (FFNN) is 

passed through another layer normalization operation. The 

output of the 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚2 is expressed as, 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚2(𝐹𝐹𝑁𝑁 𝑂𝑢𝑡𝑝𝑢𝑡𝑖) =

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐹𝐹𝑁𝑁𝑂𝑢𝑡𝑝𝑢𝑡𝑖 + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙2)      (12) 

Where 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙2 represents the residual connection from 

the output of the multi-head self-attention mechanism to the 

input of the FFNN. 

After that, the output of the 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚2 is sent back to 

the next layer of the encoder stack and multi-head attention 

layer of the decoder stack. 

 
Figure 5. The structural design of the Transformer. 
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II. Decoder Stack: 

The Transformer decoder stack is responsible for generat-

ing the output sequence, leveraging both the encoder's output 

and previously generated tokens. It consists of several iden-

tical layers, each with three main sub-layers: masked mul-

ti-head self-attention, multi-head attention over the encoder's 

output, and a fully connected position-wise feed-forward 

neural network. Similar to the encoder, each sub-layer has a 

residual connection and is followed by layer normalization. 

i. Input Embedding and Positional Encoding: Like the en-

coder, the input to the decoder is also a sequence of tokens. 

Each token is first embedded and then combined with posi-

tional encoding to capture its position in the sequence. 

ii. Masked Multi-Head Self-Attention: Unlike the encoder, 

the decoder's self-attention layer is masked to prevent at-

tending to future positions. This is crucial during training, as 

the model is auto regressive, meaning it predicts one token at a 

time and should not have access to future tokens. 

The self-attention mechanism in the decoder computes at-

tention scores only for positions before the current position. 

Mathematically, the masked self-attention output is com-

puted similarly to the encoder, but with a mask applied to 

prevent attending to future positions. The operation expressed 

as, 

𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖)        (13) 

Where 𝑄𝑖 = 𝑄𝑢𝑒𝑟𝑦(𝑌𝑖−1) , 𝐾𝑖 = 𝐾𝑒𝑦(𝑌𝑖−1)  and 𝑉𝑖 =

𝑉𝑎𝑙𝑢𝑒(𝑌𝑖−1) 

𝑌𝑖−1 is the output of the previous decoder layer. 

iii. Multi-Head Cross-Attention Mechanism: In the decoder, 

the cross-attention mechanism attends to the encoder's output. 

The process is similar to the self-attention mechanism, but 

queries come from the previous decoder layer, and keys and 

values come from the encoder output. 

𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑒𝑛𝑐 , 𝑉𝑒𝑛𝑐) (14) 

Where, 𝑄𝑖 = 𝑄𝑢𝑒𝑟𝑦(𝑌𝑖−1) , 𝐾𝑖 = 𝐾𝑒𝑦(𝑍)  and 𝑉𝑖 =

𝑉𝑎𝑙𝑢𝑒(𝑍) 

𝑍 is the output of the encoder stack. 

iv. Feed-Forward Neural Network and Residual Connec-

tions: Like encoder, the decoder has a feed-forward neural 

network after the attention layers, followed by residual con-

nections and layer normalization. 

𝐹𝐹𝑁𝑁𝑖 = 𝐹𝐹𝑁𝑁(𝑌𝑖−1)              (15) 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚1 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑌𝑖−1 + 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖)  

(16) 

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚2 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚1 +

𝐸𝑛𝑐𝐷𝑒𝑐𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖)                 (17) 

𝑌𝑖 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚2 + 𝐹𝐹𝑁𝑁𝑖       (18) 

Where 𝑌𝑖 is the output of 𝑖 − 𝑡ℎ decoder block. 

Finally, the decoder's output is projected into a vocabu-

lary-sized space using a linear transformation followed by a 

SoftMax activation, producing a probability distribution over 

the vocabulary for the next token. Mathematically, the output 

probability distribution 𝑃 is computed as: 

𝑃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑌𝑁)             (19) 

Where the final output of the decoder stack is 𝑌𝑁. 

3.4.2. Bidirectional LSTM Cell 

In Natural Language Processing (NLP), a Bidirectional 

Long Short-Term Memory (Bi-LSTM) network is a type of 

recurrent neural network (RNN) that processes the input 

sequence in both forward and backward directions, capturing 

contextual information from both past and future states for 

each position in the sequence [32]. This makes it particularly 

effective for tasks where the context surrounding each word is 

crucial. The operational flow diagram of both an LSTM and a 

Bi-LSTM is illustrated in Figure 6. 

Here are the core equations governing an LSTM cell at time 

step t: 

I. Forget Gate: The forget gate's role is to decide which 

information from the previous cell state should be discarded. 

It selectively forgets parts of the previous cell state based on 

the current input and the previous hidden state. It uses a 

mechanism to analyze the input and previous hidden state to 

generate a value (between 0 and 1) for each piece of 

information in the cell state. A value close to 0 means the 

information will be largely forgotten, while a value close to 1 

means it will be mostly retained. 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)          (20) 

Here, 𝑓𝑡  is the forget gate's activation vector, 𝑊𝑓  is the 

weight matrix for the forget gate, 𝑏𝑓is the bias, 

σ is the sigmoid function, 

ℎ𝑡−1 is the hidden state from the previous time step, and 

𝑥𝑡 is the input at the current time step. 

The output 𝑓𝑡  is a vector of values between 0 and 1, 

indicating how much of each component of the cell state 𝐶𝑡−1 

(previous cell) should be forgotten. 

II. Input Gate: The input gate determines which new 

information from the current input should be added to the cell 

state. It evaluates the current input and the previous hidden 

state to generate a value for each piece of the new information. 

Additionally, it creates a candidate for the new cell state, 

representing potential new information. The input gate uses 

these evaluations to update the cell state by adding new 

relevant information. 

𝑖𝑡 =  𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)       (21) 

𝐶𝑡̃ =  tanh (𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)    (22) 
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𝑖𝑡  is the input gate activation, and 𝐶𝑡̃  is the candidate cell 

state. 𝑊𝑖 and 𝑏𝑖 are the weight matrix and bias for the input 

gate, while 𝑊𝐶 and 𝑏𝐶  are for the candidate cell state. The 

candidate cell state 𝐶𝑡̃ contains new information, which will 

be added to the cell state based on the input gate's decision. 

III. Output Gate: The output gate controls what information 

from the cell state is passed to the hidden state, which in turn 

is used as output at the current time step and input to the next 

time step. It evaluates the current input and the previous 

hidden state to generate a value that determines which parts of 

the cell state will form the new hidden state. This hidden state 

represents the output for the current time step and is used in 

subsequent steps. 

𝑜𝑡 =  𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)        (23) 

ℎ𝑡 = 𝑜𝑡 . tanh (𝐶𝑡)         (24) 

𝑜𝑡  is the output gate activation. 𝑊𝑜 and 𝑏𝑜  are weight 

matrix and bias for the output gate. The hidden state ℎ𝑡 is 

calculated by multiplying the output gate activation 𝑜𝑡 with 

the tanh  of the current cell state 𝐶𝑡 . The cell state 𝐶𝑡  is 

updated using the formula 

𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑖𝑡 . 𝐶𝑡̃              (25) 

In a Bidirectional LSTM, two LSTM networks are used: 

one processes the sequence forward (from start to end), and 

the other processes it backward (from end to start). The final 

output at each time step 𝑡 is a combination of both forward 

and backward LSTM outputs. 

For a given input sequence 𝑥 = (𝑥1, 𝑥2, … . , 𝑥𝑇): 

Forward LSTM: It processes the input sequence from start 

to end, capturing dependencies from past to future. 

Sequentially updates hidden states based on current input and 

previous hidden state. 

ℎ𝑡
⃗⃗  ⃗ = 𝐿𝑆𝑇𝑀 (𝑥𝑡 ,  ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗,  𝐶𝑡−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)         (26) 

Backward LSTM: It processes the input sequence from end 

to start, capturing dependencies from future to past. 

Sequentially updates hidden states based on current input and 

subsequent hidden state. 

ℎ𝑡
⃖⃗ ⃗⃗ = 𝐿𝑆𝑇𝑀 (𝑥𝑡 , ℎ𝑡−1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝐶𝑡−1
⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)        (27) 

Concatenation: Combines the information from both 

forward and backward passes. Concatenates the hidden states 

from the forward and backward LSTMs for each time stept. 

ℎ𝑡 = ℎ𝑡
⃗⃗  ⃗ ⊕  ℎ𝑡

⃖⃗ ⃗⃗ ⃗⃗ ⃗                (28) 

 
(a) 
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(b) 

Figure 6. The structural design of (a) LSTM and (b) Bi-LSTM. 

The output shapes and parameters for each layer are sum-

marized in Table 6 where each layer is sequentially connected 

to the previous layer. It delineates how the configuration of 

each layer, from input to output, is systematically documented 

in Table 6. Each layer in the model, such as the embedding, 

Bidirectional LSTM, Transformer block, Global MaxPooling 

and final dense layer, is meticulously outlined with its specific 

output shape and parameter count. This sequential connection 

implies that the data flow through the network follows a de-

fined path, where the output of one layer serves as the input to 

the subsequent layer, culminating in a comprehensive under-

standing of how information is processed and transformed 

within the model architecture. 

Table 6. Summary of the model architecture. 

Layers Output Shapes Parameters 

Input Layer (None, 92) 0 

Embedding (None, 92, 512) 3,276,852 

Bidirectional LSTM (None, 92, 128) 295,424 

Dropout (None, 92, 128) 0 

Transformer Block (None, 92, 512) 6,828,544 

Concatenate (Transformer, 

Bi-LSTM) 
(None, 92, 640) 0 

GlobalMaxPooling1D (None, 640) 0 

Dropout (None, 640) 0 

Dense (None, 1) 641 

4. Experimental Setup 

This paper extensively utilizes Python programming lan-

guage version 3.10.12 in conjunction with the Pandas library 

tool version 2.0.3, NumPy version 1.23.5, and Matplotlib 

version 3.7.1. These widely recognized software libraries are 

renowned for their effectiveness in data analysis and visuali-

zation tasks, making them a pivotal component of the research 

endeavor. The operational functions are exclusively con-

ducted within the Google Colab Pro environment, which 

boasts a robust hardware configuration with more memory 

and longer runtimes than the free version, allowing for more 

intensive computations. All deep learning operations are 

executed using the TensorFlow framework version 2.15.0, 

ensuring compatibility and optimal performance across the 

board. 

The research incorporates a Transformer architecture 

augmented with Bi-LSTM, a computational process that is 

complex and time-consuming when executed on a CPU. In 

NLP or LLM tasks, transformer architecture greatly benefits 

from GPU acceleration. GPUs, or Graphics Processing Units, 

are optimized for parallel computations, which are pervasive 

in deep learning algorithms owing to their extensive matrix 

operations. With their self-attention mechanisms and mul-

ti-layered architecture, transformer models often demand 

substantial computational resources, particularly during 

training. They are utilizing GPUs results in faster training 

times than CPUs, enabling researchers and practitioners to 

experiment with larger models and datasets efficiently. This 

acceleration is particularly evident when working with large 

Transformer-based models. 

In this research, Google Colab Pro with an L4 GPU has 

been utilized to enhance the robustness of the computational 

training process and reduce time consumption. The GPU type 

primarily employed is the NVIDIA L4 GPU, featuring the 

NVIDIA Ada Lovelace architecture. This architecture boasts 

a higher memory capacity of 24 GB, 7680 CUDA cores, and 

240 Tensor cores. It represents one of NVIDIA's latest GPU 

releases, tailored to offer high performance for AI and ma-

chine learning tasks. The L4 GPU is precisely engineered to 

significantly improve computational performance, rendering 

it well-suited for training large machine learning models, 
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executing deep learning algorithms, and conducting complex 

data analyses. Figure 7 displays the Python environment and 

hardware configuration used in the study. 

 
Figure 7. Experimental settings. 

5. Evaluation 

As mentioned earlier, the target classes are 'true' and 'fake' 

news, making the proposed model a binary classification 

model. The efficacy of a binary classification model in any 

detection approach fundamentally depends on its evaluation 

metrics, as outlined by the confusion matrix. A confusion 

matrix offers a detailed snapshot of a classification algo-

rithm's performance, presenting crucial comparative infor-

mation. In this study, six widely recognized performance 

metrics have been derived from the detection model's confu-

sion matrix, which is discussed below. Specifically, in the 

realm of fake news detection, the confusion matrix encom-

passes four key outcomes: True Positives, True Negatives, 

False Positives, and False Negatives – as illustrated in Figure 

8. 

 
Figure 8. Confusion matrix of fake news detection model. 

True Positives (TP): The number of fake news tweets correctly 

identified as fake by the model. 

True Negatives (TN): The number of genuine news tweets correctly 

identified as genuine by the model. 

False Positives (FP): The number of genuine news tweets incorrectly 

identified as fake by the model. This is also known as a Type I error. 

False Negatives (FN): The number of fake news tweets incorrectly 

identified as genuine by the model. This is also known as a Type II 

error. 

Accuracy: Accuracy measures the proportion of correctly 

classified instances (both fake and genuine news tweets) out 

of the total instances. It gives an overall effectiveness of the 

model. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                  (29) 

Precision: Precision measures the proportion of correctly 

identified fake news tweets out of all tweets classified as fake. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                         (30) 

Recall: Recall measures the proportion of true positive 

cases out of all actual positive cases, reflecting the model's 

ability to identify all instances of fake news accurately. This 

metric is also referred to as Sensitivity, True Positive Rate, or 

Detection Rate. 

𝑅𝑒𝑐𝑎𝑙𝑙/𝑇𝑃𝑅/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (31) 

F1-Score: The F1-Score is the harmonic means of precision 

and recall, offering a single metric that balances the trade-off 

between these two measures. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
               (32) 

False Positive Rate (FPR): False Positive Rate (FPR) 

measures the proportion of genuine news articles that are 

incorrectly classified as fake news by the model. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                            (33) 

Specificity: Specificity measures the proportion of genuine 

news tweets that the model accurately identifies as not being 

fake. It highlights the model's capability to correctly distin-

guish true news from fake news. This metric is also referred to 

as the True Negative Rate (TNR). 

Specificity/TNR =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                    (34) 

Error Rate: The error rate is the proportion of all predictions 

that are incorrect. It is a measure of how often the classifier 

makes a wrong prediction. 

Error Rate =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
= 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦    (35) 

Negative Precision: Negative Precision (or precision of the 

negative class) measures the proportion of instances correctly 

predicted as real out of all instances predicted as genuine 

http://www.sciencepg.com/journal/ijdsa


International Journal of Data Science and Analysis http://www.sciencepg.com/journal/ijdsa 

 

38 

news. 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
             (36) 

G-mean1: G-mean1 is the traditional G-mean, which bal-

ances the recall (sensitivity) of the positive (fake) and nega-

tive (genuine) classes. 

𝐺 − 𝑚𝑒𝑎𝑛1 = √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦   (37) 

G-mean2: G-mean2 extends the concept by incorporating 

precision along with recall. This variation aims to provide a 

more comprehensive evaluation by considering the positive 

predictive value (precision) in addition to the true positive rate 

(recall). 

𝐺 − 𝑚𝑒𝑎𝑛2 = √𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙       (38) 

Matthews Correlation Coefficient (MCC): Takes into ac-

count true and false positives and negatives and is generally 

regarded as a balanced measure even if the classes are of very 

different sizes. 

𝑀𝐶𝐶 =  
(𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)
      (39) 

These metrics, derived from the confusion matrix, provide 

a robust evaluation framework for assessing the fake news 

detection model's performance. For optimal model perfor-

mance, accuracy, F1-score, recall, precision, gmean1, gmean2, 

MCC and specificity should all be high. Conversely, the false 

positive rate (FPR) and error rate should be low. This com-

bination ensures the model accurately identifies both true and 

fake news, minimizing incorrect classifications. 

ROC Curve: The Receiver Operating Characteristic (ROC) 

curve is a graphical representation used to evaluate the diag-

nostic performance of a binary classifier system by varying its 

discrimination threshold. The ROC curve is generated by 

plotting the True Positive Rate (TPR) against the False Posi-

tive Rate (FPR) at different threshold levels. It is especially 

valuable for comparing the performance of multiple models or 

classifiers. 

ROC-AUC Score: The ROC-AUC score, a value between 0 

and 1, reflects how well the model can tell the difference 

between real and fake news tweet. A higher score indicates 

better discrimination ability. 

Cohen Kappa Coefficient: Cohen's Kappa score is a 

measure of inter-rater agreement or classification perfor-

mance that accounts for the possibility of agreement occurring 

by chance. 

𝑘 =  
𝑝𝑜− 𝑝𝑒

1−𝑝𝑜
= 

2∗ (𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁)

(𝑇𝑃+𝐹𝑃)∗(𝐹𝑃+𝑇𝑁)+(𝑇𝑃+𝐹𝑁)∗(𝐹𝑁+𝑇𝑁)
    (40) 

Where 𝑝𝑜  is the observed agreement, and 𝑝𝑒  is the ex-

pected agreement by chance. 

6. Results and Discussion 

The fake news detection model from tweets relies on the 

evaluation metrics scores. This section has been organized 

into five sub-sections for better understanding. Section 6.1 

highlights the performance characteristics for fake news 

detection model, while Section 6.2 offers an ablation study 

that underscores the significance of the Bi-LSTM and 

Transformer components individually and their combined 

effect. Section 6.3 provides a comparative analysis of the 

overall results across individual deep-learning classifiers in 

the area. After that, Section 6.4 assesses the model's per-

formance across diverse datasets, providing insights into 

how well the proposed system adapts to varying data char-

acteristics and conditions. This section aims to establish the 

robustness and versatility of the model in different infor-

mational environments. Lastly, Section 6.5 presents a sta-

tistical analysis across multiple models, offering a detailed 

examination of the performance variations and validating the 

robustness of the proposed system. 

6.1. Classification Results of the Proposed 

Model 

This section finds the results of the fake news detection 

model including different evaluation metrics scores which 

have been derived from confusion matrix. The confusion 

matrix of the proposed model incorporating transformers and 

Bi-LSTM has been displayed in Figure 9. 

 
Figure 9. Confusion matrix for the proposed model. 

The performance of the proposed model from tweets has 

been quantitatively assessed using a set of evaluation metrics 

which have been previously discussed. Table 7 below sum-

marizes these metrics and their respective values which have 

been derived from confusion matrix in Figure 9. 
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Table 7. Experimental results for the fake news detection model. 

Evaluation Metrics Value 

Accuracy 94.02 % 

Error Rate 5.98 % 

Recall 93.70 % 

Precision 93.99 % 

Negative Precision 94.05% 

F1-Score 93.84 % 

FPR 5.68 % 

Specificity 94.32 % 

G-mean1 94.01% 

G-mean2 93.84% 

MCC 0.8802 

ROC-AUC 0.9614 

The experimental results underscore the robust perfor-

mance of our fake news detection model across various met-

rics. Achieving an accuracy of 94.02% highlights the overall 

correctness of our predictions, complemented by a low error 

rate of 5.98%. Notably, our model demonstrates a high recall 

of 93.70%, effectively capturing the majority of actual posi-

tive cases (fake news), while maintaining a precise identifi-

cation with a precision of 93.99%. Specificity, measuring the 

model's ability to correctly identify true negatives among all 

actual negatives, stands at 94.32%. This underscores its reli-

ability in discerning genuine news tweets. Furthermore, the 

model exhibits a balanced F1-Score of 93.84%, emphasizing 

its consistency in achieving both high precision and recall. 

The false positive rate (FPR) of 5.68% indicates a minimal 

occurrence of false alarms, crucial for maintaining credibility 

in fake news detection. The high ROC-AUC score of 0.9614 

further validates the model's exceptional ability to discrimi-

nate between fake and authentic tweets. Moreover, the mod-

el's negative predicted value, reflective of its capability to 

avoid false negatives and accurately identify true negatives, 

stands at 94.05%. This metric highlights the model's profi-

ciency in distinguishing real news accurately. The geometric 

mean (G-mean), computed at 94.01% and 93.84% for 

G-mean1 and G-mean2 respectively, reinforces that the model 

maintains balance across both positive and negative classes 

without bias towards either. Finally, the Matthews correlation 

coefficient (MCC), measuring the overall correlation between 

predicted and observed classifications, is notably high at 

0.8802. This metric indicates the model's strong predictive 

accuracy by accounting for true positives, true negatives, false 

positives, and false negatives. 

In summary, these comprehensive metrics collectively af-

firm the effectiveness and reliability of our hybrid Trans-

former and Bi-LSTM architecture in detecting fake news in 

large-scale tweet datasets. The model not only excels in ac-

curacy, precision, recall, and specificity but also demonstrates 

robust discrimination capabilities, as evidenced by the high 

ROC-AUC and MCC scores. 

Table 8 presents the detection rates for both the 'fake' and 

'genuine' news classes. The detection rate is slightly higher for 

genuine news than for fake news. This discrepancy might be 

attributed to the greater number of genuine news instances in 

the test set. Nevertheless, these high detection rates demon-

strate the model's robust capability to classify fake and gen-

uine news accurately. 

Table 8. Detection rate for each class. 

Class Name Detection Rate (%) 

Fake News 93.6978 

Genuine News 94.3183 

6.2. Ablation Study of Model Components 

To illustrate the importance of each component in the hybrid 

model, we have performed ablation studies, which involved 

systematically removing or isolating major components to 

assess their individual contributions to the overall performance. 

The results of this study are summarized in Table 9. These 

studies highlight the significance of the Bi-LSTM and Trans-

former components individually and their combined effect. 

Table 9. Experimental results from ablation studies. 

Evaluation 

Metrics 

Bi-LSTM 

Only 

Transformer 

Only 

Concatenation of 

Bi-LSTM and 

Transformer 

Accuracy 89.65% 92.17% 94.02 % 

Error Rate 10.35% 7.83% 5.98 % 

Recall 86.37% 91.49% 93.70 % 

Precision 91.86% 92.34% 93.99 % 

Negative Pre-

cision 
87.78% 92.01% 94.05% 

F1-Score 89.03% 91.91% 93.84 % 

FPR 7.25% 7.19% 5.68 % 

Specificity 92.75% 92.81% 94.32 % 

G-mean1 89.50% 92.14% 94.01% 

G-mean2 89.07% 91.91% 93.84% 
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Evaluation 

Metrics 

Bi-LSTM 

Only 

Transformer 

Only 

Concatenation of 

Bi-LSTM and 

Transformer 

MCC 0.7938 0.8433 0.8802 

The ablation study highlights the significance of each 

component in the proposed hybrid model. When using only 

the Bi-LSTM, the model achieved an accuracy of 89.65%, 

demonstrating its ability to capture sequential dependencies 

and temporal patterns but falling short in grasping long-range 

dependencies. The Transformer alone improved the accuracy 

to 92.17%, showcasing its strength in capturing long-range 

dependencies and global context through self-attention 

mechanisms, yet it struggled with sequential dependencies. 

Combining Bi-LSTM and Transformer outputs resulted in the 

highest accuracy of 94.02%, illustrating the complementary 

strengths of both architectures. This combined approach not 

only enhanced feature extraction, robustness, and generaliza-

tion but also effectively handled complex patterns in fake 

news detection, achieving superior results across all metrics. 

In summary, the ablation studies underscore the importance 

of both Bi-LSTM and Transformer components in the pro-

posed hybrid model. Their combined effect significantly 

enhances the model's ability to detect fake news effectively, 

demonstrating the value of integrating these architectures for 

improved performance. 

6.3. Comparative Analysis with Other Deep 

Learning Classifiers 

The performance of the proposed model on a broader scale 

has been evaluated by reconstructing the entire workflow for 

several deep-learning classifiers. In this reconstruction, all 

preprocessing stages for the end-to-end workflow remain 

unchanged. However, instead of the proposed hybrid classi-

fication model, CNN and RNN-based classifiers have been 

employed to detect fake news. A comparative analysis has 

been conducted using the 'Truthseeker' dataset for fake news 

detection. The observational results for the model have been 

examined across a comprehensive set of eight evaluation 

metrics, including accuracy, precision, recall, F1-score, 

specificity, and FPR. The results of all classifiers, including 

our proposed approach, are presented in Table 10. 

Table 10. Comparison against other deep learning classifiers and fine-tuned transformers with proposed model. 

Evaluation Metrics MLP 
LSTM + 

Bi-LSTM 

CNN + 

Bi-LSTM 

Transformer + 

CNN 

Transformer + 

LSTM 
BERT Proposed 

Accuracy (%) 89.02 91.89 90.75 93.11 93.51 93.99 94.02 

Error Rate (%) 10.98 8.11 9.25 6.89 6.49 6.01 5.98 

Recall (%) 91.06 90.86 88.57 91.88 92.59 93.69 93.70 

Precision (%) 86.98 92.34 92.12 93.82 93.99 93.93 93.99 

Negative Precision (%) 91.13 91.47 89.55 92.46 93.07 94.04 94.05 

F1-Score (%) 88.97 91.59 90.31 92.84 93.28 93.81 93.84 

FPR (%) 12.92 7.14 7.18 5.73 5.61 5.73 5.68 

Specificity (%) 87.08 92.86 92.82 94.27 94.39 94.27 94.32 

G-mean1 (%) 89.05 91.85 90.67 93.07 93.49 93.98 94.01 

G-mean2 (%) 89.00 91.60 90.33 92.84 93.29 93.81 93.84 

MCC 0.7813 0.8376 0.8153 0.8621 0.8702 0.8796 0.8802 

 

From Table 10 the proposed model excels in most metrics, 

particularly accuracy, recall, precision, and F1-Score. These 

metrics demonstrate its effectiveness and reliability in de-

tecting fake news from tweets, making it the best choice 

among the compared models. Its high performance in key 

areas ensures that it not only correctly identifies fake news but 

also minimizes errors, making it a robust tool for fake news 

detection. It is clear that, incorporating deep learning layers 

including CNN, LSTM or Bi-LSTM with transformer archi-

tecture can significantly increase model performance where 

the proposed model outperforms others. 

Although the proposed model outperforms all baseline 

models across most evaluation metrics, it is important to note 

that fine-tuned transformer models such as BERT also 

demonstrated competitive performance. For instance, BERT's 

F1-score and accuracy were close to those of the proposed 
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hybrid model. However, BERT incurred significantly higher 

computational costs in terms of training and inference time 

due to its large number of parameters. This high resource 

demand makes it less efficient for real-time or re-

source-constrained environments. In contrast, the proposed 

hybrid model provides a more efficient alternative by 

achieving comparable or superior performance with reduced 

training and testing time. While fine-tuned transformers like 

BERT, RoBERTa, or GPT variants may perform well on 

extremely large-scale datasets, the proposed model offers an 

optimal balance between accuracy and efficiency, making it 

particularly suitable for medium-sized datasets such as 

TruthSeeker. 

 
Figure 10. ROC curves for different classifiers. 

The ROC curve presented in Figure 10 above compares the 

performance of various fake news detection models. The 

proposed model, represented by the red line, exhibits the 

highest area under the curve (AUC) of 0.9614, indicating 

superior ability to distinguish between true and fake news. 

Other models, such as Transformer+LSTM (0.9579) and 

Transformer+CNN (0.9558) also show high performance but 

fall short compared to the proposed model. The higher AUC 

value of the proposed model signifies its greater accuracy and 

reliability in predicting fake news, making it the most effec-

tive among the evaluated models. 

6.4. Comparative Evaluation of Model 

Performance Across Various Datasets 

Evaluating our model using multiple datasets is beneficial 

for several reasons. First, it ensures the robustness and gen-

eralizability of the model across diverse data sources. Dif-

ferent datasets may have unique characteristics and variations 

in structure and content, which helps verify that the model 

performs consistently well in various real-world scenarios. 

Second, it allows for a comprehensive comparison with ex-

isting models and benchmarks, highlighting the strengths and 

weaknesses of our approach relative to others in the field. This 

comparative analysis can reveal insights into the model's 

performance, such as its ability to handle different types of 

fake news, scalability, and adaptability to new data. Lastly, by 

testing multiple datasets, any overfitting issues can be identi-

fied, and necessary adjustments can be made to improve the 

model's accuracy, precision, recall, and overall effectiveness 

in fake news detection. In Table 11, a comparative analysis of 

different datasets for the proposed approach, along with their 

descriptions, has been presented. The evaluation metrics for 

each dataset have been derived from the confusion matrices 

displayed in Figure 11. 

Table 11 shows that the proposed model has performed 

well across diverse datasets, demonstrating excellent accuracy 

and ROC-AUC scores, which indicate its effectiveness in 

distinguishing between genuine and fake news. Despite these 

dataset’s structural differences and varied topic domains, the 

model maintained robust performance, showcasing its gener-

alizability to real-world scenarios beyond just Twitter. The 

Truth Seeker dataset, in particular, highlighted the model's 

adaptability with an accuracy, precision and recall score of 

94.04%, 93.07% and 93.99%, respectively, with the 

ROC-AUC score of 0.9614. While the COVID19-FNIR and 

Fake News Detection Dataset English also demonstrated 

robust results, and the ISOT Fake News Dataset exhibited 

near-perfect scores, these datasets are often less challenging 

due to narrower topic domains or less noisy data. The Truth 
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Seeker dataset offers a more comprehensive evaluation en-

vironment with its diverse range of topics, including politics, 

general events, health, crime, and science. The fact that our 

model performs exceptionally well on this dataset, which 

includes a variety of real-world complexities, underscores its 

robustness and generalizability. Although the performance on 

the COVID19-FNIR dataset was slightly lower, likely due to a 

smaller sample size, the overall results affirm that the pro-

posed model excels in handling diverse data sources and 

complex real-world contexts, making it a robust and effective 

solution for fake news detection. 

 
Figure 11. Confusion Matrices of the Proposed Model on Different Datasets. 

Table 11. Comparative analysis of the model's performance over multiple fake news detection datasets. 

Dataset Description Evaluation 

Dataset Instances 
Topic Do-

main (s) 
Platform Year Accuracy Recall Precision F1-Score Specificity 

ROC-AUC 

Score 

ISOT Fake News 

Dataset [33] 

Train- 36,539 

Test- 8,857 

News, 

Politics 

Website, 

Social 

Media 

2017 99.86 99.78 99.95 99.87 99.95 0.9999 

COVID19-FNIR 

[34] 

Train- 6,070 

Test- 1,518 
COVID-19 

Poynter, 

Twitter 
2021 93.08 91.12 94.34 92.70 94.91 0.9827 

Fake News De-

tection Dataset 

English [35] 

Train- 36,000 

Test- 8,267 

Journalism, 

Politics 

News, Web-

site, Arti-

cles, Twitter 

2021 98.56 97.39 99.83 98.59 99.82 0.9995 

Truth Seeker 

Train- 

107,358 

Test- 26,840 

Politics, 

General 

Events, 

Health, 

Crime, Sci-

ence 

Twitter 2022 94.02 93.07 93.99 93.84 94.82 0.9614 

 

6.5. Statistical Analysis Across Multiple Models 

To illustrate further model’s effectiveness, a statistical meas-

ure, Cohen's Kappa score have been evaluated. Cohen's Kappa 

score (K) is a metric used to measure the dependability of 

agreement between and within raters for categorical data, ac-

counting for the likelihood of chance agreement. This makes it a 

more precise measure than simple percentage agreement. Alt-

hough it can be adapted for scenarios involving more than two 

raters, it is commonly applied in settings with two raters. 

In the context of fake news detection, one "rater" is the classi-

fication model, while the other "rater" is a human expert who 

knows the true labels of news articles. Cohen's Kappa assesses 

how often the model and the expert agree (correctly identifying 

real and fake news) and how often they disagree (misclassifying 
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fake news as real and vice versa). By considering the possibility 

of agreement occurring by chance, Cohen's Kappa provides a 

measure of the overall agreement and the chance-corrected 

agreement between the model and the human expert. The fol-

lowing Table 12 provides the Cohen Kappa Scores for various 

fake news detection classifiers, demonstrating their performance 

in terms of agreement with a human expert, adjusted for chance. 

Table 12. Comparing several models using Cohen’s Kappa Coeffi-

cient. 

Classifier Name Cohen Kappa Score 

MLP 0.7804 

Bi-LSTM Only 0.7924 

CNN + Bi-LSTM 0.8147 

LSTM + Bi-LSTM 0.8375 

Transformer Only 0.8432 

Transformer + CNN 0.8620 

Classifier Name Cohen Kappa Score 

Transformer + LSTM 0.8701 

BERT 0.8796 

Proposed Approach 0.8802 

Figure 12 represents the comparison of Cohen Kappa score 

of multiple classifiers. The MLP and Bi-LSTM classifiers 

achieve a Cohen Kappa score below 0.8, indicating a sub-

stantial level of agreement. The CNN + Bi-LSTM, LSTM + 

Bi- LSTM, Transformer only classifiers indicating moderate 

level of substantial agreement. When the transformer block is 

incorporated with another layer including CNN, LSTM or 

Bi-LSTM and BERT as classifiers achieve almost perfect 

agreement with greater than 0.85 of Cohen kappa co-efficient. 

The proposed approach, presumably a hybrid model that 

leverages the strengths of both Transformer and Bi-LSTM 

architectures, achieves the highest Cohen Kappa score of 

0.8802. This indicates that it has the highest agreement with 

the human expert, adjusted for chance. 

 
Figure 12. Comparison of Cohen Kappa Score of several models. 

7. Conclusion and Future Work 

In today's social media-driven era, content is generated 

every second, including a significant amount of fake news and 

rumors, often without traceable sources. It has become crucial 

to identify misinformation early to prevent social unrest and 

stop the spread of falsehoods. While considerable research 

has been conducted in this field, there still needs to be a 

benchmark dataset that can support the development of a 

robust model capable of handling diverse content types. The 

Truth Seeker dataset, a recent benchmark featuring a wide 

range of topic domains, has yet to be used in previous research, 

making it an ideal basis for training, and testing the proposed 

model to ensure its robustness. 

To achieve the research objectives, the study successfully 

developed and assessed a novel hybrid model that combines 
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transformer architecture and Bidirectional LSTM for effective 

fake news detection on Twitter. The application of conven-

tional text cleaning methods, along with BERTweet for to-

kenization, significantly enhanced the model’s ability to inter-

pret and analyze the contextual nuances of tweets. This ap-

proach has led to more accurate and reliable detection of mis-

information. Through rigorous testing across three additional 

fake news datasets, the model has proven its effectiveness and 

adaptability in various scenarios of misinformation. A com-

parative analysis with other deep learning classifiers and 

state-of-the-art models has further confirmed the superior per-

formance of the proposed model. Overall, this research signif-

icantly contributes to fake news detection, providing a de-

pendable and efficient tool to combat misinformation in digital 

media. 

While TweetGuard demonstrates strong performance on 

Twitter data, its generalizability to other social media plat-

forms such as Facebook or Reddit may be limited due to 

platform-specific characteristics. For instance, Facebook 

posts often contain longer and more structured content, while 

Reddit discussions include threaded conversations and 

community-specific jargon. These variations in text style, 

post length, and discourse structure could affect the model’s 

performance, as it was primarily trained on the linguistic and 

contextual patterns of tweets. Future research should explore 

domain adaptation techniques or multi-platform training 

strategies to improve cross-platform generalizability. 

Abbreviations 

ML Machine Learning 

DL Deep Learning 
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