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Abstract 

Rice, corn, and soybeans are among the most widely cultivated crops, making them crucial for global food security and the 

economic well-being of many countries. Like many other crops, the global prices for these commodities are prone to 

fluctuations due to unfavorable weather conditions, natural disasters (like flooding), global demand, and economic crises. 

Consequently, their prices are subject to significant changes and volatility. Forecasting and modelling these prices offer 

valuable insights to policymakers and local growers within the agricultural sector. While there is a plethora of studies focusing 

on forecasting prices based on data obtained for a specific locality, country, or region, there is a paucity of publications that 

take on a more global outlook for rice, corn, and soybeans. The objective of this study is to use an Autoregressive Integrated 

Moving Average (ARIMA) process to model and forecast the international market prices of milled rice (5% broken), corn, and 

soybeans. We relied on World Bank data covering the period from 1988 to 2018 to construct several time series models. The 

average prices for milled rice, corn, and soybeans are $344.47, $144.48, and $334.72 (USD) per metric ton, respectively. The 

results of the model selection procedure indicate that the ARIMA (5,1,4), ARIMA (6,1,3), and ARIMA (6,1,1) models best fit 

the prices of milled rice, corn, and soybeans, respectively. Furthermore, these models offer the best in-sample and 

out-of-sample performances. The accuracy of the projected values, derived from the chosen models, was evaluated by 

calculating several metrics, including the mean absolute error (MAE), mean squared error (MSE), root mean square error 

(RMSE), and mean absolute percentage error (MAPE). This paper highlights the utility and applicability of the ARIMA model 

as a powerful tool for forecasting agricultural prices. Our modeling framework could enable governments and agribusinesses to 

(a) better anticipate global price fluctuations, (b) optimize trade decisions, (c) strengthen food security planning, and (d) 

engage in more sustainable agriculture. 
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1. Introduction 

Rice, corn, and soybeans are primary staple foods and 

sources of calories, proteins, and essential nutrients for a 

large portion of the world's population. They significantly 

impact the economies of many nations and play a significant 

role in global food security. Additionally, these three crops 

have become increasingly crucial as industrial crops, with 
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various applications in producing biofuels, animal feed, flour 

and several consumer products. Consequently, having in-

sights into their future economic status will be vital for the 

global agricultural sector and overall food security. 

The macroeconomic performances of the rice, corn, and 

soy industries, like many other industries, are significantly 

affected by price changes and fluctuations. Agricultural 

commodity prices inherently display volatility and dynamic 

variations over time as they consistently respond to various 

shifts [1]. Such price volatility can profoundly impact pro-

duction decisions, posing challenges for producers in accu-

rately predicting future price levels and efficiently organiz-

ing sales [2]. Producers with a risk-averse disposition may 

reduce their output in response to pricing uncertainty and, 

conversely, increase output when confronted with price cer-

tainty. This behavior has implications for the availability of 

food supplies [1]. Consequently, accurate prediction of price 

changes is critical for formulating sound economic policies. 

It enables policymakers and farmers to ascertain the scale of 

sales and establish an appropriate strategy to optimize reve-

nue from crop production. 

Time series analysis is frequently employed for price 

forecasting. It uses historical price data to make inferences 

about the likely future prices. A widely used method for 

forecasting time series data is the Autoregressive Integrated 

Moving Average (ARIMA) modeling, which considers a 

time series' autocorrelation and moving average components 

to predict future values. This relies on understanding the 

intrinsic dynamic nature of prices shaped by various factors 

such as macroeconomic variables, the environment, and in-

ternational trade [3]. ARIMA models capture temporal de-

pendencies that influence agricultural markets. These include 

seasonal effects associated with planting and harvesting pat-

terns [4], external factors such as energy prices [5, 6], and 

feedstock dynamics [7]. 

Its utility and applicability have led to numerous studies 

employing the ARIMA model to forecast crop prices of local 

and regional markets. These include paddy [8], rice [9], 

wheat [10], peas and vegetables [11-14], tomatoes [15, 16], 

and soybeans [17]. A common denominator for forecasting 

prices with ARIMA is the emphasis on accuracy and precision, 

achieved by aligning in-sample forecasts and actual out-of-sample 

evidence, and through additional processes, such as the Kalman 

filter technique, and seasonal ARIMA (SARIMA). 

As price forecasting becomes increasingly essential in the 

global agricultural sector, this study aims to determine the 

best ARIMA time series model for forecasting the prices of 

milled rice, corn, and soybeans. While many studies focus on 

forecasting prices based on data obtained for a specific local-

ity, country, or region, this paper adopts a more global out-

look. This model forecasts monthly prices for rice (milled), 

corn, and soybeans per metric ton over a 12-month window. 

It utilizes monthly data from the World Bank database, 

spanning from 1988 to 2018. The significance of this study 

lies in its validation of the suitability and accuracy of the 

ARIMA model for these agricultural prices on a global scale. 

2. Materials and Methods 

The objective of this study is to forecast the international 

prices for milled rice (5% broken), corn, and soybeans based 

on The World Bank's monthly agricultural commodity prices 

data [18]. The dataset consists of 372 observations, which 

were used to construct the model and evaluate its in-sample 

performance. Twelve additional observations (January 2019 

- December 2019) were used for testing the model's 

out-of-sample performance. All analysis was done using the 

R forecast, tseries, and fpp2 packages. 

The present study utilizes the Box-Jenkins (1970) fore-

casting model, commonly referred to as the ARIMA model. 

The ARIMA model is a forecasting technique that relies on 

historical time series data of the underlying variable [19]. 

The model can be expressed as follows: 

Let    represent a discrete time series, assuming distinct 

values over a certain period. The AR (p) model, an extension 

of the autoregressive model, represents the    series. This is 

expressed as: 

𝐴𝑅(𝑝):   = 𝜑0 + 𝜑1  −1 + 𝜑2  −2 +⋯+𝜑𝑝  −𝑝 + 𝜀 .  

where    is the response variable at time  . 

  −1   −2    −𝑝  is the respective variables at different 

times with lags, 𝜑0 𝜑1  𝜑𝑝 are the coefficients, and 𝜀  is 

the error factor. 

Similarly, the MA(q) model, an extension of the moving 

average model, can be defined as follows (Pradhan, 2012). 

𝑀𝐴(𝑞):   = 𝜇 + 𝜀 + 𝛿1𝜀 −1 +⋯+ 𝛿𝑞𝜀 −𝑞 + 𝑣   

where 𝜇  is the constant mean of the series, 𝛿1 𝛿𝑞 are the 

coefficients of the estimated error term; 𝜀  is the error term. 

Combining both models is called the ARIMA model, 

which has the general form: 

  = 𝜑0 + 𝜑1  −1 + 𝜑2  −2 +⋯+𝜑𝑝  −𝑝 + 𝜀 +

𝛿1𝜀 −1 +⋯+ 𝛿𝑞𝜀 −𝑞 + 𝑣 , and is often expressed in short-

ened notation form ARIMA (p,d,q). Here, p is the order of 

the non-seasonal autoregressive part. d is the number of dif-

ferencing operations to remove trends and stabilize the mean 

of a time series; this technique transforms a non-stationary 

time series into a stationary one. q is the order of the 

non-seasonal moving average model. 

2.1. Determination of Stationarity 

Confirming that the underlying data demonstrates station-

arity is crucial to constructing the ARIMA model. 

Non-stationary time series typically display statistical characteris-

tics that fluctuate over time. Consequently, ensuring the data 

is stationary is significant in the context of model develop-
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ment. The assessment of data stationarity involved employ-

ing various techniques, including visualization of time series 

graphs, analysis of autocorrelation functions (ACF) and the 

partial autocorrelation function (PACF) diagrams, and the 

application of the Augmented Dickey-Fuller test. 

2.2. Candidate Model Order Selection 

The next step in the modelling process is the determina-

tion of d, p, and q. The order of d is determined by the num-

ber of times the series is differenced. The determination of 

AR and MA signatures involves the use of non-seasonal au-

tocorrelation function (ACF) and partial autocorrelation 

function (PACF) plots [12]. A theoretical autoregressive (AR) 

model with an order of p exhibits an autocorrelation function 

(ACF) that decays, and a partial autocorrelation function 

(PACF) that cuts off at lag p. Conversely, a theoretical mov-

ing average (MA) model with an order of q displays a PACF 

that decays, and an ACF that cuts off at lag q. The best can-

didate models are the ones that are parsimonious and exhibit 

the lowest Akaike information criterion (AIC) values that 

best fit the given data [12, 20]. 

2.3. Forecasting 

After selecting suitable models, predicted values will be 

generated for use in both in-sample and out-of-sample testing. 

This is done to assess the models' performance on both seen 

and unseen data. The accuracy of the projected values, de-

rived from the chosen models, was evaluated by calculating 

several metrics, including the mean absolute error (MAE), 

mean squared error (MSE), root mean square error (RMSE), 

and mean absolute percentage error (MAPE) [12, 16, 21]. 

Additionally, confidence intervals were computed to indicate 

the level of uncertainty associated with the forecast of the 

best-choice model. 

𝑀𝐴𝐸 =
1

𝑇
∑ =1
𝑇  | ˆ −   | =

1

𝑇
∑ =1
𝑇  |𝑒 |   

𝑀𝑆𝐸 =
1

𝑇
∑ =1
𝑇  ( ˆ −   )

2 =
1

𝑇
∑ =1
𝑇  (𝑒 )

2  

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ =1
𝑇  ( ˆ −   )

2 = √
1

𝑇
∑ =1
𝑇  (𝑒 )

2   

where    is the actual observation,  ̂  is the fitted or fore-

cast value, and 𝑇 is the sample size. 

2.4. Choice of Appropriate Model 

The optimal model selection among candidate models was 

determined by assessing both in-sample and out-of-sample 

testing metrics, complemented by low AIC. 

2.5. Diagnostics 

A diagnostic check is a procedure used to verify the re-

siduals. The residuals obtained from the best choice model 

were examined to determine if they exhibit characteristics of 

a white noise series, namely being uncorrelated and having a 

mean of zero. This was accomplished by analyzing the auto-

correlation function (ACF) and partial autocorrelation func-

tion (PACF) plots, as well as conducting the Ljung-Box sta-

tistic test [12, 15, 22]. 

3. Results 

Table 1. Summary statistics of the price of rice, corn, and soybeans from the years 1988-2018. 

Descriptive Rice Corn Soybeans 

Mean 344.466 144.876 334.715 

Median 311.500 118.795 290.500 

Std. Deviation 126.858 59.588 117.607 

Minimum 163.750 75.270 183.000 

Maximum 907.000 333.053 684.020 

 

Table 1 above summarizes descriptive measures for rice, 

corn, and soybeans prices from January 1988 to December 

2018. Mean prices over this period were rice at $344.466, 

corn at $144.876, and soybeans at $334.715. Median values 

for this period were slightly lower, suggesting potential 

skewness. The standard deviations, ranging from $59.588 

(corn) to $126.858 (rice), indicate significant long-term price 

variability. The minimum and maximum price ranges were 
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$163.750 to $907.000 for rice, $75.270 to $333.053 for corn, 

and $183.000 to $684.020 for soybeans. 

3.1. Testing for Stationarity 

As previously mentioned, the assessment of the station-

arity of the time series prices for rice, corn, and soybeans 

data was conducted through graphical inspection of the time 

series graph, analysis of the ACF and PACF plots, and by 

utilizing the Augmented Dickey-Fuller test. The time series 

graph (Figure 1), ACF and PACF plots (Figure 2), and the 

results of the Dickey-Fuller test are presented below: 

 
Figure 1. Time series plot of prices in USD for rice, corn, and soybeans (soy) from 1988-2018. 

 
Figure 2. ACF and PACF plots of the prices of rice, corn, and soybeans (soy) from 1988-2018. 

In Figure 1, we observed; price stability during periods 

(1988-2000) as the prices for rice, corn and soy exhibited 

moderate price fluctuations, a rising trends during the peri-

ods (2001-2007) being a gradual increase in prices, especial-

ly for rice and soy, a sharp spikes during the periods 

(2007-2008) observed in all three commodities prices with 

rice price experiencing the most dramatic surge peaking 

above USD 800, price volatility during the periods 

(2009-2014), and, stabilization and decline during the peri-

ods (2015-2018) as all three commodities trended down-

wards and stabilized (Rice and soybeans hovered near USD 

400, while corn settled around USD 200). 

http://www.sciencepg.com/journal/ijae


International Journal of Agricultural Economics http://www.sciencepg.com/journal/ijae 

 

174 

The ACF and PACF plots of the prices of rice, corn, and 

soybeans can be seen in Figure 2. The results indicate 

non-stationarity of the prices of all three commodities. In the 

ACF plot, the lags decay slowly and remain above signifi-

cance, suggesting the presence of unit roots. 

3.1.1. Augmented Dickey-Fuller 

To further conclude non stationarity of the data, an aug-

mented Dickey-Fuller test was performed. The null hypothe-

sis and results can be seen below. 

Hypothesis of the Augmented Dickey-Fuller test 

 0: The series has a unit root and is non-stationary. 

 1: The series does not have a unit root. The series is sta-

tionary. 

Augmented Dickey-Fuller Test with a set threshold of 

0.05 for rice, corn, and soy 

Dickey-Fuller = − .    , Lag order =   𝑝 -value 

=  .     (Rice) 

Dickey-Fuller = -2.4669, Lag order = 7, p-value = 0.3799 

(corn) 

Dickey-Fuller = -3.051, Lag order = 7, p-value = 0.1334 

(Soybean) 

The p-value for the Augmented Dickey-Fuller test per-

formed on each commodity price exceeded 0.05 in all three 

instances, confirming that the data is indeed non-stationary 

and has unit roots. 

3.1.2. Obtaining Stationarity 

To make the data stationary, the technique of differencing 

was employed. If '    ' denotes the original series, the 

non-seasonal difference of first order is: 

𝑧 =   −   −1  

After taking the first difference, the 𝑝-value of the Aug-

mented Dickey-Fuller test was less than 0.01 for all three 

datasets, which is below the assumed level of significance of 

0.05. This, along with the time series plots and ACF and 

PACF plots below, suggests that the first difference was suf-

ficient to make the data stationary. Hence, the order of dif-

ferencing,  , in the time series was taken to be equal to 1 

( =  ). 

 
Figure 3. Time series plot of the first difference for rice, corn, and soybeans prices. 

In Figure 3, it is observed that after differencing, the over-

all volatility is reduced, especially for rice and soybeans, 

which initially showed strong upward trends and sharp 

spikes. All three series exhibit mean-reverting behavior as 
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they fluctuate more evenly around zero. 

Augmented Dickey-Fuller Test 

Dickey-Fuller = − .   , Lag order =   𝑝 -value 

  .   (rice) 

Dickey-Fuller = − .   , Lag order =   𝑝 -value 

  .   (corn) 

Dickey-Fuller = − .   , Lag order =   𝑝 -value 

  .   (Soybean) 

The p-value for the Augmented Dickey-Fuller test per-

formed on each commodity price after taking the first dif-

ference, are all less than 0.01 in all three instances, confirm-

ing that the data is now stationary and can be used in price 

forecasting. 

 
Figure 4. ACF and PACF plots of differenced prices of Rice, Corn, and Soybeans from 1988-2018. 

The ACF and PACF plots of the differenced prices of rice, 

corn, and soybeans are shown in Figure 4. The results indi-

cate that the prices of all three commodities are stationary. 

The ACF plots for each commodity exhibit a rapid decline to 

near-zero autocorrelations after the first few lags, indicating 

that the series no longer exhibit persistent trends or seasonal-

ity. The PACF plots show only significant spikes at the first 

or second lag, followed by negligible partial autocorrelations, 

suggesting that short-term relationships may exist, but 

long-term dependencies have been effectively removed. 

3.2. Selecting the Best ARIMA Model for 

Forecasting 

1) Candidate Model Order Selection 

The ACF and PACF plots were used to determine the pos-

sible model orders. Lag Orders that made the model parsi-

monious were selected. Table 2 displays the selected candi-

date models, along with their corresponding AIC values. 
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Table 2. AIC values for selected models for rice, corn, and Soybean prices. 

Rice Corn Soybean 

Model AIC Model AIC Model AIC 

ARIMA(6,1,3) 3414.29 ARIMA(4,1,4) 2740.90 ARIMA(6,1,6) 3258.40 

ARIMA(5,1,4) 3414.76 ARIMA(5,1,4) 2741.06 ARIMA(6,1,5) 3259.26 

ARIMA(3,1,2) 3416.09 ARIMA(6,1,5) 2741.53 ARIMA(3,1,3) 3260.22 

ARIMA(5,1,5) 3416.12 ARIMA(6,1,6) 2741.92 ARIMA(2,1,3) 3268.49 

ARIMA(2,1,4) 3416.15 ARIMA(3,1,5) 2742.42 ARIMA(1,1,1) 3271.19 

ARIMA(6,1,4) 3416.37 ARIMA(6,1,3) 2751.96 ARIMA(6,1,1) 3271.93 

 

Based on Table 2, The best model based on the lowest 

AIC values are ARIMA(6,1,3) for rice prices, ARIMA(4,1,4) 

for corn prices and ARIMA(6,1,6) for soybean prices. 

2) In-Sample Testing 

Table 3, shows the in-sample performance of each select-

ed model based on MAPE, MAE and RSME. Based on these 

results, ARIMA(6,1,3), ARIMA(6,1,5) and ARIMA(2,1,3) 

appear to be the best performing in sample model for rice, 

corn and soybean prices respectively. 

Table 3. In-sample performance of rice, corn, and soybeans from 1988-2018. 

Rice Corn Soybean 

Model MAPE MAE RMSE Model MAPE MAE RMSE Model MAPE MAE RMSE 

ARIMA(6,1,3) 3.64 13.13 23.40 ARIMA(4,1,4) 4.00 6.09 9.46 ARIMA(6,1,6) 3.62 12.54 18.80 

ARIMA(5,1,4) 3.67 13.19 23.19 ARIMA(5,1,4) 3.88 5.94 9.37 ARIMA(6,1,5) 3.61 12.58 18.87 

ARIMA(3,1,2) 3.66 13.25 23.72 ARIMA(6,1,5) 3.84 5.88 9.32 ARIMA(3,1,3) 3.68 12.66 19.12 

ARIMA(5,1,5) 3.67 13.18 23.40 ARIMA(6,1,6) 3.85 5.89 9.29 ARIMA(2,1,3) 3.60 12.50 19.46 

ARIMA(2,1,4) 3.66 13.21 23.66 ARIMA(3,1,5) 3.88 5.99 9.46 ARIMA(1,1,1) 3.60 12.60 19.69 

ARIMA(6,1,4) 3.67 13.19 23.41 ARIMA(6,1,3) 3.95 6.01 9.54 ARIMA(6,1,1) 3.63 12.65 19.44 

 

3) Out-of-Sample Testing 

Table 4 displays the performance of each model using un-

seen data from January 2019 to December 2019, based on 

MAPE, MAE, and RSME. Based on these results, ARIMA 

(5,1,4), ARIMA (6,1,3), and ARIMA (6,1,1) appear to be the 

best performing out-of-sample models for rice, corn, and 

soybean prices, respectively. 

Table 4. Out-of-sample model performance for rice, corn, and soybeans from January 2019 - December 2019. 

Rice Corn Soybean 

Model MAPE MAE RMSE Model MAPE MAE RMSE Model MAPE MAE RMSE 

ARIMA(6,1,3) 3.099 13.100 15.596 ARIMA(4,1,4) 6.276 10.807 12.707 ARIMA(6,1,6) 6.163 22.307 25.421 

ARIMA(5,1,4) 1.958 8.284 10.303 ARIMA(5,1,4) 4.180 7.401 10.895 ARIMA(6,1,5) 6.145 22.239 25.389 
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Rice Corn Soybean 

Model MAPE MAE RMSE Model MAPE MAE RMSE Model MAPE MAE RMSE 

ARIMA(3,1,2) 2.204 9.357 11.889 ARIMA(6,1,5) 4.108 7.304 10.968 ARIMA(3,1,3) 5.138 18.435 23.659 

ARIMA(5,1,5) 2.020 8.518 10.299 ARIMA(6,1,6) 4.138 7.340 10.817 ARIMA(2,1,3) 4.020 14.402 18.834 

ARIMA(2,1,4) 2.273 9.649 12.289 ARIMA(3,1,5) 4.702 8.217 10.953 ARIMA(1,1,1) 3.782 13.501 18.190 

ARIMA(4,1,2) 2.256 9.580 12.225 ARIMA(6,1,3) 3.753 6.693 10.507 ARIMA(6,1,1) 3.643 13.019 17.586 

 

In Table 4, the relatively low values of the performance 

metrics for each model during out-of-sample testing or fore-

casting suggest a reasonably strong predictive capability, 

with MAPE values for each tested model consistently below 

6.5%. To enhance the accuracy and performance of the time 

series model, it is advisable to update the model with more 

recent univariate data regularly. 

 
Figure 5. Forecast for year 2019 and original observations of rice prices using ARIMA(5,1,4), corn prices using ARIMA(6,1,3) and soy-

beans prices using ARIMA(6,1,1). Dark, grey-colored bands indicate 80% forecast confidence, while lighter grey-colored bands indicate 95% 

confidence. 

Figure 5 displays the historical price trends from 1988 to 

2018 for rice, corn, and soybeans, along with forecasted 

monthly values for 2019, extending each series one year 

ahead using ARIMA(5,1,4), ARIMA(6,1,3) and ARI-

MA(6,1,1) time series models respectively shown with 

shaded confidence intervals. The forecast for rice prices 

shows a slight upward movement or stabilization, suggesting 

the model expects rice prices to recover marginally, corn 

prices for 2019 forecast indicates a stable continuation like 

(2017-2018) period, while the forecast for soybean prices 

suggests a modest increase or leveling off in 2019, following 

the downward trend shown from the 2012 peak. The price 

for rice, corn, and soybeans in 2019 is expected to remain 

around USD 400, 180, and 360, respectively. 
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3.3. Model Diagnostics 

Based on AIC values and performance on in-sample and 

out-of-sample data, ARIMA(5,1,4), ARIMA(6,1,3) and 

ARIMA(6,1,1) were chosen as the best models out of the list 

of candidate models for forecasting rice, corn, and soybean 

prices respectively. Testing was conducted on the chosen 

models to determine if any autocorrelations are present in the 

residuals, with the null hypothesis: There is no autocorrela-

tion in the series, at a set threshold of 0.05. The results of the 

Ljung box test of residuals of the three models can be seen in 

Table 5. The results show that there is no autocorrelation in 

the rice series; however, autocorrelation is present in corn 

and soybean prices. 
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Figure 6. Residual plots of ARIMA(5,1,4), ARIMA(6,1,3) and ARIMA(6,1,1). 

Table 5. Ljung-Box test result. 

Ljung-Box test   

Q* = 14.186, df = 14, p-value = 0.43591 ARIMA(5,1,4) lags=24 

Q* = 39.369, df = 14, p-value =0.00031977 ARIMA(6,1,3) lags=24 

Q* = 39.546, df = 16, p-value = 0.00090666 ARIMA(6,1,1) lags=24 

 

The p-value for ARIMA(5,1,4) for rice exceeded 0.05. 

This implies that there is no significant evidence of residual 

autocorrelation up to lags 24. However, significant evidence 

of residual autocorrelation was found in ARIMA(6,1,3) for 

corn and ARIMA(6,1,1) for Soybeans, up to lag 24. Subse-

quent tests of all candidate models yield similar levels of 

significance. These consistently significant results in the 

residuals of the ARIMA(6,1,3) and ARIMA(6,1,1) price 

models can be solved by using higher-order models. 

4. Discussion 

In the literature, existing research has mostly examined 

agricultural prices through regional or national lenses [8, 16]. 

In contrast, our global approach, utilizing longstanding 

World Bank data, captures essential cross-border price dy-

namics that reveal macro-level patterns often hidden in lo-

calized studies. This approach and use of World Bank data 

provide unique advantages. Where others employ complex 

hybrid methods [9], we demonstrate that a carefully specified 

ARIMA model framework can achieve similar predictive 

accuracy while maintaining crucial interpretability for poli-

cymakers. Furthermore, the dataset provides insights into 

structural market transformations that shorter analyses [12] 

cannot adequately address. These include trade liberalization 

effects (WTO price convergence) to climate variability im-

pacts, for example, the 2008 rice price spike linked to Aus-

tralian droughts and Asian floods. 

These methodological choices yield significant practical 

applications. The large volatility in rice prices (SD = 

$126.86), consistent with literature findings [1], highlights its 

particular susceptibility to climate shocks, export restrictions, 

and geopolitical instability. This evidence strongly suggests 

that import-dependent nations should prioritize strategic di-

versification and buffer stock policies. Similarly, the persis-

tent autocorrelation in our corn and soybean models points to 

potential unmodeled factors, including biofuel demand 

shocks [5] and speculative trading patterns, which warrant 

future investigation. When combined with domain expertise, 

our modeling framework could enable governments and ag-
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ribusinesses to (a) better anticipate global price fluctuations, 

(b) optimize trade decisions, (c) strengthen food security 

planning, and (d) engage in more sustainable agriculture. 

Future research directions could productively explore multi-

variate extensions such as ARIMA with eXogenous variables 

(ARIMAX) and seasonal ARIMAX (SARIMAX), and ma-

chine learning applications to further enhance forecasting 

precision. 

5. Conclusions 

Rice, corn, and soybeans hold significant importance 

globally, as they play a crucial role in ensuring food security. 

Consequently, their demand remains high. Due to the influ-

ence of various factors, the prices of these commodities tend 

to fluctuate over time. Therefore, the ability to forecast their 

prices holds considerable economic importance for policy-

holders, farmers, and decision-makers. In this study, an 

ARIMA time series modelling approach was employed to 

establish a framework for determining the order of the 

ARIMA model for forecasting the prices of corn, soybeans, 

and rice based on World Bank prices. Analyzing data span-

ning from 1988 to 2018, the optimal model orders for fore-

casting prices in 2019 were identified as ARIMA (5,1,4), 

ARIMA (6,1,3), and ARIMA (6,1,1) for rice, corn, and soy-

bean, respectively. However, residual analysis of the ARI-

MA (6,1,3) and ARIMA (6,1,1) models for corn and soybean 

revealed significant autocorrelation of the residuals up to lag 

24. This issue could be resolved by disregarding parsimony 

and incorporating higher-order lags. Given the volatile nature 

of commodity prices, enhancing accuracy and extending 

projections for the long term would involve modifying the 

model. This could be achieved by integrating more recent 

pricing data and instituting regular price monitoring practices. 

Additionally, given the fact that fertilizer and fuel costs often 

impact on the prices of rice, corn, and soybeans a model that 

incorporates these variables should be able to offer more 

realistic forecasts. As such, future work can explore the use of 

the ARIMAX or SARIMAX model (for commodity prices 

with seasonal fluctuations), which allows for the inclusion of 

exogenous variables such as fuel and fertilizer costs. Fur-

thermore, considering the disruptive impact of global events 

like the COVID-19 pandemic, future research can also focus 

on modelling price behaviors under such shock conditions to 

improve preparedness and forecast resilience in times of 

global uncertainty. 
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