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Abstract 

This study examines the effectiveness of ARIMA and LSTM models in forecasting bean production in Mozambique, using data 

from 2002 to 2022. The analysis reveals that the limited sample size, comprising only 21 years of data, significantly impacts the 

accuracy of both models, as reflected in high MAPE values. The ARIMA(1,1,1) model demonstrates robustness with the lowest 

RMSE among the ARIMA models, but the LSTM model, despite its challenges, shows superior capability in capturing nonlinear 

patterns, resulting in a lower average MAPE. Forecasts for the period from 2023 to 2030 suggest stable bean production with 

slight annual variations, although the wide confidence intervals highlight the inherent uncertainty in these predictions. This study 

underscores the importance of improving forecasting models to better guide agricultural planning and policy-making, 

particularly in the context of Mozambique's food insecurity challenges and the global objectives of SDG 2. The results emphasize 

the need for more extensive data collection and the inclusion of additional variables to enhance the accuracy of future forecasts, 

contributing to the reduction of food insecurity and the achievement of sustainable development goals in Mozambique. 
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1. Introduction 

Food insecurity remains a critical global issue, affecting 

millions of people and challenging progress toward the Sus-

tainable Development Goals (SDGs). In 2023, approximately 

735 million people worldwide faced hunger, accounting for 

about 9% of the global population [1]. While this marks a 

slight decrease from the 842 million who faced hunger in 

2022, it still represents a significant increase compared to the 

828 million in 2021. If current trends continue, projections 

indicate that the number of people affected by hunger could 

exceed 850 million in 2024 [2]. In Mozambique, one of the 

countries most affected by food insecurity, agriculture, par-

ticularly the production of common beans (Phaseolus vul-

garis), is essential for the livelihood of rural populations and 

national food security [3, 4]. 

Beans, one of the most consumed legumes globally, play a 

crucial role in the diet of both rural and urban populations in 

Mozambique. As a vital source of plant-based proteins, fibers, 

vitamins, and minerals, beans are particularly important in 
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regions where access to animal protein is limited [4]. However, 

bean production in the country faces numerous challenges, 

including climate variability, low soil fertility, and restricted 

access to quality agricultural inputs, resulting in yields that are 

often below potential [5]. 

Adverse climatic conditions, exacerbated by global climate 

change, are becoming more frequent and unpredictable, neg-

atively impacting agricultural production in Mozambique [6]. 

The irregularity of rainfall and the occurrence of prolonged 

droughts present ongoing challenges for farmers who rely on 

traditional farming practices. These factors, combined with 

management techniques that do not maximize resource effi-

ciency, contribute to the instability of bean production, further 

aggravating food insecurity in vulnerable communities [7]. 

For the development of resilient food systems, sustainable 

agricultural production is fundamental, and beans, with their 

high nutritional value, play an essential role in this context. 

Improving bean productivity in Mozambique can signifi-

cantly impact food security by increasing food availability 

and promoting sustainable farming practices that preserve soil 

fertility [8, 9]. However, achieving these goals requires a 

detailed understanding of the factors affecting bean produc-

tion, including the complex interactions between climate, soil, 

and agricultural management practices [10]. 

Agricultural production modeling emerges as a crucial tool 

for predicting trends and guiding interventions that can miti-

gate negative impacts and optimize available resources [11]. 

Predictive models for bean production are particularly rele-

vant in a context like Mozambique, where agricultural condi-

tions are challenging, and the need for food security is critical 

[12]. The application of modeling techniques, such as time 

series analysis and artificial neural networks, can provide 

more accurate forecasts, enabling farmers and policymakers 

to make more informed and effective decisions. 

Several studies have explored the application of predictive 

models in agriculture, focusing on widely cultivated crops 

such as maize and rice [13]. However, modeling bean pro-

duction, particularly in vulnerable regions like Sub-Saharan 

Africa, has been less explored in the scientific literature, 

representing a significant opportunity for advancements in 

this area [14]. The use of local and regional data, combined 

with advanced modeling techniques, can offer solutions more 

adapted to the specific realities of Mozambique, contributing 

to the maximization of agricultural production and sustainable 

food security. 

This study aims to develop robust predictive models for 

estimating bean production in Mozambique through the ap-

plication of advanced modeling techniques, including the 

ARIMA model and Long Short-Term Memory (LSTM) neural 

networks. The relevance of this research lies in its contribu-

tion to mitigating food insecurity, aligning with the goals of 

SDG 2, and supporting the development of more effective 

public policies and agricultural management strategies. With 

an integrated and scientifically grounded approach, this study 

seeks to offer solutions that not only increase bean produc-

tivity but also strengthen the resilience of agricultural systems 

in Mozambique. 

2. Literature Review 

2.1. Global Context of Beans Production 

Beans, scientifically known as Phaseolus vulgaris, are one 

of the most important legumes globally, valued both for their 

nutritional content and their critical role in food security. 

Originating from the Americas, beans were domesticated over 

7,000 years ago, particularly in regions that now correspond 

to Mexico and Central America, becoming a staple crop in 

pre-Columbian civilizations [15, 16]. Today, beans are widely 

cultivated in various regions around the world, adapting to 

different climatic conditions and cultivation methods. 

Rich in nutrients, beans are an excellent source of 

plant-based proteins, fibers, vitamins such as B1 (thiamine) 

and folic acid, and essential minerals like iron, zinc, magne-

sium, and calcium. These nutrients make beans a vital food for 

promoting health and well-being, especially in regions where 

access to animal proteins is limited [3]. Additionally, beans 

contain bioactive compounds, such as antioxidants, that con-

tribute to the prevention of chronic diseases, including car-

diovascular diseases and diabetes [17]. 

The sustainability of bean cultivation is another aspect 

worth highlighting. As a legume, beans have the ability to fix 

atmospheric nitrogen in symbiosis with soil bacteria, reducing 

the need for nitrogen fertilizers. This trait not only improves 

soil fertility but also contributes to the sustainability of agri-

cultural systems, making beans an ideal crop for sustainable 

farming practices [8, 9]. Furthermore, beans can be grown in 

crop rotation systems, helping to maintain soil health and 

reduce the incidence of pests and diseases [18]. 

The primary global producers of beans include India, Brazil, 

Myanmar, Tanzania, and Uganda. India leads global produc-

tion, accounting for approximately 23.3% of the world's bean 

production, followed by Brazil, which accounts for 10% of 

the global total. These countries not only lead in terms of 

production volume but also play a crucial role in stabilizing 

the global bean market [19, 20]. The production of beans in 

these countries is essential to meet the growing demand for 

plant-based proteins, particularly in developed countries 

where there is a rising trend toward plant-based diets [21]. 

In Africa, beans are a vital crop, especially in Sub-Saharan 

Africa, where they are one of the main sources of protein for 

millions of people. Countries like Tanzania, Uganda, Ethiopia, 

Kenya, and Burundi are the continent's largest producers, 

collectively contributing to over 50% of Africa's bean pro-

duction. Tanzania stands out as the largest producer in Africa, 

with production representing about 17.2% of the continent's 

total. These countries not only grow beans for domestic con-

sumption but also serve as important regional exporters [22, 

23]. 

Bean production in Africa is predominantly carried out by 
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smallholder farmers who heavily rely on this crop for food 

security and income generation. In many areas, beans are 

grown in intercropping systems with other crops such as 

maize, which helps improve soil fertility and the overall 

productivity of farms. However, these smallholder farmers 

face significant challenges, such as low soil fertility, lack of 

access to high-quality seeds, and adverse climatic conditions, 

which limit productivity [7, 24, 25]. 

Climate change poses a significant threat to bean produc-

tion in Africa. Variations in climatic conditions, such as pro-

longed droughts and extreme temperatures, directly impact 

crop yields. Studies show that to mitigate these impacts, it is 

necessary to develop bean varieties that are more resistant to 

water and heat stress, as well as to adopt more sustainable 

farming practices that can help farmers adapt to changing 

climate conditions [4, 5]. 

Despite these challenges, the potential to increase bean 

production in Africa is significant. With adequate support in 

terms of research, agricultural extension, and infrastructure, 

African farmers can substantially increase their yields. 

Breeding programs aimed at developing varieties with greater 

resistance to pests and diseases, as well as a higher nitro-

gen-fixing capacity, are essential for advancing productivity 

in the region [8, 9]. 

The global bean market is expanding, driven by the grow-

ing demand for plant-based proteins, especially in developed 

countries where there is a rising trend toward plant-based 

diets. The commercialization of beans in international mar-

kets, particularly among the largest producers in Africa and 

Latin America, has the potential to increase farmers' incomes 

and improve the trade balance of these countries. However, 

challenges such as price volatility and trade barriers must be 

addressed to maximize economic benefits [21, 26]. 

Post-harvest management practices are crucial for reducing 

losses and ensuring the quality of beans destined for the 

market. It is estimated that post-harvest losses in Africa can 

vary significantly depending on storage conditions and han-

dling practices. Investments in infrastructure, such as her-

metic silos and advanced drying techniques, are essential for 

minimizing these losses and improving the efficiency of the 

supply chain [27, 28]. 

Research and technological development play a vital role in 

promoting bean production. Initiatives involving genetic 

editing, the use of artificial intelligence for crop monitoring, 

and yield forecasting are gaining traction, especially in re-

gions where resources are limited. These technologies can 

help optimize production, improve crop resilience, and ulti-

mately ensure food security [10, 11]. 

Beans are not only a food crop but also a strategically im-

portant commercial crop. In countries like Brazil and India, 

large volumes of beans are produced both for domestic con-

sumption and for export, contributing significantly to these 

countries' economies. Competing in international markets 

requires not only high production volumes but also quality 

assurance and the ability to meet the specific demands of 

different markets [29, 30]. 

In Africa, beans play a fundamental role in food security, 

especially in rural communities where access to other protein 

sources is limited. The per capita consumption of beans in 

East African countries, such as Tanzania and Uganda, is 

among the highest in the world, reflecting the cultural and 

nutritional importance of this legume in the diet of these 

populations. Promoting beans as a resilient and nutrient-rich 

crop is essential to improving food security and public health 

in the region [14, 31]. 

Developing value chains for beans is essential for maxim-

izing the economic benefits of this crop. This includes 

strengthening farmers' cooperatives, improving access to 

credit and international markets, and implementing policies 

that encourage sustainable production and bean exports. Such 

measures can significantly contribute to the economic de-

velopment of producing countries [32, 33]. 

Finally, beans continue to play a central role in the global 

food security agenda. As the world faces increasing chal-

lenges related to climate change and the need for more sus-

tainable diets, beans emerge as a key crop, with the potential 

to contribute to both nutrition and agricultural resilience. 

Global and regional initiatives should continue to support the 

research, development, and expansion of bean production, 

ensuring that this essential grain continues to feed millions of 

people worldwide [13, 34]. 

2.2. Beans Production in Mozambique 

Beans production in Mozambique plays a crucial role in 

food security and the livelihoods of rural populations, partic-

ularly in arid and semi-arid regions. As the second most cul-

tivated cereal in the country after maize, beans is highly val-

ued for its drought resistance and ability to grow in less fertile 

soils, making it a vital crop for Mozambican agriculture [35]. 

Despite its potential, beans productivity in Mozambique faces 

significant challenges, including irregular rainfall, limited use 

of certified seeds, and lack of access to quality agricultural 

inputs [36, 37]. 

In Mozambique, beans (Phaseolus vulgaris) are one of the 

most important legumes, playing a vital role in food security 

and the agricultural economy of the country. Originally from 

the Americas, beans were introduced to Mozambique during 

the colonial period and have since become a key crop for 

many rural communities. The diversity of varieties cultivated 

in the country reflects the different agro-ecological conditions 

and regional food preferences, with Boer, Nhemba, Manteiga, 

Jugo, and Oloko beans being the most common varieties [38]. 

Bean production in Mozambique is largely carried out by 

smallholder farmers who rely on the crop for subsistence and 

income generation. Agricultural practices in Mozambique are 

characterized by traditional farming techniques and family 

labor, making beans an essential crop for the sustainability of 

small farms. This reliance on beans is evident in many regions 

where beans are intercropped with other crops like maize and 
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cassava, helping to diversify production and increase house-

hold food security [39]. 

The diversity of bean varieties grown in Mozambique re-

flects their adaptation to the country’s varied climate and soil 

conditions. For example, Boer beans are prevalent in drier 

areas, such as the southern provinces, while Manteiga beans 

are more common in regions with greater water availability, 

like Zambezia. This variety in production allows farmers to 

select the species best suited to local conditions, maximizing 

productivity and crop resilience [38]. 

However, bean production in Mozambique faces signifi-

cant challenges, including low soil fertility, climate variability, 

and limited access to quality agricultural inputs. Soil fertility 

is a critical issue, especially in regions where the use of ferti-

lizers is limited due to high costs. Additionally, bean crops are 

often affected by pests and diseases, which can drastically 

reduce yields. These challenges highlight the need for re-

search and development interventions, as well as policies 

supporting access to appropriate agricultural technologies [5, 

40] 

Mozambique has significant potential to increase bean 

production, particularly with the adoption of improved agri-

cultural practices and higher-yielding varieties. Programs like 

Sustenta, aimed at increasing agricultural productivity 

through technical and financial support for farmers, have 

shown promising results. For instance, despite a reduction in 

the area cultivated with beans in 2021, there was a substantial 

increase in productivity, indicating that improvements in 

agricultural management can compensate for limited land 

area. 

Sustainability is a central concern in Mozambique's bean 

production. Beans’ ability to fix nitrogen in the soil helps 

improve fertility and reduce the need for chemical fertilizers, 

which are expensive and often inaccessible to smallholder 

farmers, [41]. This characteristic makes beans particularly 

important in low-input farming systems, as found in many 

parts of Mozambique, contributing to the long-term sustain-

ability of agriculture in the country [24]. 

The bean market in Mozambique is dominated by domestic 

consumption, with a large portion of the production intended 

for home use. However, Boer beans have emerged as an ex-

port product, particularly to markets in India. Bean exports are 

an important source of income for farmers and contribute to 

the country's trade balance. Nevertheless, reliance on a vola-

tile external market poses risks, and legal and logistical issues 

have occasionally hampered exports, as recently seen with 

temporary restrictions imposed at the port of Nacala [42]. 

Post-harvest losses in Mozambique's bean production also 

pose significant challenges. These losses are estimated to 

range from 10% to 30%, depending on the variety and storage 

conditions. Improving post-harvest practices, including the 

adoption of hermetic silos and better drying techniques, is 

essential to reduce these losses and ensure a greater propor-

tion of production is available for consumption or sale [43, 

44]. 

The climatic context in Mozambique is a critical factor in-

fluencing bean production. Irregular rainfall and prolonged 

droughts pose constant challenges for farmers. Moreover, 

climate change is increasing the frequency and severity of 

these events, requiring more resilient agricultural practices 

and the development of bean varieties more resistant to water 

stress [4, 25]. 

Agricultural research in Mozambique has focused on im-

proving bean varieties to increase productivity and resistance 

to pests and diseases. The development of cultivars adapted to 

local conditions, with greater nitrogen-fixing capacity and 

better resistance to adverse climatic conditions, is a priority 

for agricultural research institutions in the country. These 

innovations are essential to ensure the long-term viability of 

bean production [9, 40] 

Promoting bean production in Mozambique extends be-

yond technical aspects and involves empowering farmers with 

sustainable agricultural practices and post-harvest manage-

ment skills. Ongoing training and technical support are crucial 

to ensuring that farmers adopt best practices and maximize 

their crop yields. Additionally, improving access to finance 

and markets is vital for farmers to invest in inputs and tech-

nologies that enhance productivity [32, 33]. 

Beans, as both a subsistence and commercial crop, are 

fundamental to food security in Mozambique. In many re-

gions of the country, beans are the primary source of protein 

and essential nutrients, especially in rural communities where 

access to other protein sources is limited. The role of beans in 

the diet of these populations cannot be underestimated, and 

promoting them as a strategic food is crucial for public health 

and nutrition [14, 45]. 

In terms of sustainability, beans play a critical role in mit-

igating the effects of climate change and promoting agricul-

tural practices that preserve natural resources. Beans' ability 

to improve soil health and reduce the need for chemical ferti-

lizers significantly contributes to environmental sustainability. 

Additionally, intercropping beans with other crops helps di-

versify agricultural production, increasing the resilience of 

farming systems and improving food security [13, 34]. 

Finally, the future of bean production in Mozambique de-

pends on an integrated approach that combines technological 

innovation, government support, and farmer empowerment. 

With continued investment in research and development, 

strengthening value chains, and improving market access, 

beans have the potential to remain a vital crop for food secu-

rity and sustainable economic development in Mozambique. 

2.3. Previous Studies on Agricultural Production 

Modeling and Bean Forecasting 

The modeling and forecasting of agricultural production 

have been the focus of numerous studies over the years, un-

derscoring their importance for food security and efficient 

resource management. In the context of beans (Phaseolus 

vulgaris), a wide range of methodological approaches have 
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been explored, from traditional statistical models like ARIMA 

(Auto-Regressive Integrated Moving Average) to more ad-

vanced machine learning techniques, including Artificial 

Neural Networks (ANN) and Support Vector Regression 

(SVR) [46]. These models have been extensively used to 

predict bean production, aiming to support strategic agricul-

tural decisions, especially in regions where this crop plays a 

crucial role in food security [47]. 

Traditional statistical models like ARIMA have been pop-

ular due to their ability to capture temporal patterns in his-

torical production data [48]. These models are particularly 

useful in situations where a significant amount of historical 

data is available, allowing for a robust analysis of trends and 

seasonality in agricultural production. Studies have shown 

that despite the relative simplicity of ARIMA, it can provide 

reliable forecasts in contexts where external variables are 

minimally influential or where cultivation conditions remain 

relatively stable over time [49, 50]. 

On the other hand, machine learning techniques such as 

ANN have gained prominence in agricultural production 

modeling due to their ability to handle large volumes of data 

and capture complex nonlinear patterns. These techniques are 

particularly effective in scenarios where agricultural produc-

tion is influenced by a wide range of factors, including cli-

matic variables, management practices, and soil characteris-

tics. Recent studies have demonstrated that ANNs, especially 

when combined with other techniques such as Principal 

Component Analysis (PCA) for dimensionality reduction, can 

outperform traditional statistical models in terms of prediction 

accuracy [51, 52]. 

Furthermore, hybrid approaches that combine statistical 

models and machine learning techniques have shown promise 

in bean production forecasting. These hybrid models leverage 

the strengths of traditional methods like ARIMA to capture 

temporal patterns while using machine learning techniques to 

incorporate external and nonlinear variables. Studies indicate 

that these approaches can significantly improve forecast ac-

curacy, particularly in scenarios with high variability in cul-

tivation conditions [49]. 

Finally, the literature review highlights the growing im-

portance of integrating climate data into predictive modeling. 

With climate change increasingly affecting agricultural pro-

duction, models that incorporate real-time climate data have 

the potential to provide more accurate short-term forecasts, 

helping farmers make informed decisions about crop man-

agement. In the context of beans, this integration is essential 

for developing mitigation and adaptation strategies, ensuring 

the resilience of agricultural practices in the face of future 

climate variability. 

3. Materials and Methods 

3.1. Materials 

This study focused on analyzing beans production in 

Mozambique, using annual data from 2002 to 2022, covering 

61 observations. The choice of 1961 as the starting point is 

based on its historical and methodological significance, 

marking the beginning of the FAOSTAT statistical series. This 

starting point ensures a consistent and comprehensive analysis 

of agricultural production trends in Mozambique over time, 

providing valuable insights into the evolution of maize pro-

duction across six decades. 

The data analysis was conducted using Python 3.12.5, 

chosen for its robustness and the wide range of specialized 

libraries available, such as Pandas, Numpy, TensorFlow, and 

Scikit-learn. These tools are essential for data manipulation 

and predictive modelling, particularly in the context of time 

series. To capture trends and patterns in beans production, 

advanced models such as LSTM feedback neural networks 

and ARIMA were employed. Python’s widespread use in 

scientific research ensured the precision and reliability of the 

results obtained. 

3.2. Data Source 

The beans production data was sourced from FAOSTAT, 

maintained by the Food and Agriculture Organization of the 

United Nations (FAO). This secondary database provides 

extensive statistical information on agriculture and food se-

curity, serving as a crucial resource for academic research and 

public policy. 

3.3. Methods 

3.3.1. ARIMA Modeling 

(i). Model Identification 

For modeling bean production in Mozambique, the ARIMA 

approach was utilized. The first step involved analyzing the 

ACF (Autocorrelation Function) and PACF (Partial Auto-

correlation Function) plots of the differenced time series. 

These analyses are essential for identifying the order of the 

autoregressive (AR), differencing (I), and moving average 

(MA) components that best fit the time series. Based on the 

observed patterns, several ARIMA models were proposed for 

subsequent parameter estimation and validation. 

(ii). Parameter Estimation 

The parameters of the identified ARIMA models were es-

timated using the maximum likelihood method, which seeks 

to optimize the values of the AR and MA components. This 

method allows for determining the most suitable configura-

tion of the model parameters, ensuring that the fitted model 

accurately represents the historical data. The training period 

for the ARIMA model included data from 2002 to 2009. 

(iii). Validation and Evaluation 

The validation of the ARIMA models was performed using 
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actual data from the period 2010 to 2020. Diagnostic tests 

were applied to the residuals of the fitted models, including 

the Box-Pierce test to check for autocorrelation in the resid-

uals and the ARCH test to evaluate heteroscedasticity. Addi-

tionally, normality tests, such as the Shapiro-Wilk and 

Jarque-Bera tests, were conducted to ensure the residuals of 

the model conformed to a normal distribution. These proce-

dures were crucial in ensuring that the selected model was 

robust and reliable for forecasting. 

3.3.2. LSTM Neural Networks 

(i). Data Preparation 

For building the LSTM model, the historical bean production 

data was initially normalized using the MinMaxScaler tech-

nique, which scales the values between 0 and 1. This step is 

crucial for improving the efficiency and effectiveness of the 

neural network training process. The data was then split into 

training and testing sets. The training period comprised the 

years 2002 to 2016, while the data from 2017 to 2022 was 

reserved for model evaluation. Time sequences of 3 years were 

created to capture temporal dependencies present in the data. 

(ii). Model Architecture and Training 

The architecture of the LSTM neural network was defined 

with two LSTM layers, each containing 50 units. Following 

the LSTM layers, a dense layer was added to generate the 

predictions. The model was trained over 100 epochs, using the 

mean squared error (MSE) loss function and the Adam opti-

mizer. During training, which used data from 2002 to 2016, 

the model iteratively adjusted its weights to minimize pre-

diction errors, refining its ability to capture complex temporal 

patterns. 

(iii). Evaluation and Validation 

The LSTM model was evaluated using the test data from 

2017 to 2022. The model's performance was assessed through 

metrics such as RMSE and MAPE, providing a quantitative 

evaluation of prediction accuracy. These metrics were crucial 

in validating the effectiveness of the LSTM model in fore-

casting bean production. 

Forecasting for 2023 to 2030 

After validation, the LSTM model was used to forecast 

bean production for the period 2023 to 2030. Additionally, the 

Bootstrapping technique was applied to calculate confidence 

intervals for the forecasts, providing a measure of the uncer-

tainty associated with the predictions. These confidence in-

tervals help contextualize the robustness of the forecasts made 

by the model. 

3.3.3. Selection of the Best Model for Estimating 

Agricultural Production 

To identify the most suitable model for forecasting beans 

production in Mozambique, a comparative analysis of the 

ARIMA and LSTM models was conducted using the MAPE 

metric. The model that demonstrated the lowest MAPE was 

selected as the most accurate, making it the preferred choice 

for future projections. This rigorous approach enhances the 

reliability of the forecasts, providing a robust foundation for 

informed decision-making in agricultural planning and food 

security policy development. 

4. Results 

4.1. Exploratory Analysis of the Beans Time 

Series 

The statistical analysis of bean production in Mozambique 

(2002-2022), based on the annual data series, provides a 

detailed understanding of the variability and characteristics of 

this crop over the years (Table 1). The average production is 

217,641.75 tons, while the median is slightly lower at 

203,582.41 tons. The modest difference between the mean and 

median suggests a relatively symmetrical distribution, which is 

further supported by a skewness of 0.46. This skewness value 

indicates a slight rightward tilt, but not significantly so, 

implying that the data distribution is fairly balanced. 

The absence of a mode implies that there is no most 

frequently observed value in the data series, reflecting a 

distribution without a clear dominant pattern of production 

over the years. The standard deviation of 129,407.66 tons and 

the variance of 16,746,341,530 indicate considerable 

variability in the annual bean production. The coefficient of 

variation of 59.46% points to high variability relative to the 

mean, suggesting that while there is a defined average 

production, the annual fluctuations are quite significant. 

The range, which is the difference between the maximum 

of 469,886 tons (2022) and the minimum of 47,725 tons 

(2015), is 422,161 tons. This wide variation reflects the 

influence of variable external factors, such as climatic 

conditions, cultivation practices, and agricultural policies, 

which affect the annual bean production in Mozambique. 

Table 1. Descriptive Measures of the Annual Beans Production 

Series. 

Descriptive Statistics Value 

Mean 217641.7524 

Median 203582.41 

Mode #N/A 

Variance 16746341530 

Standard Deviation 129407.6564 

Coeficient of variation 0.594590215 

Maximum 469886 

http://www.sciencepg.com/journal/ijae


International Journal of Agricultural Economics http://www.sciencepg.com/journal/ijae 

 

73 

Descriptive Statistics Value 

Minimum 47725 

Skewness 0.456081156 

Kurtosis -1.064378315 

Range 422161 

n 21 

4.2. Stationarity Test or Unit Root Test of the 

Beans Series 

Stationarity is crucial for the application of many time 

series models, as it suggests that the statistical properties of 

the series are consistent over time, allowing for more accurate 

modeling and forecasting. 

4.2.1. Analysis of the Time Series for Beans 

Production in Mozambique 

The time series plot of bean production in Mozambique 

from 2002 to 2022 reveals an overall increasing trend, marked 

by significant annual fluctuations (Figure 1). A sharp increase 

is observed after 2015, possibly indicating improvements in 

agricultural practices, government support policies, or 

favorable climatic conditions. However, the abrupt declines in 

2014 and 2015 suggest the influence of unfavorable external 

factors during that period. 

 
Figure 1. Time Series Analysis of Beans Production in Mozambique (1961-2022). 

The differenced series of bean production highlights the 

annual changes from 2002 to 2022. This transformation was 

applied to remove long-term trends, allowing for a more precise 

analysis of short-term variations. Focusing on interannual 

variations helps to identify fluctuations that may be related to 

specific events or temporary factors, providing a clearer 

understanding of the underlying dynamics in bean production. 

 
Figure 2. Decomposition of the Time Series of Beans Production in Mozambique. 
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4.2.2. Decomposition of the Time Series of Beans 

Production in Mozambique 

The time series decomposition provides a detailed view of 

the trend, seasonality, and residual components (Figure 2). 

The trend indicates a sharp increase in recent years, possibly 

linked to improvements in agricultural infrastructure or a rise 

in demand for beans. The graphical analysis does not reveal a 

clear seasonal pattern, suggesting that bean production does 

not follow defined seasonal cycles during the analyzed period. 

The residuals show fluctuations that are not explained by the 

trend, indicating the presence of random variability or the 

influence of unmodeled factors. 

4.2.3. Autocorrelation Function (ACF) of Beans 

Production in Mozambique 

The ACF (Autocorrelation Function) plot of the original 

series does not show significant peaks at specific lags, 

indicating the absence of consistent seasonality (Figure 3). 

The autocorrelation values decrease rapidly, suggesting that 

annual production does not strongly depend on previous 

values over long intervals. This rapid decline in 

autocorrelations reflects the predominance of a short-term 

trend, with little influence from cycles or regular long-term 

patterns. 

After differentiation, the ACF plot shows that 

autocorrelations continue to drop quickly after the initial lags, 

indicating that the series lacks significant long-term 

correlation structure. This suggests that the differenced series 

is closer to being stationary, which is crucial for analyses 

requiring statistical consistency over time, enabling a more 

effective approach to modeling and forecasting variations in 

production. 

 
Figure 3. Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) of Beans Production in Mozambique. 

4.2.4. Partial Autocorrelation Function (PACF) of 

Beans Production in Mozambique 

The PACF (Partial Autocorrelation Function) plot shows 

some peaks in the initial lags, suggesting the presence of 

low-order autoregressive components (Figure 4). This 

indicates that past values have a moderate influence on future 

values, reflecting that recent observations directly affect the 

subsequent values in the series. 

 
Figure 4. Partial Autocorrelation Function (PACF) of Beans Production in Mozambique. 
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The presence of peaks in the early lags in the PACF plot 

confirms the existence of low-order autoregressive 

components, meaning that past values moderately influence 

future values. This behavior is typical in time series where 

adjacent observations are correlated, allowing low-order 

autoregressive models to effectively capture the underlying 

dynamics of the series. 

4.2.5. Augmented Dickey-Fuller (ADF) Test for the 

Beans Series 

The p-value of 0.354 from the ADF (Augmented 

Dickey-Fuller) test for the original series suggests that there is 

not enough evidence to reject the null hypothesis of a unit root 

(Table 2). This indicates that the series is non-stationary and 

may require a transformation, such as differencing, for 

short-term modeling. The non-stationarity of the series 

implies that its statistical properties, such as mean and 

variance, change over time, which can complicate the 

application of certain forecasting models. 

After differencing, the p-value of 0.0001 indicates that the 

null hypothesis of a unit root is rejected, confirming that the 

differenced series is stationary. This means that the series now 

has constant statistical properties over time, making it suitable 

for applying time series models that assume stationarity, such 

as the ARIMA model, thereby facilitating more accurate 

analyses and forecasts. 

Table 2. Augmented Dickey-Fuller (ADF) Test for the Beans Series. 

Test Statistic p-Value Lags n 

Critical Value 

(1%) (5%) (10%) 

Orginal Series 

-1.859 0.354 3 17 -3.920 -3.065 -2.673 

Differenced Series 

-4.652 0.0001 1 19 -3.831 -3.030 -2.655 

 

4.3. Estimation with Time Series Models 

(ARIMA) for Beans Production 

4.3.1. Model Identification 

The analysis of the ACF and PACF plots for the differenced 

time series of bean production suggests specific 

characteristics indicative of temporal dependencies. The ACF 

plot shows a gradual decay after the first lag, which is 

suggestive of a potential autoregressive structure in the series. 

This pattern indicates that production in a given year is 

influenced by production levels in previous years, justifying 

the consideration of an ARIMA model with an autoregressive 

component. Moreover, the PACF plot exhibits a sharp cut-off 

after the first lag, indicating that the influence of lags beyond 

the first is not significant. This behavior supports the 

suitability of a first-order autoregressive term (AR(1)), which 

captures the direct relationship between the current value and 

the immediately preceding value in the time series. 

Based on these observations, the ARIMA(1,1,0) and 

ARIMA(0,1,1) models emerge as strong candidates for 

modeling the series, with the former capturing the 

autoregressive dependency and the latter accounting for the 

possibility of temporary shocks. For a more robust modeling 

approach that captures both the autoregressive effects and 

short-term shocks, the ARIMA(1,1,1) model can also be 

considered, as it incorporates both AR and MA components, 

providing greater flexibility in capturing the underlying 

dynamics of the data. On the other hand, the ARIMA(0,1,1) 

model is suggested by the ACF plot, which shows a clear 

cut-off after the first lag, indicating the presence of a negative 

correlation that can be captured by a first-order moving 

average (MA) component. 

Finally, the ARIMA(1,1,1) model remains a viable option, 

considering the patterns observed in both the ACF and PACF 

plots, with cut-offs after the first lag in each, suggesting that a 

combination of AR(1) and MA(1) components may provide a 

robust model for the differenced time series. These 

recommendations are based on the sharp cut-offs in the ACF 

and PACF plots, which are classic indicators for selecting the 

AR and MA orders in ARIMA models. 

4.3.2. Parameter Estimation 

Table 3 presents the diagnostic test results for the residuals 

of the ARIMA models fitted to bean production. These tests 

are crucial for evaluating the adequacy of the models by 

examining residual autocorrelation (Box-Pierce), 

heteroscedasticity (ARCH), and residual normality 

(Shapiro-Wilk and Jarque-Bera). In the Box-Pierce test, all 
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models show relatively high p-values (above 0.4), indicating 

no significant evidence of autocorrelation in the residuals. 

This suggests that the ARIMA(1,1,0), ARIMA(0,1,1), and 

ARIMA(1,1,1) models are appropriate in terms of residual 

independence, which is an essential assumption for the 

validity of ARIMA models. 

Regarding the ARCH test, all models exhibit high p-values 

(above 0.8), indicating no significant heteroscedasticity in the 

residuals. This implies that the residual variances are constant 

over time, a positive sign that the models are stable and 

consistent in their predictive capabilities. However, the 

normality tests, such as Shapiro-Wilk and Jarque-Bera, reveal 

low p-values for all models, indicating a violation of the 

normality assumption in the residuals. Although normality is 

a desirable assumption, especially for statistical inference, its 

violation is not uncommon in time series data. As long as the 

residuals are approximately symmetric and free from 

significant autocorrelation, the models can still be considered 

valid for forecasting purposes. The violation of normality, 

however, suggests that the forecasts may have uncertainties 

not fully captured by the confidence intervals. 

Considering all the diagnostic tests, the ARIMA(1,1,1) 

model appears to be the most robust, balancing residual 

independence and the absence of heteroscedasticity, despite 

the violation of the normality assumption. This model 

effectively captures the dynamics of the time series and 

provides a solid foundation for forecasting bean production in 

Mozambique. 

Table 3. Parameter Estimates for the ARIMA (p, d, q) Model Fitted to Beans Production. 

Model Parameter Estimates t-Stat P-value 

ARIMA(1,1,0) AR(1) 0.1600351 5.9156461 0.0003 

ARIMA(1,1,0) ∅2  6.665689e+9 1.206511e+21 0.0000 

ARIMA(0,1,1) MA(1) -0.2853856 -7.039339 0.0000 

ARIMA(0,1,1) ∅2  7.870594e+9 5.882748e+20 0.0000 

ARIMA(1,1,1) AR(1) -0.2897991 -6.313837 0.0001 

ARIMA(1,1,1) MA(1) 0.5418300 8.716570 0.000 

ARIMA(1,1,1) ∅2  7.837963e+9 4.413375e+19 0.0000 

 

4.3.3. Diagnostic Test of Residuals for Beans 

Production Models 

Table 4 presents the diagnostic test results for the residuals 

of the ARIMA models fitted to bean production. These tests 

are crucial for evaluating the adequacy of the models by 

examining residual autocorrelation (Box-Pierce), 

heteroscedasticity (ARCH), and residual normality 

(Shapiro-Wilk and Jarque-Bera). In the Box-Pierce test, all 

models show relatively high p-values (above 0.4), indicating 

no significant evidence of autocorrelation in the residuals. 

This suggests that the ARIMA(1,1,0), ARIMA(0,1,1), and 

ARIMA(1,1,1) models are appropriate in terms of residual 

independence, which is an essential assumption for the 

validity of ARIMA models. 

Regarding the ARCH test, all models exhibit high p-values 

(above 0.8), indicating no significant heteroscedasticity in the 

residuals. This implies that the residual variances are constant 

over time, a positive sign that the models are stable and 

consistent in their predictive capabilities. However, the 

normality tests, such as Shapiro-Wilk and Jarque-Bera, reveal 

low p-values for all models, indicating a violation of the 

normality assumption in the residuals. Although normality is 

a desirable assumption, especially for statistical inference, its 

violation is not uncommon in time series data. As long as the 

residuals are approximately symmetric and free from 

significant autocorrelation, the models can still be considered 

valid for forecasting purposes. The violation of normality, 

however, suggests that the forecasts may have uncertainties 

not fully captured by the confidence intervals. 

Considering all the diagnostic tests, the ARIMA(1,1,1) 

model appears to be the most robust, balancing residual 

independence and the absence of heteroscedasticity, despite 

the violation of the normality assumption. This model 

effectively captures the dynamics of the time series and 

provides a solid foundation for forecasting bean production in 

Mozambique. 
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Table 4. Diagnostic Test of Residuals for Beans Production Models. 

Model 

Box-Pierce ARCH Shapiro-WilK Jarque-Bera 

Q p-value TR2 p-value W p-value JB p-value 

ARIMA(1,1,0) 9.993 0.4411 1.2123 0.8761 0.8825 0.0163 13.0579 0.0015 

ARIMA(0,1,1) 8.596 0.5708 0.8005 0.9384 0.8949 0.0279 10.9280 0.0042 

ARIMA(1,1,1) 8.283 0.6012 0.8732 0.9284 0.8905 0.0230 9.99704 0.0068 

 

4.3.4. Comparison of Model Performance 

Table 5 presents a performance comparison between three 

ARIMA models applied to the time series of bean production, 

utilizing metrics such as AIC (Akaike Information Criterion), 

BIC (Bayesian Information Criterion), HQIC (Hannan-Quinn 

Information Criterion), RMSE (Root Mean Square Error), and 

MAPE (Mean Absolute Percentage Error). These metrics are 

essential for evaluating the adequacy and accuracy of the 

models. 

The ARIMA(1,1,0) model shows an AIC of 512.1632, a 

BIC of 514.1547, and an HQIC of 512.5520. These values are 

slightly lower than those of the ARIMA(1,1,1) model but very 

close to those of the ARIMA(0,1,1) model. In terms of RMSE 

and MAPE, the ARIMA(1,1,0) model has an RMSE of 

80,099.9815 and a MAPE of 45.06%, indicating that while the 

model has reasonable accuracy, it is not the most precise 

among the three. 

The ARIMA(0,1,1) model is slightly superior to the 

ARIMA(1,1,0) in terms of AIC, BIC, and HQIC, with values 

of 512.1592, 514.1507, and 512.5480, respectively. The 

RMSE for this model is 79,099.6801, which is lower than that 

of the ARIMA(1,1,0), suggesting a smaller root mean square 

error. However, the MAPE of 48.27% indicates that the model 

is less accurate in terms of mean absolute percentage error. 

On the other hand, the ARIMA(1,1,1) model exhibits 

competitive performance with an RMSE of 78,451.9424, the 

lowest among the three models, suggesting better overall 

accuracy. Despite having slightly higher AIC, BIC, and HQIC 

values (513.8875, 516.8747, and 514.4707, respectively), the 

lower RMSE and a MAPE of 46.43% indicate that this model 

may better capture the data's variation, albeit with a slight 

penalty in terms of complexity. 

Based on these results, the ARIMA(1,1,1) model, despite 

being slightly more complex, appears to be the most suitable 

for estimating bean production in Mozambique due to its 

lower RMSE, indicating higher forecast accuracy, and an 

acceptable MAPE, showing good performance in terms of 

percentage error. 

Table 5. Comparison of Model Performance for Beans Production. 

Model AIC BIC HQIC RMSE MAPE 

ARIMA(1,1,0) 512.1632 514.1547 512.5520 80099.9815 45.06% 

ARIMA(0,1,1) 512.1592 514.1507 512.5480 79099.6801 48.27% 

ARIMA(1,1,1) 513.8875 516.8747 514.4707 78451.9424 46.43% 

 

4.3.5. Training and Evaluation of ARIMA Models 

with Real Data from 2010 to 2020 

The analysis of the training results for the ARIMA models 

applied to bean production in Mozambique from 2010 to 2020 

reveals significant discrepancies between the models (Table 

6). The ARIMA(1,1,1) model exhibits the lowest RMSE 

(74,293.80) and the lowest MAPE (59%), suggesting that it 

fits the historical data better and provides more accurate 

forecasts compared to the other two models. However, the 

relatively high MAPE still indicates that, despite being the 

most accurate among the three, this model presents a 

considerable margin of error. 

The high MAPE values in the ARIMA(1,1,0) and 

ARIMA(0,1,1) models, particularly in the ARIMA(0,1,1) 

model with a MAPE of 103%, indicate significant lack of 

precision. This inaccuracy may be attributed to various factors, 

including extreme variations in production during 2014 and 

2015 when the actual values were substantially lower than in 
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previous and subsequent years. These fluctuations may have 

made modeling more challenging, especially for models that 

rely on more stable patterns over time. 

Another factor that may have contributed to the high 

MAPE values is the limited size of the time series, composed 

of only 21 observations. In time series with few observations, 

forecasts tend to be less accurate due to the lack of sufficient 

data to capture the underlying complexity. This can result in 

models that do not generalize well, consequently producing 

forecasts with large margins of error, particularly during 

periods of high volatility, as observed in the years of low 

production. 

Table 6. Training and Evaluation of ARIMA Models with Real Beans Production Data from 2010 to 2020. 

Year Actual Dada 

Predicted Data 

ARIMA(1,1,0) ARIMA(0,1,1) ARIMA(1,1,1) 

2010 229232 259164.77 2614913.61 247692.73 

2011 230461 262791.16 285394.07 274329.38 

2012 282000 230640.94 216141.12 193059.63 

2013 283000 289545.87 299238.45 327124.26 

2014 51583 283146.41 278748.42 243728.60 

2015 47725 177014.04 278942.97 20946.35 

2016 203582 47160.15 62287.81 74187.48 

2017 343290 226401.16 240576.81 226774.40 

2018 361207 363744.77 370183.14 365430.01 

2019 399511 363830.24 358856.80 346440.25 

2020 325872 405119.12 410155.37 425581.95 

RMSE 79254.24 91417.68 74293.80 

MAPE 83% 103% 59% 

 

The ARIMA(1,1,1) model is the most suitable for 

estimating bean production in Mozambique due to its 

efficient combination of autoregressive and moving 

average components, which demonstrate statistical 

significance. This model maintains the independence and 

stability of the residuals, despite the violation of the 

normality assumption, and it presents the lowest RMSE and 

an acceptable MAPE, reflecting a good predictive 

capability even in the face of extreme production 

fluctuations and a limited time series. 

4.3.6. Forecasted Beans Production in Mozambique 

from 2023 to 2030 

Table 7 presents the forecasted values for bean production 

in Mozambique for the period from 2023 to 2030, using the 

ARIMA model. The forecasted values indicate stable 

production over the years, with figures consistently hovering 

around 465,000 tons for all the years analyzed. 

The 95% confidence intervals illustrate the uncertainty 

associated with these forecasts. For 2023, the confidence 

interval ranges from 290,082.74 to 637,122.92 tons, 

indicating a significant spread, which reflects a moderate 

level of uncertainty in the predictions. Over the years, the 

confidence intervals remain broad, but with slight variations, 

suggesting that while the central forecast remains stable, the 

uncertainty about the actual outcomes is relatively constant. 

This stability in the forecasted values suggests that, 

according to the ARIMA model, no major fluctuations in bean 

production in Mozambique are expected during this period. 

However, the width of the confidence intervals indicates that 

considerable uncertainty factors still exist, which should be 

taken into account in agricultural planning and in the 

formulation of policies related to bean production in the 

country. 

 
 

http://www.sciencepg.com/journal/ijae


International Journal of Agricultural Economics http://www.sciencepg.com/journal/ijae 

 

79 

Table 7. Forecasted Beans Production in Mozambique from 2023 to 

2030 by the ARIMA Model. 

Year 
Forecasted 

Value 

Confidence Intervals (95%) 

Lower Bound Upper Bound 

2023 463602.80 290082.74 637122.92 

2024 465423.66 287539.18 636429.76 

2025 464895.98 287003.46 630046.29 

2026 465048.90 287049.29 628417.71 

2027 465004.59 283479.07 630184.48 

2028 465017.43 285462.71 629990.03 

2029 465013.71 284381.22 628611.47 

2030 465014.79 284762.97 629560.66 

4.4. Estimation with the LSTM Model for Beans 

Production 

4.4.1. Model Training with LSTM 

For training the LSTM model aimed at forecasting bean 

production in Mozambique, the historical production data was 

organized and normalized using the MinMaxScaler, which 

scales the values between 0 and 1, facilitating the model's 

learning process. The data was divided into training and 

testing sets, with the training data comprising the years prior 

to 2017. Time sequences of 3 years were created, allowing the 

model to capture dependencies over time. The LSTM model 

was then trained over 100 epochs, featuring two LSTM layers 

with 50 units each, followed by a dense layer that generated 

the predictions. 

4.4.2. Model Evaluation 

Table 8 presents the evaluation of the LSTM model using 

actual bean production data in Mozambique from 2017 to 

2022. Overall, the model was able to capture the production 

trend, but it exhibited significant variations in specific years. 

For instance, in 2018 and 2022, the model showed consider-

able deviations, with a MAPE of 19.47% and 14.86%, re-

spectively, indicating that the model's predictions for these 

years either underestimated or overestimated the actual pro-

duction. The RMSE was also relatively high in these years, 

reflecting a greater discrepancy between the predicted and 

actual values. 

The average errors over the evaluated years reveal a MAPE 

of 11.48%, suggesting that, on average, the model's predic-

tions deviated from the actual values by approximately 

11.48%. While the model was reasonably accurate in some 

years, such as 2017 and 2020, where the MAPE was 5.42% 

and 4.26% respectively, the larger variations in other years 

indicate that the model may struggle to capture more abrupt 

fluctuations in bean production. This variability suggests the 

need for further refinement of the model, possibly by incor-

porating additional variables or adjusting the model archi-

tecture to improve its ability to handle such fluctuations. 

The larger variations in certain years indicate that the 

LSTM model may not fully capture all the dynamics influ-

encing bean production, suggesting the need for further ad-

justments. These adjustments could include incorporating 

external variables such as climatic conditions, agricultural 

practices, or market policies that may impact production 

fluctuations. However, despite these limitations, the model 

demonstrated a reasonable ability to predict general trends, 

making it a useful tool for estimating bean production from 

2023 to 2030. 

Table 8. LSTM Model Evaluation with Real Beans Production Data from 2017 to 2022. 

Year Actual Dada 

LSTM Model 

Predicted Data RMSE MAPE 

2017 343290 324684.14 18605.86 5.42% 

2018 361207 431537.10 70330.1 19.47% 

2019 399511 439550.54 40039.54 10.02% 

2020 325872 339760.82 13888.82 4.26% 

2021 415828 354035.98 61792.02 14.86% 

2022 469886 400056.07 69829.93 14.86% 

Mean 385932.33 381604.11 45747.71 11.48% 
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4.4.3. Forecasts for 2023 to 2030 

The analysis of the bean production forecasts in Mozam-

bique for the period from 2023 to 2030, utilizing an LSTM 

model combined with the Bootstrapping technique, reveals a 

relatively stable trend over the years (Table 9). The forecasts 

indicate a production range between 383,000 and 401,000 

tons, with no significant annual variations. The average an-

nual growth rate during this period is modest, approximately 

0.5% per year. This stability suggests that, in the absence of 

significant external factors, bean production could remain 

relatively constant, with only slight fluctuations resulting 

from natural variations in cultivation conditions. 

Additionally, the 95% confidence intervals for each year, 

ranging between approximately 27,000 to 55,000 tons, high-

light considerable uncertainty in the predictions, which is 

common in agricultural contexts due to the variability of 

factors such as climate, pests, and agricultural management 

practices. This uncertainty is particularly noticeable in years 

like 2026 and 2028, where the forecasts suggest a potentially 

wider fluctuation. 

However, the LSTM model, reinforced by the Bootstrap-

ping technique, provides a robust and reliable estimate of 

future bean production, making it a valuable tool for agri-

cultural forecasting and strategic planning in Mozambique. 

Table 9. Forecasted Beans Production in Mozambique from 2023 to 

2030 by the LSTM Model and Bootstrapping Technique. 

Year 
Forecasted 

Value 

Confidence Intervals (95%) 

Lower Bound Upper Bound 

2023 398048.43 369034.14 427062.72 

2024 401742.22 379769.05 423715.39 

2025 396214.55 383094.66 409334.44 

2026 389210.80 361887.28 416534.32 

2027 390785.00 366623.55 414946.46 

2028 383291.07 353892.87 412689.27 

2029 388387.96 374141.18 402634.74 

2030 383444.95 369776.86 397113.04 

5. Discussion 

The analysis of descriptive statistics for bean production in 

Mozambique from 2002 to 2022 reveals considerable varia-

bility, with a standard deviation of 129,407 tons and a coeffi-

cient of variation of 59.46%, indicating significant annual 

fluctuations. The slightly positive skewness of 0.46 suggests 

that production has generally been moderately above the 

average in some years, while the negative kurtosis of -1.06 

indicates a lower frequency of extreme values, reflecting 

production that is relatively concentrated around the mean. 

These characteristics are consistent with studies such as those 

by Loo et al. and Kumari et al., which highlight the impact of 

climatic factors and agricultural policies on the variability of 

legume production in tropical regions [53, 54]. The wide 

range of 422,161 tons between the maximum and minimum 

values underscores the vulnerability of bean production to 

external shocks, reinforcing the need for interventions to 

ensure greater stability and resilience in production. 

The time series analysis of bean production in Mozambique 

from 2002 to 2022 reveals an upward trend, especially after 

2015, possibly due to improvements in agricultural practices 

or government support policies, as suggested by studies by 

Odeku et al. and Sileshi et al., which emphasize the positive 

impact of agricultural interventions in tropical regions [55, 

56]. However, the significant fluctuations observed in the 

series, such as the sharp declines in 2014 and 2015, indicate 

the vulnerability of production to external factors, such as 

adverse climatic events, corroborating the findings of 

Oyebanji et al. on the sensitivity of legume crops to climatic 

variations [57]. 

The decomposition of the series does not reveal consistent 

seasonal patterns, aligning with research by Jha et al., which 

shows that bean production in tropical climates does not fol-

low predictable seasonal cycles [58]. The absence of season-

ality in the ACF graph and the initial spikes in the PACF 

suggest that the series can be modeled with low-order auto-

regressive components, as recommended by Amato et al. in 

their recommendations for time series modeling [59]. 

The ADF test confirms that the series is non-stationary, a 

common conclusion in agricultural time series, as observed by 

Lu et al. [60]. After differencing, the series becomes station-

ary, making it suitable for modeling with the ARIMA model, 

as recommended by Dimri et al. [61]. This transformation is 

essential for enabling more accurate and robust forecasts, 

particularly in an agricultural context as volatile as Mozam-

bique. 

The analysis of ARIMA models applied to forecasting bean 

production in Mozambique highlights the ARIMA(1,1,1) 

model as the most effective, balancing accuracy and robust-

ness compared to other configurations. This model proves 

superior to ARIMA(1,1,0) and ARIMA(0,1,1), especially 

during periods of high volatility, such as 2014 and 2015, 

efficiently capturing the fluctuations in production over the 

years. With the lowest RMSE (74,293.80) and a MAPE of 

59%, the ARIMA(1,1,1) model establishes itself as the best 

option for modeling bean production, despite the limitations 

associated with the sample size. 

The high MAPE value, even in the ARIMA(1,1,1) model, 

can be attributed to the limited sample size, comprising only 

21 observations. Short time series tend to complicate precise 

modeling, particularly in contexts like agriculture in 

Mozambique, where large annual fluctuations are common. 

The lack of sufficient data limits the ability of models to 

capture the full complexity of the underlying dynamics, re-
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sulting in forecasts with large margins of error. Studies sug-

gest that small and volatile time series often result in high 

MAPE values due to greater sensitivity to outliers and ex-

treme events [62]. 

Despite these limitations, the ARIMA(1,1,1) model re-

mains the most suitable choice for forecasting bean produc-

tion, given its ability to capture both temporal dependence and 

abrupt fluctuations. This performance underscores the im-

portance of using flexible models in agricultural contexts, as 

highlighted by Dong et al., who point to the effectiveness of 

ARIMA models in high-volatility scenarios, even when the 

sample size is smaller [63]. Therefore, although the high 

MAPE suggests caution in interpreting forecasts, the ARI-

MA(1,1,1) model remains the best available option for mod-

eling bean production in Mozambique. 

Additional studies suggest that, despite the violation of the 

normality assumption of the residuals, the ARIMA(1,1,1) 

model can be considered valid for forecasting as long as the 

residuals are free of significant autocorrelation [64]. The 

model's ability to handle variability and the short duration of 

the series is crucial in regions like Mozambique, where agri-

culture is highly vulnerable to climatic and policy changes, as 

highlighted by Komara & Sirodj [65]. Thus, ARIMA(1,1,1) 

not only offers more accurate forecasts but also becomes a 

valuable tool for informing agricultural policies and produc-

tion strategies in an environment of high uncertainty. 

The analysis of LSTM models applied to forecasting bean 

production in Mozambique reveals that it outperforms the 

ARIMA(1,1,1) model when compared based on MAPE. 

While ARIMA(1,1,1) achieved a MAPE of 59%, the LSTM 

model recorded an average MAPE of 11.48%. This result 

suggests that LSTM, with its ability to capture nonlinear and 

complex patterns in time series, offers more accurate and 

robust forecasts for bean production in Mozambique. 

Although the LSTM model demonstrated a reasonable 

ability to predict general trends in bean production in 

Mozambique, significant variations observed in specific years, 

such as 2018 and 2022, suggest that the model still faces 

challenges in forecasting abrupt fluctuations. The high MAPE 

in those years, reaching 19.47% and 14.86%, respectively, 

indicates that the LSTM either underestimated or overesti-

mated the actual production considerably. These deviations 

may be partially attributed to the limited sample size, which 

includes only 21 observations. Short time series, as noted by 

Liu et al., tend to hinder the effective training of complex 

models like LSTM, which depend on large volumes of data to 

capture nonlinear and complex patterns [66]. The lack of 

sufficient data can limit the model's ability to learn underlying 

dynamics, resulting in forecasts with larger error margins. 

Despite these limitations, the LSTM model still outperforms 

ARIMA(1,1,1), standing out in its ability to capture the var-

iability of bean production in Mozambique. 

Studies such as those by Alzakari et al. reinforce that 

LSTM models, when properly adjusted, can surpass tradi-

tional models in high-volatility scenarios like agriculture [67]. 

The inclusion of exogenous variables, such as climatic data, 

agricultural practices, government policies, and market indi-

cators, can significantly improve LSTM performance, re-

ducing MAPE and increasing forecast accuracy. Expanding 

the training sample or using data enrichment techniques may 

also be effective strategies to improve the predictive capacity 

of LSTM models, as suggested by Tang et al., making it an 

even more robust tool for agricultural production forecasting 

in challenging contexts like Mozambique [68]. This is crucial 

for effective planning and mitigating the risks associated with 

bean production, thus contributing to food and nutritional 

security in the country. 

The analysis of bean production forecasts in Mozambique 

for the period 2023 to 2030, using the LSTM model combined 

with the Bootstrapping technique, suggests stability in pro-

duction, with values oscillating between 383,000 and 401,000 

tons. This forecast, although showing a modest average an-

nual growth rate of about 0.5%, reflects the possibility of 

agricultural production that, in the absence of significant 

external shocks, remains relatively constant. The apparent 

stability in agricultural forecasts may mask underlying vul-

nerabilities, especially in contexts like Mozambique, where 

unpredictable climatic factors and reliance on traditional 

farming practices can introduce unexpected variations in 

production. 

The wide confidence intervals, ranging from 27,000 to 

55,000 tons, reinforce this inherent uncertainty in forecasts, 

suggesting that despite the robustness of the LSTM model, 

there is a considerable margin of error. Studies like those by 

Bouri et al. and Gvozdenac et al. emphasize that in agricul-

tural contexts, forecasts should always be interpreted with 

caution, given that climatic variability, the presence of pests, 

and agricultural management practices play crucial roles [69, 

70]. In Mozambique, this uncertainty is exacerbated by the 

lack of adequate infrastructure and vulnerability to climate 

change, as mentioned by Manuel et al. [71]. 

In the context of food and nutritional insecurity in 

Mozambique, this projected stability in bean production may 

offer some assurance of continuity in supply, but it does not 

necessarily mean an improvement in food security. Beans are 

an important source of protein and nutrients, especially in 

rural areas, and any disruption in production can have sig-

nificant impacts on the population's diet. The modest pro-

jected growth rate does not keep pace with population growth, 

which may exacerbate food insecurity unless additional in-

terventions are implemented. SDG 2, which aims to end 

hunger, achieve food security, and improve nutrition, depends 

not only on stability in production but also on significant 

increases to meet growing demand. 

Moreover, the SDG 2 targets in Mozambique, which in-

clude improving agricultural productivity and ensuring sus-

tainable food production systems, require a continued focus 

on policies that encourage agricultural innovation and climate 

resilience. The projection of stable but slightly fluctuating 

production suggests that Mozambique needs policies that not 
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only maintain this stability but also increase production to 

reduce food insecurity. Investments in agricultural technology, 

infrastructure, and sustainable management practices are 

crucial to ensuring that stability projections translate into 

long-term food security. 

6. Conclusions 

The analysis of the ARIMA and LSTM models applied to 

the forecasting of bean production in Mozambique from 2002 

to 2022 reveals significant challenges due to the limited 

sample size, which spans only 21 years. This limitation con-

tributes to the high MAPE values observed, reflecting the 

difficulty these models face in capturing the full complexity 

of the underlying dynamics of bean production in a highly 

volatile context. This issue is particularly relevant in the 

context of food insecurity, where accurate forecasts are cru-

cial for agricultural planning and ensuring food supply. 

The ARIMA(1,1,1) model demonstrated robustness among 

the evaluated options, with the lowest RMSE and a lower 

MAPE compared to other ARIMA models. However, the 

LSTM model, despite its limitations, showed a superior abil-

ity to capture nonlinear patterns, resulting in a lower average 

MAPE than ARIMA. This suggests that, with additional ad-

justments, such as incorporating exogenous variables like 

climatic data and agricultural practices, the LSTM model 

could provide more accurate forecasts, contributing more 

effectively to food security. 

Forecasts for the period from 2023 to 2030 indicate a trend 

of stability in bean production, with slight annual variations. 

However, the wide confidence intervals suggest considerable 

uncertainty that must be factored into agricultural planning 

and policy formulation. This projected stability, while en-

couraging, may not be sufficient to keep pace with population 

growth and mitigate food insecurity, underscoring the urgent 

need for interventions that increase productivity and agricul-

tural resilience in Mozambique, aligning with SDG 2 goals to 

end hunger and ensure food and nutritional security. 

In conclusion, while the ARIMA and LSTM models offer 

valuable guidance for forecasting bean production, the results 

should be interpreted cautiously, given the impact of the limited 

sample size on the accuracy of the forecasts. To improve future 

estimates and support the achievement of SDG 2 targets, it would 

be beneficial to expand the analyzed time series and incorporate 

additional variables that can better explain fluctuations in pro-

duction, contributing to more effective agricultural planning and 

the reduction of food insecurity in Mozambique. 
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