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Abstract 

Homogeneous metallic waveguides have long been used to carry high powers. They are often filled with inhomogeneous, 

isotropic dielectrics to reduce their size and cut-off frequencies. To characterize these inhomogeneous rectangular waveguides 

made of homogeneous and isotropic media, the Newton-Raphson method is used in this article. Frequency of cutoff, attenuation, 

and power flow distribution are all properties of the EM wave that are highly dependent on the physical structure and 

composition within the guide. This article presents the characterization of an inhomogeneous and isotropic rectangular guide. 

The analysis of this type of guide is based on the Borgnis potential method for determining the components of the electric field E 

and the magnetic field H, to obtain the guide's dispersion equations. The modes that were found to exist in these waveguides are 

hybrid, meaning that they have both axial E- and H-fields. Numerical resolution of these equations using the Newton-Raphson 

method obtains the guide's propagation constants. A MATLAB program is used to plot these dispersion curves. The propagation 

constant increases as a function of frequency, and the d/a ratio influences the dispersion curves. Increasing the relative 

permittivity of the dielectric leads to an increase in the ratio of the propagation constant in the z direction to the wave number. 
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1. Introduction 

Microwave equipment and its applications play a very 

important role in our daily lives. For this reason, the use of 

sophisticated systems has their use in various telecommuni-

cations systems [1, 2]. 

Rectangular waveguides are one of the most widely used 

transmission lines. The main application for this type of guide 

was the transmission of microwave signals. There are still 

some critical applications, such as couplers, detectors, isola-

tors, attenuators and slotted lines, available on the market in a 

wide variety of different bands from 1 to 220 GHz. Nowadays, 

modern devices use flat transmission lines such as strip-lines 

or microstrips rather than waveguides. This also helps to 

miniaturize devices. However, waveguides still have im-

portant applications, in high-power systems, millimeter-wave 
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applications, satellite systems and so on.  

In order to reduce their size and cut-off frequencies, these 

guides are often filled with inhomogeneous, isotropic dielec-

trics. In the general case, the propagation media in each guide 

may be different (inhomogeneous guides). Classical tools for 

propagation in these media can be used to establish analyti-

cally the expressions of the dispersion equations [3-6]. 

In 1950, Harlington proposed a modal connection method 

based on the use of LSE and LSM modes, thus obtaining 

dispersion equations [7]. These dispersion equations are 

solved for small values of the propagation constants in each 

medium by approximating the circular functions. In 1988, 

TAO et al. used the Transverse Operator Method (MOT) to 

define a transfer matrix linking the electromagnetic fields at 

the interfaces of each layer, and thus, by chaining these ma-

trices, obtain a global transfer matrix for the guide [8, 9]. To 

improve these results, a rigorous characterization of a rec-

tangular guide is proposed, taking into account all the values 

of the propagation constants in each medium. 

Yu-Bo Tian (2004) [10] is developed An effective new al-

gorithm combining Genetic Algorithm (GA) with Parameter 

Tracking Scheme (PTS) and Dynamic Searching 

Area (DSA) technique. They used the algorithm, the 

propagating constants of waveguide symmetrically or 

asymmetrically loaded with dissipative magnetic slab are 

solved successfully and tightly linked to certain designated 

modes. The results also reveal some interesting phenomena, 

such as for some high-order modes and certain thickness of 

loaded slab, the negative phase velocity may occur. 

Felipe L et al [11] presented an efficient root-finder method 

for the cutoff wave-number resolution in a rectangular par-

tially filled waveguide based upon the Cauchy integral 

method. 

This method is valid for lossy dielectric and magnetic ma-

terials, has over others is that no initial seed is necessary for 

the localization of zeros, and also that no roots are lost inside 

the region under study, which guarantees that all modes are 

taken into account when the full-wave problem is solved. 

Coşkun DENIZ (2017) [12] proposed a fast computational 

algorithm design based on the Newton-Raphson (N-R) nu-

merical method to determine the first n zeros of these special 

functions. He showed that the determination of the zeros of 

the first two types of Bessel functions and their derivatives by 

fast, reliable and accurate calculations is essential for the 

determination of the required transverse (TE) and transverse 

electrical functions. Determining the zeros of the first two 

types of Bessel functions and their derivatives using fast, 

reliable calculations is essential for determining the transverse 

electrical (TE) and transverse magnetic (TM) modes required 

for circular waveguides. Their proposal was to scan the given 

function in the selected domain according to the chosen 

number of iteration steps (or the number of divisions of the 

domain) and find their zeros by the N-R method at each step. 

In this study, the analysis of inhomogeneous and isotropic 

rectangular waveguides is developed, although they have 

been the subject of numerous studies. 

The evolution of computational media (computers, etc.) has 

led to better development of numerical methods, making it 

possible to analyze more complex microwave structures [2-9, 

13]. One such method is the Newton Raphson method. This 

method provides an efficient algorithm capable of numeri-

cally finding an approximate zero (root) of the dispersion 

equation with a good degree of precision. 

The aim of this work is to apply Newton Raphson's method 

to the study of an inhomogeneous E-plane waveguide as an 

aid to solving the dispersion equation. 

2. Theory Study 

A waveguide formed by two different dielectrics is a dis-

continuous medium. Medium 1 can be air with relative per-

mittivity 𝜀𝑟 = 1 and medium 2 a dielectric with any relative 

permittivity other than unity. This is illustrated in figure 1. 

 
Figure 1. Dielectric-filled inhomogeneous guide. 

Since the LSE mode is transverse to x, it can be character-

ized with Hx. Similarly, the LSM mode can be characterized 

with Ex. The field has to have 𝑒𝑗𝑘𝑧𝑧 dependence everywhere 

inside the waveguide due to the phase matching condition. 

Consequently, the equations satisfied by Hx and Ex are: 

For LSM modes, the axial component of the magnetic field 

is zero (𝐻𝑥 = 0) and 𝐸𝑥 ≠ 0.  

𝐸⃗ {

𝐸𝑥

𝐸𝑦

𝐸𝑧

 and 𝐻⃗⃗ {

𝐻𝑥 = 0
𝐻𝑦

𝐻𝑧

  

The generating function 𝐸𝑥 obeys the Helmholtz equation 

below: 

∇2𝐸𝑥 + 𝜔2𝜀𝜇𝑜𝐸𝑖𝑥 = 0 → (∇2 + 𝑘𝑖
2 − 𝑘𝑧

2)𝐸𝑖𝑥 = 0   (1) 

LSM modes 

∇2𝐻𝑖𝑥 + 𝜔2𝜀𝜇𝑜𝐻𝑖𝑥 = 0 → (∇2 + 𝑘𝑖
2 − 𝑘𝑧

2)𝐻𝑖𝑥 = 0    (2) 
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LSE modes where subscript i denotes the region i 

𝐸𝑥(𝑥, 𝑦) = {
𝐸𝑥1 = [𝐴1 cos(𝑘𝑥1𝑥) + 𝐵1 sin(𝑘𝑥1𝑥)] sin (

𝑛𝜋

𝑏
𝑦)  0 ≤ 𝑥 ≤ 𝑥1

𝐸𝑥2 = [𝐴2 cos(𝑘𝑥2𝑥) + 𝐵2 sin(𝑘𝑥2𝑥)] sin (
𝑛𝜋

𝑏
𝑦) 𝑥1 ≤ 𝑥 ≤ 𝑥2

                  (3) 

Expression of 𝐸𝑦and 𝐸𝑧 of the field 

{
𝐸𝑦1,2 =

1

𝑘𝑜
2−𝑘𝑥

2

𝜕

𝜕𝑦
(
𝜕𝐸𝑥1,2

𝜕𝑥
)

𝐸𝑧1,2 =
1

𝑘𝑜
2−𝑘𝑥

2

𝜕

𝜕𝑧
(
𝜕𝐸𝑥1,2

𝜕𝑥
)
                                     (4) 

The magnetic field components are continuous 

{
𝐻𝑦1,2 =

𝜔𝑘𝑧

𝑣2𝜇

𝜔𝑘𝑧𝐸𝑥1,2

𝑘𝑜1,2
2 −𝑘𝑥

2

𝐻𝑧1,2 = −
𝑗𝜔

𝑣2𝜇(𝑘𝑜1,2
2 −𝑘𝑥

2)
(
𝜕𝐸𝑥1,2

𝜕𝑦
)
                                 (5) 

where the cutoff constants 𝑘𝑥1,2along the (Ox) axis are given 

by: 

𝑘𝑥1,2 = √𝑘𝑜1,2
2 𝜀𝑟1,2 − (

𝑛𝜋

𝑏
)2 − 𝑘𝑧

2  

After finding the components of the electric and magnetic 

fields in the two media according to the LSM modes, the 

dispersion equation for this mode is determined. This equa-

tion is given by the following formula: 

𝜀𝑟2𝑘𝑥1𝑡𝑎𝑛𝑘𝑥1ℎ = 𝜀𝑟1𝑘𝑥2𝑡𝑎𝑛𝑘𝑥2(ℎ − 𝑎)       (6) 

Numerical Resolution of the Dispersion Equation Using the 

Newton-Raphson Method 

 
Figure 2. Principle of Newton's method. 

The principle of this method is illustrated in figure 2. A first 

estimate 𝑥0  is chosen, the second estimate is 𝑥1 determined 

by the intersection of the tangent line of the function f(x) at the 

point (𝑥1; 𝑓(𝑥1 )) and the straight line y = 0. The third esti-

mate 𝑥2  is determined by the intersection of the tangent line 

of the function f(x) at the point (𝑥2; 𝑓(𝑥2 )) and the straight 

line y=0, and so on. 

The Newton-Raphson method is an algorithm for numeri-

cally finding a precise approximation to a zero (or root) of a 

function of one real variable. In other words, it's a method for 

solving an equation of the form f(x) = 0. It involves succes-

sively finding the best approximations to the roots of the real 

function [7, 14-16]. 

For LSM modes, the dispersion equation is written as fol-

lows: 

𝜀𝑟2𝑘𝑥1tan (𝑘𝑥1ℎ) = 𝜀𝑟1𝑘𝑥2tan 𝑘𝑥2(ℎ − 𝑎) 

The function f(x) is defined as: 

𝑓(𝑥) = 𝜀𝑟2𝑘𝑥1 tan(𝑘𝑥1ℎ) − 𝜀𝑟1𝑘𝑥2tan 𝑘𝑥2(ℎ − 𝑎) 

Posing f(x) = 0:  

𝜀𝑟2𝑘𝑥1 tan(𝑘𝑥1ℎ) − 𝜀𝑟1𝑘𝑥2 tan 𝑘𝑥2(ℎ − 𝑎) = 0  (7) 

It therefore boils down to solving equation (6) using the 

Newton-Raphson method. looking for the points x1, x2, 

x3...xp until convergence such that: 

𝑓(𝑥) = 𝑓(𝑥𝑜) + (𝑥 − 𝑥𝑜)𝑓
′(𝑥𝑜)           (8) 

The equation (4) allows us to write: 

𝑥1 = 𝑥𝑜 −
𝑓(𝑥𝑜)

𝑓′(𝑥𝑜)
  

By successive iterations, we construct a sequence (𝑥𝑝)𝑝∈𝑁 

such that: 

𝑥𝑝+1 = 𝑥𝑝 −
𝑓(𝑥𝑝)

𝑓′(𝑥𝑝)
                (9) 
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where 𝑓′(𝑥) is the derivative of 𝑓(𝑥). 

3. Results and Discussions 

To plot the dispersion curves of the fundamental mode with 

respect to the LSM mode dispersion equation, a homogeneous 

guide of dimensions a and b composed of two isotropic die-

lectric media of relative permittivities εr1 and εr2 is consid-

ered. 

Dispersion curves for a homogeneous, isotropic guide. 

The rectangular guide is homogeneous and empty, with εr2 

= εr1= 1. Considering the fundamental mode. 

mode (n = 1 and m = 0), the dispersion curve expressing the 

propagation constant is obtained as a function of frequency 

for this guide, shown in figure 3. 

 
Figure 3. Propagation constant variation curve with εr2 = εr1= 1. 

 
Figure 4. Propagation constant variation curve with εr2 = εr1= 

2.45. 

Figure 4 shows the variation of the propagation constant as 

a function of the ratio 𝑎/𝜆𝑜 for a rectangular guide is ho-

mogeneous and loaded with a dielectric with εr1 = 2.45. 

Considering the fundamental mode (n = 1 and m = 0). The 

curve grows exponentially and becomes constant from a 

certain value of 𝑎/𝜆𝑜. 

Dispersion curves for an inhomogeneous and isotropic 

waveguide. 

Figure 5 shows the different dispersion curves for different 

d values. It can be seen that the propagation constant increases 

as a function of frequency. The higher the d/a ratio, the higher 

the propagation constant as a function of frequency. Let us 

note that the higher the d/a ratio, the faster the dispersion 

curves tend towards their asymptotic value. 

 
Figure 5. Propagation constant versus frequency curve for different 

values of d. 

Figure 6 shows the dispersion curve for large values of d, 

the results agree with those reported in the literature [15] and 

show an improvement in the accuracy of the results. The 

higher the d/a ratio, the higher the propagation constant as a 

function of frequency. The higher the d/a ratio, the faster the 

dispersion curves tend towards their asymptotic value. 

Figure 7 shows the evolution of 
𝑘𝑧

𝑘0
⁄ as a function of 

frequency, increasing the relative permittivity of the dielectric 

leads to an increase in the ratio 
𝑘𝑧

𝑘0
⁄ . 

The constant kz is always greater than the wave number k0 

over the interval of 1 ≤
𝑘𝑧

𝑘𝑜
≤ √𝜀𝑟. Consequently, the phase 

velocity is lower than that of light. This is why these waves 

are called slow waves. They cannot radiate. For high values of 

a/λ the ratio of 
𝑘𝑧

𝑘𝑜
 remains constant. 

For a given frequency, the guide with a higher permittivity 

dielectric gives a higher propagation constant value. 
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Figure 6. Dispersion curve for some d/a values above 0.4. 

 
Figure 7. Effect of permittivity on dispersion curves. 

4. Conclusion 

In this study, a rigorous characterization of an inhomoge-

neous and isotropic rectangular waveguide was carried out. 

Solving the dispersion equation for the fundamental mode of 

the LSM using the Newton-Raphson method improved the 

accuracy of the results. 

Abbreviations 

LSE: Longitudinal-Section Electric 

LSM: Longitudinal-Section Magnetic 
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