
American Journal of Computer Science and Technology

2025, Vol. 8, No. 2, pp. 22-41

https://doi.org/10.11648/j.ajcst.20250802.12

*Corresponding author:

Received: 4 April 2025; Accepted: 17 April 2025; Published: 9 May 2025

Copyright: © The Author(s), 2025. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Article

Multi-model Database Design and Query Processing in

NewSQL DBMSs

Joachim Tankoano
*

Institut Burkinabè des Arts et des Métiers, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso

Abstract

NewSQL DBMSs are hybrid systems that combine the advantages of both SQL DBMSs and NoSQL DBMSs. This paper

proposes a method for designing a database to be implemented on a NewSQL DBMS. The objectives of this method are

identifying and defining heterogeneous collections of values that adhere to different data models, which are essential for an

enterprise's operations, with the goal of storing and managing them within only one database. This method is based on a

Relational Data Store and the Nested Relational Model. It allows the designer to use the Data Store as a guarantor of integrity and

to optimize it for hybrid workloads (transactional and analytical), performance, scalability, and continuous data availability. As

for the nested relational model, it is used by the designer to: (1) clarify their choices regarding storage models that can enable fast

access to data about complex real-world entities; (2) specify access paths that can meet user needs. The main interest and the

originality of this methodological approach are that this enables us to use the Nested Relational Model as a Pivot Model to: (1)

automatically generate the global external schemas of the NoSQL virtual databases, allowing users to view and manipulate the

Data Store as if it were a NoSQL database (object-relational, XML, JSON, or graph-oriented), and (2) unify the processing of

cross-model SQL queries through an innovative and efficient approach. This method consistently integrates, through five levels

of abstraction, the design process of the relational Data Store and that of the virtual databases. The research method used

consisted of: (1) defining the objectives of this approach, (2) identifying the required levels of abstraction in light of the targeted

objectives, (3) determining, for each level of abstraction, its specific objectives as well as the role to be played by the designer, a

design support tool, and the DBMS, and (4) applying this approach to a typical example reflecting the most common needs, in

order to facilitate the understanding of its contributions and relevance with respect to the intended objectives.

Keywords

Multi-model Data, NewSQL, NoSQL, Database Design, Query Processing

1. Introduction

NewSQL DBMSs are hybrid systems [1-13]. Their advent

aims to promote new types of DBMSs with the required ca-

pability to better address the requirements of web applications

compared to SQL DBMSs and NoSQL DBMSs. To achieve

this, they focus on two key objectives:

Maintain the advantages of SQL DBMSs by offering: (i)

capabilities for managing fixed-schema collections of values

that ensure data independence and integrity; (ii) a

non-procedural interface language that facilitates query op-

timization; (iii) a transaction execution environment that

http://www.sciencepg.com/journal/ajcst
http://www.sciencepg.com/journal/303/archive/3030802
http://www.sciencepg.com/
https://orcid.org/0000-0003-1245-6235
https://orcid.org/0000-0003-1245-6235
https://orcid.org/0000-0003-1245-6235

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

23

guarantees the Atomicity, Consistency, Isolation, and Dura-

bility (ACID) properties.

Consider the advantages of NoSQL DBMSs, which include:

(i) flexibility through flexible-schema or schema-less collec-

tions of values, adhering to various structures (e.g. structured,

hierarchical-and-structured, hierarchical-and-semi-structured,

unstructured, or graph-oriented); (ii) customizable data logi-

cal and physical organization enabling optimal query execu-

tion; (iii) unlimited horizontal scaling to accommodate

workload changes; (iv) continuous data availability.

Many of today's NewSQL DBMSs have been developed by

leveraging a proven SQL DBMS and incorporating

well-known concepts to provide the necessary functionality.

This include:

The integration of alternative NoSQL data models (c.f. the

SQL3, SQL/XML, SQL/JSON and SQL/PGQ ISO standards)

achieved by: (i) extending SQL as a complete programming

language or integrating SQL into an existing one, that can in

both cases serve as support for integration of alternative data

models under the relational model, and for development of

features and APIs that extend the capabilities of the DBMS; (ii)

expanding the SQL data definition language with new value

types, structure types, and table types; (iii) expanding SQL's

relational predicative language with new functions and pred-

icates; (iv) adding new operators and clauses to SQL syntax;

(v) defining the semantics of the operators of nested relational

algebra as an extension of 1NF relational algebra; (vi) using

these operators to define the semantics of path expressions in

object-oriented/document-oriented models; (vii) allowing

nested queries in SQL SELECT-FROM-WHERE clauses;

(viii) defining a cross-model query language as an extension

of SQL 2.

The integration of a middleware into DBMS architecture

for automatic and transparent sharding of the database, in-

cluding: (i) automatically fragmenting horizontally tables and

indexes, and distributing fragments and their copies across

geographically distributed database servers called shards; (ii)

monitoring shards, rebalancing them, and adjusting their

number based on workload; (iii) routing queries and coordi-

nating concurrent, distributed transactions while ensuring

Atomicity, Consistency, Isolation, and Durability (ACID)

properties.

The incorporation of functionalities that enable DBMSs to

offer both transactional and analytical processing capabili-

ties.

Following the approach described, NewSQL DBMS have

introduced a broad range of possibilities, thereby increasing

the complexity of database design.

Furthermore, some of these possibilities open the door to

very poor practices.

To our knowledge, there is currently no research on com-

prehensive methods for designing a database specifically

aimed at NewSQL DBMSs, with the following objectives: (1)

identifying and defining heterogeneous collections of values,

adhering to different data models, for storage and manipula-

tion within only one database, ensuring they meet the needs of

a business's operations; (2) guaranteeing performance, scaling

capability, and continuous data availability.

This paper outlines such a coherent and comprehensive

methodological approach for designing a database specifi-

cally intended for a NewSQL DBMS.

This approach is grounded on the ANSI/SPARC architec-

ture of the schemas depicted in Figure 1 as described in [14].

The key point of this architecture is that the logical model of

the database utilized internally as the Data Store must con-

form to the relational model.

This method allows the designer to use this relational Data

Store as the guarantor of integrity and to optimize it for hybrid

processing workloads (both transactional and analytical),

performance, scaling, and continuous data availability.

Furthermore, this method allow the designer to leverage the

Nested Relational Model to: (1) clarify their choices regarding

storage models that can enable fast access to data about

complex real-world entities; (2) specify access paths that can

meet user needs.

In doing so, this method enables us to use the Nested Re-

lational Model as a Pivot Model to: (1) automatically generate

the global external schemas of the NoSQL virtual databases,

allowing users to view and manipulate the Data Store as if it

were a NoSQL database (object-relational, XML, JSON, or

graph-oriented), and (2) unify the processing of cross-model

SQL queries through an innovative and efficient approach.

This method integrates seamlessly the design methodolo-

gies of various types of databases (relational and NoSQL).

It captures the various relevant aspects of a multi-model

database across five levels of abstraction, which are com-

plementary but also consistent or orthogonal.

As depicted in Figure 2, these five levels concern two de-

sign processes: (1) the relational Data Store design process; (2)

the design process for the virtual NoSQL databases.

The following presents and illustrates the capture of the

different relevant aspects of a multi-model database through

these five levels of abstraction by relying on a simple example

of database and highlighting the known techniques that can be

considered.

A simple example of generation and optimization of the

logical execution plan of a query formulated on this example

of a multi-model database is also presented.

The paper ends with a comparative analysis of the pre-

sented approach and related works, followed by a conclusion.

2. The Database Conceptual Schema

The conceptual schema of a multi-model database within a

NewSQL DBMS corresponds to the conceptual representation

used in our approach to identify: (i) real-world entities and

their associations whose instances need to be described in this

database, independently of use cases such as the models that

must be used for the description and manipulation of value

collections, as well as other non-functional requirements that

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

24

must be met (e.g., value access path, value access time, secu-

rity for access, scaling capability, data availability, etc.); (2)

atomic value types required for this description; (3) integrity

constraints that must be applied to these values, entities and

associations to ensure consistency with the enterprise's busi-

ness rules.

In our approach, the role of this conceptual schema is also

to facilitate derivation of the global logical schema of a mul-

ti-model database for storage and manipulation of: (1) the

collections of structured values (adhering to the relational

model) describing the instances of simple entities; (2) the

collections of hierarchical-and-structured values (adhering to

the nested relational model) describing the instances of com-

plex entities with nested sub-entities; (3) the collections of

hierarchical-and-semi-structured values whose structure is

irregular and/or unpredictable (adhering to XML or JSON

standards) describing the instances of what we refer to as gray

entities (such as the entity "Article" in an online store where

articles of diverse natures (food, clothing, household appli-

ances, etc.) are described by their suppliers according to dif-

ferent rules).

Accordingly, this conceptual schema must highlight the

real-world entities that need to be described in the database by

clearly differentiating among three types of entities: simple

entities, complex entities, and grey entities.

Figure 1. ANSI/SPARC architecture of schemas [14].

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

25

Figure 2. The two design processes and the five levels of abstraction of the database.

Each real-world entity must be characterized within this

conceptual schema, according to the users' information re-

quirements, through the atomic-valued attributes of its in-

stances.

For simple entities and complex entities with sub-entities,

the type of an attribute corresponding to a large and/or un-

structured value (e.g., text, image, audio, video), must be a

special atomic abstract type ("LOB (Large OBject)", "Char-

acter", "Character Varying" …) which is part of the exten-

sions introduced by ISO from SQL3. This also applies to

repetitive values (e.g., a customer's phone numbers) or values

with varying structures (e.g., a customer identity which may

consist of either his title (Ms, Mrs, Pr, Dr, etc.), his surname

and first name, or his first name and surname, or the acronym

and name of the enterprise).

In this conceptual schema, complex entities should be dis-

tinguished by explicitly identifying in each association which

entity is a sub-entity. A sub-entity is the entity whose exist-

ence of each of its instances depends on the existence of only

one instance of the other entity with which it is it associated.

As for gray entities, they must be differentiated by charac-

terizing them using only two attributes. The first attribute

must be used to provide the value that uniquely identifies each

instance of the gray entity in question, and the second attribute

to provide the hierarchical-and-semi-structured value that

describes this instance. The type of this second attribute at the

conceptual level must be a special atomic abstract type ("LOB

(Large OBject)", "Character", "Character Varying" …).

When for each instance of a gray entity the data that describe

it is used to supplement the data that describe an instance of

another non-gray entity, these two entities must be linked by a

"1:1" association. In this case, we will say that the gray entity

is a gray entity detached from the non-gray entity to which it

is associated.

The most common formalisms for specifying this type of

representation are the conceptual data models "E/A (Enti-

ty/Association)" [15] and "UML (Unified Modeling Lan-

guage)" [16].

In this paper, we utilize a UML-based formalism in which:

(1) each entity is materialized by a UML class; (2) each

sub-entity is distinguished by a dotted class symbol and a

dotted association symbol that denotes its dependency; (3)

each gray entity is differentiated using a gray background

class symbol and possibly a dotted association symbol which

indicates that it is a gray entity detached from the non-gray

entity with which it is associated.

The UML schema in Figure 3 is the conceptual represen-

tation for the example database used in this paper. In this

schema, two associations are depicted using a dotted line,

indicating that the entities represented by the "Post" and

"Composition" classes are sub-entities of the complex entity

"Composer". Each instance of these two sub-entities must

depend on only one single instance of the complex entity

"Composer" to which it belongs.

3. Transforming into a Global Relational

Logical Schema

In the schema architecture shown in Figure 1, the global

relational logical schema is that of the Data Store. Its role is to

specify the logical representation that results from the engi-

neering of the schemas of the value collections within the

Data Store. The finality of the design of these schemas must

be to prevent storage anomalies and to allow DBMS to ensure

integrity of these value collections.

In the multi-model database design process presented in

this paper, its global relational logical schema, where each

relation schema is in 3NF, can be advantageously derived

from the conceptual schema. This derivation relies on

well-established transformation rules [14], which enable the

DBMS to enforce the integrity constraints defined in the

conceptual schema by the designer, based on the enterprise's

business rules. In the resulting global relational schema, in-

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

26

tegrity constraints related to multivalued dependencies that

were not explicitly defined in the conceptual schema must be

addressed by the designer. This is done by decomposing the

affected relations to ensure that each relation schema is in

4NF.

Figure 3. Example of a UML Conceptual Schema for a Database.

To accurately model complex entities as described in the

conceptual schema, it is necessary to represent data about a

sub-entity using a relation that includes a foreign key in its

primary key. This foreign key must reference the primary key

of the relation corresponding to the entity with which it is

directly associated in the conceptual schema. Relations of this

type are considered weak relations [15]. This approach mate-

rializes data about each complex entity in the global relational

schema of the Data Store using a set of relations connected

within a tree structure where each child includes a foreign key

that references the primary key of its parent.

Likewise, each gray entity in the conceptual schema must

be represented in this global relational logical schema by a

relation. The designer must specify in this relation the type of

NoSQL model (XML or JSON) to which each hierar-

chical-and-semi-structured value describing an instance of

this gray entity must adhere. This includes specifying the type

of the attribute that designates this value and, if applicable,

associating it with a schema that defines its internal structure.

Moreover, if the gray entity is detached, in this relation and in

the relation that materializes the non-gray entity from which it

was detached, the primary key must be defined as also being a

foreign key referencing the primary key of the other relation.

Additionally, for every attribute (of a simple or complex

entity) corresponding to repetitive values or values with var-

ying structures, the designer must specify the type of model he

wishes to use for this attribute (either XML or JSON). He

should also define a schema if the structure of these values can

be predetermined.

The content of Figure 4 provides an example of the trans-

formation of the conceptual schema of the database, defined

in Figure 3, into a global relational schema. This transfor-

mation has been carried out in compliance with the general

principles outlined above.

In the resulting global relational schema, data about the

instances of the complex entity "Composer" and its

sub-entities "Post" and "Composition" are stored in the rela-

tions "Composers_R", "Posts_R", and "Compositions_R",

respectively. The foreign key "ComposerId+" in the

"Posts_R" relation is part of its primary key. Similarly, the

foreign key "ComposerId+" in the "Compositions_R" relation

is also part of its primary key.

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

27

Figure 4. Example of a Global Relational Schema for the Data Store.

This global relational schema prevents anomalies that may

arise during insert, update, and delete operations. Additionally,

it enables the DBMS to enforce database integrity, as defined

in the conceptual schema regarding the management rules.

4. Transforming into a Global Nested

Relational Logical Schema

Storage models are among the main means that a database

designer must use depending on the use cases to enhance the

speed of data access. For the data about instances of complex

entities or detached gray entities, the two most recognized

storage models are the direct storage model and the normal-

ized storage model [17, 18].

The direct storage model of the data that describe the in-

stances of a complex entity leads to logically grouping these

data into only one table where each row contains the data

about a single instance including the data of all the instances

of the sub-entities that belong to it, arranging these data in a

hierarchical manner regardless of their nesting levels [17].

This storage model is the one that is most suitable when the

main need of the applications is to be able to access all or part

of the data of each instance concerning this complex entity,

whenever necessary, using the shortest possible time.

Let "Eg" be a gray entity detached from the non-gray entity

"Eng". The storage of the data describing the instances of

"Eg" according to the direct storage model is accomplished by

moving the attribute used to store these data from the relation

corresponding to "Eg" to the relation corresponding to "Eng",

followed by the removal of the relation corresponding to "Eg".

This storage model is the most suitable when the primary

requirement of the applications is to be able to access at the

same time the data of each instance of "Eng" and the detached

data in "Eg" which concern it, whenever necessary, while

ensuring the shortest possible access time.

The normalized storage model for the data about instances

of a complex entity leads to distributing these data in several

tables resulting from a normalization process by decomposi-

tion [17]. The purpose of this decomposition may be, for

example, to ensure that there is, on the one hand, a dedicated

table for storing the data relating to instances of the enclosing

entity and, on the other hand, for each sub-entity a dedicated

table for storing the data relating to its instances. For this

example of decomposition, this storage model is best when

the primary requirement for applications is to be able to di-

rectly access the data about the instances of each sub-entity,

regardless of their nesting levels, without having to go

through the data about the instance of the entity to which they

belong, using the shortest possible time.

Let "Eg" be a gray entity detached from the non-gray entity

"Eng". The storage of the data describing instances of "Eg"

according to the normalized storage model is done by repre-

senting "Eg" and "Eng" using separate relations. This storage

model is the most suitable when the primary requirement of

applications is to be able to manage and access separately the

data that describes instances of "Eg" and the data that de-

scribes instances of "Eng".

The direct storage model and the normalized storage model

can be combined, to allow storing part of the data of each

instance of a complex entity according to the direct storage

model and storing the other part according to the normalized

storage model [17].

As an example, for the data about the instances of the single

complex entity (consisting of the entities "Composer",

"Composition", and "Post") described in our example of da-

tabase, the global relational schema specified in Figure 4

defines their organization in terms of relations that meet the

requirements of the normalized storage model.

As an example, the content of Figure 5a represents the

transformation of this global relational schema into a global

nested relational schema. In this transformation, data about

the instances of the complex entity "Composer", including

instances of its sub-entities "Post" and "Composition", have

been grouped into a single nested relation "Composers_NR".

This transformation meets the requirements of the direct

storage model.

As for the content of Figure 5b and Figure 5c, they illustrate

two examples of a combination of these two types of storage

models.

In the rest of the paper, we consider that it is the storage

model in Figure 5b that corresponds to the designer’s choice

for this complex entity.

The choice of the nested relational model for this refor-

mulation of the global logical schema of the Data Store—for

the clarification of the designer's decisions regarding the

storage models that can reduce access times to the data related

to instances of the complex entities and detached gray enti-

ties—is fundamental in our methodological approach.

This data model has been defined as an extension of the

relational model to overcome the limits of its capability to

model data describing instances of complex entities [19, 20].

The theoretical foundations of the nested relational model

generalize those of the relational model by considering it as a

particular case. This makes it possible to base on very

well-established common theoretical foundations, the global

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

28

relational schema of the Data Store and the global logical

schema that results from its reformulation using the nested

relational model. In relational model and in nested relational

model, the engineering of the schemas of the value collections

is based on these theoretical foundations.

Figure 5. Examples of Global Nested Relational Schemas Designed for Access Time Optimization.

In addition, the nested relational model provides normal

form conditions for nested relations, which serve as criteria

for grouping atomic attributes into relational-valued attributes

that nest within each other [20, 21]. These grouping criteria

help identify any situation that, based on the business rules,

could lead to storage anomalies. Therefore, they provide an

additional tool to assist the designer in creating nested rela-

tional schemas with good properties.

Let "GLschema" denote the global schema of the mul-

ti-model database that results from the reformulation of the

conceptual schema using the nested relational model and

"TabsSS", an abstract type such as XML or JSON whose

values are flexible-schema or schema-less collections of

structured, hierarchical-and-structured or hierar-

chical-and-semi-structured values.

The previous observations show that the nested relational

model allows the designer to ensure that, in "GLschema", both

structured value collections (adhering to the relational model)

and hierarchical-and-structured value collections (adhering to

the nested relational model) are described using nested rela-

tional schemas designed to: (1) enable the DBMS to ensure

database integrity; (2) prevent storage anomalies during cre-

ation, modification, and deletion operations; (3) minimize

access times for applications to the strict minimum.

The designer can also ensure that, within these nested re-

lational schemas, hierarchical-and-semi-structured value

collections (for which the nested relational model does not

provide the required flexibility for their description) are

treated as atomic abstract values of type "TabsSS". This en-

sures compliance with the constraints of the nested relational

model.

As a result, the nested relational model is the most suitable

choice to support the modeling of the integration, in a single

NewSQL database, of heterogeneous collections of values

that adhere to different models. It allows to derive, from the

conceptual schema, a global logical schema "GLschema"

where the nested relational schemas specify value collections

that describe the instances of the simple, complex and gray

entities of this conceptual schema, on the one hand by taking

into account the choices of the designer with respect to the

storage models about the complex entities and the detached

gray entities and on the other hand, by considering the col-

lections of hierarchical-and-semi-structured values charac-

terized by the irregularity and/or by the unpredictability of

their logical structure as being atomic abstract values of type

XML or JSON.

As a result, the nested relational model is also the most

suitable choice to serve in our methodological approach as a

pivot model (c.f. sections VI and VII) for: (1) transforming

relational schemas into a NoSQL schemas; (2) unifying de-

sign approach of various database types (relational and

NoSQL); (3) unifying the mechanisms for processing

cross-model queries formulated using a language that inte-

grates into SQL various query languages (object-relational,

XML and JSON).

5. Customizing the Physical Database

As highlighted in the introduction, one of the main objec-

tives of NewSQL DBMSs is to: (1) ensure query execution

times that meet user requirements; (2) guarantee unlimited

horizontal scaling according to workload demands; (3) ensure

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

29

uninterrupted data availability.

In existing NewSQL DBMS, achieving this objective de-

pends on the choices made by the designer at the physical

schema level of the Data Store, i.e., how data is organized on

the physical storage devices. In what follows, the key design

choices for a Data Store adhering to the relational model

related to sub-objective (1) are addressed in paragraphs 5.1 to

5.6. The choices concerning sub-objectives (2) and (3) are

discussed in paragraph 5.7.

5.1. Row Storage Model

The purpose of a query execution engine in a NewSQL

DBMS, optimized for online transaction processing (OLTP),

is to enable the concurrent execution of a large number of

short-duration transactions involving the creation, reading,

and updating of a small number of interdependent rows.

To ensure table integrity, each of these I/O operations re-

quire access to all columns of each row. This necessitates that

the designer make choices that lead the DBMS to physically

store each involved table following the row storage model, i.e.,

the storage of the rows of each table within the physical

blocks of the file on the disk dedicated to it [22].

5.2. Columnar Storage Model

The purpose of a query execution engine in a NewSQL

DBMS, optimized for online analytical processing (OLAP), is

to enable the parallel execution of a large number of interac-

tive analytical processing procedures on massive datasets.

One of the main characteristics of these analytical proce-

dures is that they involve only a small number of columns

from the relevant tables and primarily perform read, sort, and

aggregation operations on them. The data sources involved

may be internal (historical operational data systematically and

automatically collected from transactional processes) and/or

external.

To reduce the cost of operations performed on these tables,

since they typically involve only a small subset of columns,

the designer must make choices that lead the DBMS to

physically store each involved table according to the colum-

nar storage model, where the data of each column are stored

within the physical blocks of a file on the disk dedicated to

this column [22].

5.3. Implementing the Direct Storage Model for

Complex Entities Using a Table Cluster

Regarding the direct storage model, we previously decided

in Section IV to logically store the data about instances of a

complex entity into a nested relational table where each row

contains the data about a single instance of this complex entity

including the data of all the instances of the sub-entities that

belong to it.

The physical implementation of this nested relational table

can be efficiently carried out in the Data Store within a table

cluster [23] that allows us to store in the same physical data

block the data about each instance of this complex entity with

the data of all the instances of the sub-entities that belong to it.

In this implementation, the tuples containing the data about

an instance of this complex entity and about its instances of

the sub-entities that belong to it should be grouped and stored

in a tree structure, as described in [14], within a physical data

block of this cluster of tables, following the hierarchical data

organization principles of the nested relational model, i.e., the

embedded data approach.

By doing so, at the physical level, the application of alge-

braic operators on data about the instances of a complex entity

stored using the direct storage model will be interpreted as an

application of implicit algebraic operators on data stored in

main memory.

5.4. Table Indexes

Indexing a table aims for quick access to its rows. It creates

an organization of the data in this table on the physical storage

medium that allows for each value of a search key to deter-

mine the physical addresses of the rows that contain this value,

without having to traverse the entire table. Indexing a table

thus enables associative searches.

The search key can consist of one or multiple columns

corresponding to the primary key, an alternate key, or arising

from application needs. The storage of the data related to an

index occurs in a physical file distinct from the physical file

used for storing the data of this table. However, the index on

the primary key can be clustered, meaning it is stored in the

same physical file as the table.

Therefore, indexing the tables is a means by which a da-

tabase designer can enable the DBMS to access all data rel-

evant to each query, using the least amount of time possible,

regardless of the complexity of the query and the size of the

tables involved [24].

5.5. Join Indexes

The creation of a join index between two tables 'R' and 'S'

aims to perform repetitive join operations of these two tables

based on a join condition defined on their columns, using the

least amount of time possible.

If 'r' denotes the system identifier of the rows in 'R' and 's'

denotes the system identifier of the rows in 'S', the join index

would correspond to the highly reduced table obtained by

projecting the join operation result of the two tables 'R' and 'S'

on the pair <r, s> and sorting the result against these two

columns.

The creation of the join indexes is therefore a means by

which a database designer can allow the DBMS to execute

repetitive join operation as efficiently as possible, such as

those resulting from associations identified in the conceptual

schema of the database [25].

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

30

5.6. Materialized Views

A materialized view consists of: (1) a view based on one or

more tables; (2) an internal table whose content corresponds

to the result of executing the query that defines this view. This

query can be a join query and/or an aggregation query. The

content of the internal table can be refreshed by DBMS ac-

cording to the criteria defined by the designer (e.g., each time

a change occurs in the tables used for its computation, at a

certain frequency, etc.).

A materialized view can therefore be used for selective

replication in a denormalized table of the data from the rela-

tional Data Store. As such, the materialized views constitute a

means that the designer can use to reduce the execution time

of analytical queries by retrieving and grouping together in a

single table all the data they need [26].

5.7. Database Sharding

The sharding of a database aims to ensure: (1) unlimited

horizontal scaling according to workload demands; (2) unin-

terrupted data availability [5-12].

A sharded database is manipulated by applications as if it

were a centralized database, while it is automatically distrib-

uted across a pool of databases called shards. These shards are

implemented on separate database servers and may even be

geographically distributed to ensure the goals of sharding are

met.

The sharding of a database is implemented using a mid-

dleware that acts as a proxy. This middleware provides vari-

ous services, including query filtering and routing, caching of

query results, monitoring and rebalancing shard servers, and

dynamically adjusting the number of shards based on the

workload.

The role of this middleware is twofold: (1) automatically

and transparently manage the horizontal partitioning of the

tables and their indexes, as well as the distribution of resulting

fragments and their replicas across shards; (2) monitor the

shards, balance their workload, scale their number up or down

depending on workload variations, route queries, and coor-

dinate the distributed and concurrent execution of transactions

while ensuring Atomicity, Consistency, Isolation, and Dura-

bility (ACID properties.

The query evaluation model for a sharded database in-

volves transferring each elementary operation to the shard

containing the required data while maximizing parallelism at

both the transaction execution level and the elementary oper-

ation execution level.

To achieve optimal performance, the designer must make

strategic choices that also minimize network communication

overloads. In this query evaluation model, this objective can

be met by making the middleware to adopt fragmentation and

distribution strategies that ensure, as much as possible, the

collocation of joinable rows within the same shard.

An example of a such choice is the implementation of the

direct storage model for complex entities by using table

clusters. Choosing the direct storage model for detached grey

entities is also another example.

6. Transforming Into Global External

Logical Schemas

Transforming into external logical schemas takes place

only after: (1) the conceptual schema of the database has been

specified; (2) the global relational schema of the Data Store

and the global nested relational schema, which clarifies the

designer’s choices regarding storage models for complex

entities and detached gray entities have been designed con-

sistently; (3) the physical schema of the Data Store has been

designed to ensure performance, scaling, and fault tolerance.

In other words, this transformation occurs only after cre-

ating all the tables of the Data Store incorporating all deci-

sions made at the physical schema level.

In the ANSI/SPARC architecture of the schemas, shown in

Figure 1, global external logical schemas redefine the Data

Store as a multi-model database. This means that the Data

Store can be viewed and manipulated by developers, applica-

tion integrators, and data analysts as if it were, virtually, a

relational, object-relational, XML, JSON, or graph-oriented

database. This approach provides them with the agility and

flexibility needed to work with their preferred data models [14]

and unifies the design methods of various NoSQL database

types.

From the designer's point of view, redefining the Data Store

as a virtual object-relational, XML, or JSON database follows

a different approach than that about virtual graph-oriented

databases. The following presents these two approaches.

6.1. Redefining as a Virtual Database

(Object-relational, XML, or JSON)

Let "GLPschema" be the global logical schema derived

from "GLschema" (as defined in Section IV) by integrating

access paths that can meet user needs.

Figure 6 provides, as an example, the global logical schema

derived from the global logical schema in Figure 5b by inte-

grating access paths that can be inferred from the conceptual

schema in Figure 3.

The design objectives of "GLPschema" are to: (1) enable

the DBMS to ensure database integrity; (2) prevent storage

anomalies; (3) enable fast access to data about complex re-

al-world entities; (4) provide users with the access paths that

can meet their needs.

In our methodological approach, the role of "GLPschema"

is to serve as a global nested relational pivot schema.

To allow users to work with their preferred data models

(object-relational, XML, and/or JSON), the designer must

derive, for each of these models, the global external schema of

a virtual database from the same underlying global nested

relational pivot schema, namely "GLPschema".

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

31

This involves: (1) creating the user-defined ob-

ject-relational type, XML schema, or JSON schema that

specifies the structural integrity constraints for each typed

view; (2) providing the DBMS with the necessary specifica-

tions to dynamically handle the "relational model ↔

non-relational model" data mapping, enabling the manipula-

tion of typed views in virtual databases whenever needed.

The creation of a user-defined object-relational type, an

XML schema, or a JSON schema, which defines the structure

of instances of a typed view in a virtual database, as well as

the generation of the logical execution plan for the dynamic

derivation of the instances of this typed view from the relevant

data in the Data Store, can result from an automatic trans-

formation process of the required underlying nested relational

pivot schema defined in "GLPschema".

To achieve this, the designer must define, if necessary, for

atomic-valued attributes in "GLPschema", specific rules for a

customized automatic transformation of the nested relational

schemas.

These specific rules can be used, for example, to indicate

that: (1) the atomic-valued attributes "ZipCode", "Town", and

"Country" must be grouped into a composite-valued attribute

"Address"; (2) the atomic-valued attribute "PartNumber"

must be treated in an XML document as an XML element

rather than as an XML attribute.

Figure 6. Example of a Global Nested Relational Pivot Schema, Derived From the Schema in Figure 5b By Integrating Access Paths, Un-

derlying the NoSQL Virtual Databases.

Alternatively, the designer also has the option to manually

define the schema of each typed view and to create the SE-

LECT statement required to generate the logical execution

plan for the dynamic derivation of instances of this typed view

from relevant data in the Data Store.

The automatic generation of the logical execution plan for

the derivation of the instances of a non-relational typed view

(object-relational, XML, or JSON) based on the transfor-

mation rules can be seen as a two-step data mapping process.

6.1.1. The First Step of the Data Mapping Process

The first step is identical for all three models (ob-

ject-relational, XML, and JSON). This step involves the ap-

plication of the transformation rules on the required under-

lying nested relational pivot schema to derive a sequence of

nested relational algebra operations. The purpose of this se-

quence is to define a logical execution plan for the generation

of the tuples of a table that adheres to this required underlying

nested relational pivot schema. The tables used for generating

these tuples must be the tables of the Data Store.

Figure 7 contains an example that concerns a typed view

(object-relational, XML or JSON) containing the data about

the instances of the complex entity "Composer" including the

data about the instances of its sub-entity "Post" and the data

about access paths. The content of this figure is the logical

execution plan that could be generated from the underlying

nested relational schema of Figure 6, namely "Compos-

ers_NRP", based on the transformation rules.

The purpose of this logical execution plan is to generate the

tuples of a table that adheres to "Composers_NRP", using the

tables "Composers_R", "Posts_R", and "Compositions_R" of

the Data Store, as described in Figure 4.

Each tuple generated by this logical execution plan is about a

composer. It consists of the atomic attributes "ComposerId",

"ComposerName", "ComposerBirthDate", "ComposerBirth-

Place", "IsMentoredBy" and the relational-valued attributes

"Posts_R" (containing all the posts that concern this composer),

"Is_MentorOf" (containing as access paths all the identifiers of

the composers he mentors), and "Has_Produced" (containing as

access paths all the identifiers of the productions he authored).

As for Figure 8, it contains the logical execution plan that

could be generated from the underlying nested relational

schema of Figure 6, namely "Compositions_NRP", for a typed

view (object-relational, XML or JSON) containing the data

about the instances of the entity "Composition" including data

about the access paths, using the tables "Compositions_R" and

"Programs_R" of the Data Store (see Figure 4).

6.1.2. The Second Step of the Data Mapping Process

As for the second step of the data mapping process, it in-

volves transforming each logical execution plan generated

during the first step into a logical execution plan that produces

all the instances of the relevant non-relational typed view.

This can be done by relying on the transformation rules to

apply the appropriate transformation functions (defined for

this purpose in the ISO standards) to the results of operations

or groups of operations in each logical execution plan pro-

duced in the first step.

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

32

The structure of each instance produced in this second step must adhere to the schema of the concerned typed view.

Figure 7. Logical execution plan for generating the rows adhering to the nested relational pivot schema "Composers_NRP" underlying a typed

view regardless of its model.

Figure 8. Logical execution plan for generating the rows adhering to the nested relational schema "Compositions_NRP" underlying a typed

view regardless of its model.

For example, Figure 9 contains three logical execution

plans. The transformation functions shown in plans (2) and (3)

are functions of the ORACLE'S DBMS, used for illustration

purposes.

Plan (1) is extracted from the logical execution plan in

Figure 7, derived during the first step of the data mapping

process from an underlying nested relational pivot schema,

regardless of the data model of the concerned view. This plan

computes the value of the relational-valued attribute

"HasProduced" for each tuple generated by the logical exe-

cution plan in Figure 7. This value is a relation consisting of a

single attribute, "CompositionId", meaning it is a set of values

for this attribute corresponding to access paths. Each value

must correspond to a foreign key referencing a tuple in the

"Compositions_R" relation.

Plan (2) is the result of transforming Plan (1) during the

second step of the data mapping process for an ob-

ject-relational virtual database. The "MAKE_REF(T, a)"

function converts the foreign key value "a" into a logical

pointer to the referenced row in table "T". The composite

function "CAST(MULTISET(SubQuery) AS NewType)" con-

verts the collection type produced by the subquery

"SubQuery" into a user-defined type ("ProducedProduction-

List"), which defines nested tables.

As for plan (3), it is the result of the transformation of plan (1)

carried out during the second step of the data mapping process

when dealing with an XML virtual database. The function

"XMLELEMENT (ElmtName, ElmtValueExpr)" replaces the

result of evaluating the expression "ElmtValueExpr" with an

XML element named "ElmtName" with a body equal to the

result of evaluating the expression "ElmtValueExpr". The

composite function "XMLAGG(SubQuery XMLELE-

MENT(ElmtName, ElmtValueExpr))" replaces the collection

resulting from the execution of the subquery "SubQuery"

passed as a parameter with a collection of XML elements, each

named "ElmtName" with a body equal to the value of the pro-

jection of the attribute "CompositionId" on a row of the result of

this subquery "SubQuery" passed as a parameter.

6.2. Redefining as a Virtual Graph-Oriented

Database

As a reminder, in the global logical schema of a relational

database, foreign keys result from the materialization of asso-

ciations defined in its conceptual schema. In the database, each

foreign key value establishes a semantic link (i.e., a relationship)

between two instances of one or two real-world entities.

Thus, it is possible to infer from the data stored in an opera-

tional relational database, the set of semantic links that exist

between the instances of the real-world entities described in it.

Figure 9. Examples of Applying Transformation Functions to Logical Execution Plans.

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

33

The graph-oriented data model enables the representation

of these semantic links using a graph. In this graph, each

vertex corresponds to an instance of a real-world entity de-

scribed in the database. Each edge represents a semantic link

between two instances of one or two real-world entities, as

established in the database through the value of a foreign key.

Each vertex and edge is defined by a label that determines its

type and by a set of properties.

The ISO SQL/PGQ (Property Graph Query) standard [27]

defines a set of features that enable the materialization of a

graph using tables of vertices (or nodes) and tables of edges

(or semantic links) where each element corresponds to a row

in an operational relational database table. Just like views,

these tables of vertices and these tables of edges do not have a

real existence; they exist only through their definitions. Each

of their elements is dynamically determined whenever needed,

based on the corresponding row in the operational relational

database. This "relational model → graph model" data map-

ping is handled by the DBMS, relying on the specifications

provided by the designer in the graph metadata.

Figure 10 provides an example of an SQL statement for

creating a graph titled "composers_graph", derived from the

"Composers_R" table defined in the relational logical schema

of our example database, as described in Figure 4. This

statement specifies that this graph will be materialized in the

vertex table "Composers_R" and the edge table "Compos-

ers_R".

Furthermore, the features specified in the ISO SQL/PGQ

standard [27] allow developers to formulate an SQL pat-

tern-matching query on a graph created in this way, enabling

them to discover all subgraphs that match the pattern defined

by this query.

The purpose of the query language defined by this standard

is to integrate graph manipulation into SQL, while making the

specification of computing operations more compact and less

complex than in approaches based on the explicit use of the

relational join operator.

The integration of graph processing within the "SELECT"

statement is primarily achieved through the use of the

"GRAPH_TABLE" operator in the "FROM" clause, along with

the "MATCH" and "COLUMNS" clauses. This operator and

these clauses serve two purposes: (1) defining a pattern for

graph pattern matching; (2) specifying a virtual table to store

the matching results.

A "FROM" clause containing such specifications can also

include non-graph-oriented tables required for evaluating the

"SELECT" statement. This makes it possible to formulate

cross-model queries that combine tables from different data

models, including the graph-oriented model.

Figure 11 contains an example of a pattern-matching SQL

query on the graph whose creation statement is shown in

Figure 10. This query returns the list of composers who have a

mentor, indicating for each composer his name and the name

of his mentor.

Figure 10. Example of SQL statement for creating a graph.

Figure 11. Example of SQL pattern-matching query on a graph.

The redefinition of the Data Store as a virtual

graph-oriented database therefore consists for the designer in

creating a set of graphs using vertex tables and edge tables

that do not have real existence, where each element corre-

sponds to a row of a table of the Data Store. The identification

of these graphs must result from an analysis of the enterprise's

needs in terms of analysis of the semantic links existing be-

tween the instances of the real-world entities described in the

Data Store.

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

34

7. Query Processing in the Multi-Model

Database

A multi-model database, stored within a Data Store adher-

ing to relational model, optimized for hybrid processing (both

transactional and analytical), and accessed by developers and

data analysts through relational and non-relational virtual

databases (object-relational, XML, JSON) defined via exter-

nal schemas, provides exceptional flexibility to its users.

They can manipulate it freely and with no overload as: (1) a

relational database; (2) a non-relational database (ob-

ject-relational, XML, JSON); (3) a hybrid database consisting

of typed views that conform to different data models (rela-

tional, object-relational, XML, JSON).

In other words, the user can formulate a cross-model SQL

query that manipulates typed views of different types (rela-

tional, object-relational, XML, JSON), potentially containing

textual values that correspond to flexible-schema or sche-

ma-less XML or JSON data, which are natively processed

using the query language of their respective model.

In NewSQL DBMS, the manipulation of NoSQL values

within SQL is largely achieved using query functions defined

by the ISO standards such as "SQL3", "SQL/XML" and

"SQL/JSON". These standards aim to ensure interoperability

between SQL and NoSQL query languages.

These query functions typically take two input parameters:

(1) in on hand, a list of values, where each value corresponds

to either a table row or an instance of a NoSQL typed view

being processed, or a NoSQL value contained within a table

row or within an instance of a NoSQL typed view being

processed; (2) in the other hand, the NoSQL query to be ap-

plied to the first parameter.

The role of the NoSQL query is to extract values from the

NoSQL values within the first parameter.

When used in a "SELECT" clause, the query functions

enable results that include columns of different types (scalar

types, user-defined object-relational types, XML types, JSON

types). These columns may come from virtual tables of dif-

ferent types (relational, object-relational, XML, JSON) cited

in the "FROM" clause.

These query functions can also serve as selection test

functions in the "WHERE" clause.

As mentioned in Section VI, in our approach, the NoSQL

virtual databases that allow users to manipulate the Data Store

as both an object-relational, XML, and JSON database share

the same underlying global nested relational pivot schema,

namely "GLPschema", from which they were derived. Let

"Si" be a schema within "GLPschema". The logical execution

plan derived from "Si" (as indicated in Section VI) for gen-

erating instances of a typed view is identical for all three

models (object-relational, XML, and JSON) when mod-

el-specific transformation functions are ignored (see as ex-

ample Figure 9).

The processing of cross-model SQL queries can therefore

involve the DBMS treating in a first step these queries as if

they are formulated on tables adhering to the underlying

nested relational pivot schemas, regardless of the model of the

typed views involved. These underlying pivot schemas may

contain string-type attributes that hold XML or JSON docu-

ments, which can be manipulated using the query language

specific to their model.

This section illustrates, using an example, this approach

that enables the unification of cross-model SQL query pro-

cessing, specifically by showing how to transform these que-

ries into optimized logical execution plans.

Figure 12 presents an example of a cross-model SQL query

that takes as input two object-relational typed views, "Com-

posers_OR" and "Compositions_OR". As a reminder, the

logical execution plans presented in Figures 7 and 8 corre-

spond respectively to these two typed views, regardless of the

model type to which they adhere, which could also have been

XML or JSON. These logical execution plans were generated

to derive instances of the tables that adhere to their underlying

nested relational schemas in Figure 6, namely, "Compos-

ers_NRP" and "Compositions_NRP".

The result of this cross-model query is a tuple consisting of

two atomic-valued attributes ("Title": the title of a composition

with the identifier "200", "ComposerName": the name of the

composer) and one relational-valued attribute ("PostedTo-

Composer": a list of posts related to this composer, restricted to

the columns indicating the creation date and source).

In this cross-model SQL query, the transformation function

"TABLE" is used to convert the content of the relation-

al-valued attribute "Postes_R" (from the instance of the typed

view "Composers_OR" being processed) into a relational

table.

Figure 12. Example of a Cross-Model SQL Query.

Figure 13 presents the gross logical execution plan that the DBMS could derive from this cross-model SQL query.

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

35

Figure 13. Gross Logical Execution Plan for Query in Figure 12.

To enable the evaluation of this execution plan on the Data

Store, it is sufficient to replace the two object-relational typed

view with the logical execution plans shown in Figures 7 and

8 as if this query was formulated on the tables adhering to the

underlying nested relational pivot schemas of these two typed

views, namely, "Composers_NRP" and "Compositions_NRP".

Figure 14 shows the resulting execution plan. In this exe-

cution plan, the object-relational typed views "Compos-

ers_OR" and "Compositions_OR" have been replaced by the

three relational tables ("Composers_R", "Posts_R", and

"Compositions_R") used to compute their instances.

Simplifying the logical execution plan of Figure 14 leads to

the execution plan of Figure 15.

As discussed in Section II, "Composer" is a complex entity

with "Post" as its sub-entity. The global nested relational

schema in Figure 5b indicates that the designer chose a hybrid

storage model for this complex entity. As a result, the rela-

tional tables "Composers_R" and "Posts_R", used in this

logical execution plan, must be considered part of a table

cluster. This means that: (1) the data about each composer and

the posts concerning him are stored in the same physical block

of the disk; (2) the relational algebraic operators involved in

processing these data must consequently be interpreted as

implicit relational algebraic operators, which the DBMS

evaluates in main memory.

Figure 14. Gross Logical Execution Plan for Evaluating Query in Figure12 on the Data Store.

Figure 15. Optimized Logical Execution Plan for Evaluating the Query in Figure12 on the Data Store.

Therefore, having in addition a join index between "Com-

posers_R" and "Compositions_R" would allow this

cross-model query to be executed in the shortest possible

time.

Figure 16 shows a transformation, in a second step, of the

logical execution plan from Figure 15, aiming to generate a

result where each column's type matches the type inferred

from the initial cross-model query. In this transformation, the

type of the relational-valued attribute "PostedToComposer"

has been converted into an Oracle user-defined nested table

type, namely "PostedToComposerList", using the

"CAST-MULTISET" transformation functions.

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

36

Figure 16. Application of Transformation Functions on the Optimized Logical Execution Plan for the Final Rendering of the Evaluation of the

Query in Figure12 on the Data Store.

Figures 17 and 18 highlight how the processing of a path

expression should be handled in our approach, using the ob-

ject-relational model as an example.

In Figure 17, "IsProducedBy" results from the transfor-

mation of the foreign key "ComposerId" (defined in the un-

derlying nested relational schema "Compositions_NRP" from

Figure 6) into a logical pointer in the object-relational model.

Finally, as discussed in Section VI, the "FROM" clause in a

cross-model SQL query that manipulates views of different

types (relational, object-relational, XML, JSON) can also

include the specification of a table that contains the result of a

graph pattern matching operation. This possibility allows SQL

cross-model queries supporting graph manipulation. To en-

sure that the evaluation of such queries follows the same

approach as the one illustrated, it requires the use of a new

relational algebraic operator, namely the MAP operator [28].

Figure 17. Query using a path expression.

Figure 18. Gross Logical Execution Plan for the Query in Figure 17.

8. A Framework for Supporting the

Design Process

A data model can be viewed as a virtual machine character-

ized by four sets: (1) a set of value types; (2) a set of structure

types to which complex values can adhere; (3) a set of opera-

tion types enabling the manipulation of values; (4) a set of

integrity constraint types that can be enforced by the DBMS.

If M1 and M2 represent two different data models, the

mapping of a schema S1 from M1 to M2 consists of redefin-

ing (i.e., transforming) S1 into a schema S2 in M2 that is

equivalent to S1.

The transformation mechanisms for mapping a schema

from one model to another have been extensively studied,

both theoretically [29] and practically [30], for various ap-

plications.

These mechanisms can be integrated into a graphical tool

within a database-oriented application design and develop-

ment platform to automate a significant part of the design

methodology presented in this paper, which is primarily based

on a schema mapping process.

The role of such a tool can be as follows:

Assist the designer in drawing a conceptual schema free of

semantic heterogeneity, where simple entities, complex enti-

ties, and gray entities are properly modeled.

Assist the designer to transform the conceptual schema into

a global relational logical schema of the Data Store and a

global nested relational logical schema, ensuring compliance

with the rules defined in Sections III and IV.

Guide the designer in making choices regarding the phys-

ical layout of the Data Store.

Create in the database dictionary, under the designer’s su-

pervision, the tables of the Data Store and their indexes, in-

corporating all design choices.

Generate in the dictionary of the database, with the de-

signer’s assistance, all the artifacts required for the creation

of the virtual databases: underlying nested relational pivot

schemas including access paths, annotated user-defined

types, annotated XML schemas, annotated JSON schemas,

typed views and their execution plans for deriving their

instances.

9. Related Work

The approach presented in this paper allows an assessment

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

37

of the capability of NewSQL DBMSs to meet the objectives

for which they were introduced, namely, to offer the ad-

vantages of NoSQL DBMSs while avoiding their drawbacks

and preserving the benefits of SQL DBMSs. This presentation

also allows for a comparison of the advantages of NewSQL

DBMSs with those provided by other types of approaches.

This section successively broach: (1) the strengths and the

weaknesses of NewSQL DBMSs in achieving their objectives,

regarding their capabilities highlighted in the approach we

described; (2) a brief comparison with the approach that in-

volves evolving existing NoSQL DBMSs into their mul-

ti-model versions; (3) a brief comparison with the approach

that aims the creation of a new model that natively integrates

the capabilities of several models; (4) a brief comparison with

multistore system approaches; (5) a brief comparison with

NoSQL Database Design Methods.

A comprehensive overview of the various existing ap-

proaches can be found in [1, 2, 31].

9.1. Strengths of NewSQL DBMSs

Digital transformation has made databases one of the key

foundations upon which modern societies are built. They

serve as the memory that enables societies to establish good

governance, simplify the lives of all stakeholders, drive in-

novation across industries, increase productivity, and reduce

production and service costs.

To achieve this, a database must be versatile and applica-

tion-independent, a guarantor of reliability and accessibility,

ensuring the accuracy of the information it stores and the

insights and predictions it enables, robust while maintaining a

straightforward implementation.

NewSQL DBMSs allow the designer to choose the rela-

tional model as the primary model for the Data Store.

In the current state of the art, this technological offering

represents the best choice for enabling the DBMS to serve as

the guarantor of integrity for structured or hierar-

chical-and-structured value collections (adhering to the rela-

tional or nested relational models), where this aspect is con-

sidered mission-critical by users.

This technological offering also enables, within a column of

a relational table, the native storage of value collections that

adhere to XML or JSON standards. For these types of data, the

primary requirement is not integrity but rather their highly

flexible format, which allows them to be self-documenting,

complex, hierarchical, and semi-structured.

It also enables the designer to provide developers, applica-

tion integrators, and data analysts with the agility and flexi-

bility needed to seamlessly interact with the relational Data

Store, without overload, as if it were, virtually a relational,

object-relational, XML, JSON, and graph-oriented database

simultaneously.

The integration of object-relational, XML, JSON, and

graph-oriented query languages into SQL ensures that, within

each cross-model query, each value can be processed using

the query language of its respective model.

In other words, this technological offering provides the

possibility of ensuring, using a single DBMS, the storage and

manipulation of hybrid collections of values adhering to dif-

ferent models as needed.

Furthermore, this technological offering provides the de-

signer with multiple options for organizing data on the phys-

ical storage devices used for data persistence. These options

can help: (1) minimize query execution time; (2) ensure un-

limited horizontal scaling and uninterrupted data availability;

(3) coordinate concurrent and distributed transaction execu-

tion while guaranteeing the ACID properties.

As a final advantage, it is worth noting that NewSQL

DBMSs are extensible to new data models, following the

same approach used for the integration of XML, JSON, and

the graph-oriented model.

9.2. Weaknesses of NewSQL DBMSs

NewSQL DBMSs also allow the designer to store the data

in tables of different types (relational, object-relational,

XML, and JSON) that have a real existence. For the NoSQL

tables (object-relational, XML, and JSON), this capability is

generally based on the integration of their storage engines

with the SQL storage engine, enabling either storing NoSQL

data in its native format, or automatically shredding NoSQL

data into internal tables (relational or object-relational, for

example). The goal of this feature is to ensure that the pri-

mary model of the Data Store can be any model, not just the

relational model.

Leveraging this capability can lead to poorer practices for

three main reasons: (1) NoSQL models encourage the de-

signer to define the logical structure of values based on both

their semantics and access paths required by developers. In

contrast, the relational model requires defining the logical

structure of values solely based on their semantics; (2)

NoSQL models promote materializing associations using

pairs of semantic links, where each link in each pair must be

the inverse of the other, while the DBMS has no built-in

mechanism to guarantee the integrity of this materialization

[14]; (3) the integrity constraints that NoSQL models allow

the DBMS to enforce are only a subset of those provided by

the relational model.

This second option, related to choosing the primary model

for the Data Store, can therefore make the database less ver-

satile and less independent from applications. Furthermore, it

may also reduce DBMS’s ability to ensure data reliability,

potentially forcing developers to handle integrity controls

themselves, which is an error’s prone task. This can make the

database significantly less robust.

Finally, it is important to note that in NewSQL DBMSs,

most of the physical database organization options described

in Section V apply only to relational tables. This is especially

true for database sharding.

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

38

9.3. The Evolution of Existing NoSQL DBMSs

Towards Their Multi-model Versions

In this approach, existing offerings [1, 2] can only support a

limited number of different models.

Except for the possibilities it offers for storing data that

adhere to multiple models, the advantages of this approach are

the same as those of the original model.

9.4. The Creation of a New Model That Natively

Integrates the Capabilities of Several

Models

Just like the NewSQL approach this category aims at uni-

fying data models. For example, SQL++ [4] is a

semi-structured model that extends the capabilities of the

relational model and JSON in terms of modeling possibilities.

SQL++ also provides a query language that is fully backward

compatible with SQL while integrating the capabilities of

semi-structured models.

The NewSQL approach and the SQL++ approach are fun-

damentally different. The NewSQL approach relies on

standards to integrate other models under the relational model.

The SQL++ approach starts from scratch to define a new

model that incorporates the features of multiple models (i.e. a

model composed of several models).

Each approach has its own benefits. The NewSQL ap-

proach follows an evolutionary path, ensuring backward

compatibility and allowing businesses to gradually adopt its

new capabilities. The SQL++ approach takes a revolutionary

path, enabling the creation of an entirely new technological

offering, leveraging lessons learned and the latest advance-

ments in database technology. Thus, one could say that

SQL++ paves the way for new types of lighter and more ef-

ficient DBMSs.

However, in terms of modeling capability, NewSQL and

SQL++ are potentially equivalent, as both could theoretically

allow the integration within a single database of the same

types of value collections adhering to same types of models.

9.5. Multistore Systems

The purpose of multistore systems is to provide users (de-

velopers, application integrators, and data analysts) with the

necessary tools to manipulate heterogeneous collections of

values stored in autonomous databases that adhere to different

data models (relational and NoSQL). These databases may

have been designed independently or simultaneously for

predefined needs. Heterogeneity can affect multiple aspects,

including: (1) structural differences, such as variations in how

the logical structure of data describing the instances of the

entities is defined; (2) impedance mismatches between the

data types supported by the different types of DBMSs; (2)

syntactic differences in query languages; (4) semantic issues,

such as the presence of synonyms and homonyms.

Providing the necessary tools for manipulating these data

collections requires providing users with a unified global

view and a cross-model query language based on this view.

To achieve this, various approaches have been proposed,

relying on a middleware composed of one mediator and

several wrappers, each dedicated to a specific type of DBMS

[32-34].

NewSQL DBMS and multistore systems have been de-

signed to meet different objectives. They offer different ad-

vantages that are complementary. NewSQL DBMS provide

the ability to integrate heterogeneous collections of values

that adhere to different types of data models within a single

database while ensuring scaling, fault tolerance, availability,

and ACID properties (Atomicity, Consistency, Isolation, Du-

rability). Multistore systems, on the other hand, enable the

federation of relational, NoSQL, and NewSQL databases

implemented on autonomous servers without compromising

their autonomy and without impacting their properties. This is

a fundamental aspect for enterprises that want to access Big

DATA

9.6. NoSQL Database Design Methods

Initially, the implementation of a NoSQL database only

focused on the physical level.

The main goal of the design methods of NoSQL databases

is to ensure that the design process starts with the functional

requirements of users, rather than non-functional require-

ments (such as performance, scalability, high availability),

similar to the methods developed for relational databases.

The main research efforts on this topic have highlighted the

possibility of defining unified design methods, independent of

the type of NoSQL DBMS, by distinguishing three levels of

abstraction: the conceptual level, the logical level, and the

physical level [35].

Among the methods based on this approach, "UM-

LtoNoSQL" [36] is one of the most comprehensive.

This approach leverages the MDA (Model-Driven Archi-

tecture) paradigm, defined by the OMG (Object Management

Group), for the automatic transformation of schemas [30]. It

uses: (1) the UML model to define at the conceptual level a

UML diagram that adheres to a metamodel; (2) automatic

transformation rules at the logical level to convert the UML

diagram into a generic logical schema, adhering to a meta-

model compatible with three NoSQL models (column-family,

document-oriented, or graph-oriented); (3) automatic trans-

formation rules at the physical level to convert the generic

logical schema into a NoSQL database (column-family,

document-oriented, or graph-oriented).

As for the NewSQL approach presented in this paper, it

implements two design processes where each process con-

sider four levels of abstraction. In these two design processes,

the global nested relational pivot schema plays a unifying

role.

In the "UMLtoNoSQL" approach, schema transformations

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

39

are performed fully automatically, whereas in the NewSQL

approach, related to these two design processes, transfor-

mations are mostly semi-automatic to allow the designer to

customize the resulting schemas. This customization enables

the consideration of user specific requirements.

In addition to schema mapping, the NewSQL approach

described in this paper also requires dynamic data mapping at

runtime. This means that data conversions occur dynamically,

transforming data adhering to one model into data adhering to

another model. These conversions take place between the

Data Store and the virtual NoSQL databases.

10. Conclusion

The evolution of SQL DBMSs toward NewSQL DBMSs

has led to the incorporation of functionalities that provide

database designers with a wide range of possibilities, thereby

increasing the complexity of database design.

In this paper, we have shown through an example how to

design and implement, on a NewSQL DBMS, a database that

combines the advantages of both SQL and NoSQL databases

by leveraging on: (1) the comprehensive methodological

approach that we propose for integrating consistently, by

relying on five levels of abstraction, the design process of a

relational Data Store and the design process of virtual data-

bases that allow the Data Store to be viewed and manipulated

as a NoSQL database (object-relational, XML, JSON or

graph-oriented); (2) the possibilities highlighted for data or-

ganization on storage devices; (3) the identified possibilities

for handling operations on the NoSQL virtual databases using

a uniform, innovative, and efficient approach.

The ISO standards for extending the relational model, as

well as the capabilities highlighted in our methodological

approach as fundamental for data organization on storage

devices, have not yet been fully implemented by all SQL

DBMSs, particularly with regard to the most recent features

such as SQL/JSON and SQL/PGQ standards, table clusters

[14], and database sharding.

Currently, database technology is still largely dominated by

the relational model [37]. As a result, many businesses face

challenges in adapting their mission-critical applications to

the web's demands for scalability and data availability. For

these companies, NewSQL DBMSs offer significant ad-

vantages: (1) the ability to help them overcome their current

challenges; (2) backward compatibility, ensuring the contin-

ued smooth operation of existing applications; (3) the ability

to run on low-cost standard servers, leading to reduced in-

vestment and recurring costs; (4) a vast community of de-

signers and web application developers already familiar with

most of the core concepts on which NewSQL is based.

The world of SQL DBMSs is currently undergoing active

exploration for a transformation that can best meet this new

demand from businesses [6, 7].

This presentation enables researchers and technology pro-

viders to identify key areas that require special attention to

bring significant improvements to NewSQL DBMSs.

Abbreviations

DBMS Database Management System

SQL Structured Query Language

NoSQL Not Only SQL

ISO International Organization for Standardization

XML eXtensible Markup Language

JSON JavaScript Object Notation

PGQ Property Graph Query

1NF First Normal Form

ACID Atomicity, Consistency, Isolation, and

Durability

ANSI American National Standards Institute

SPARC Standards Planning & Requirements Committee

LOB Large Object

E/A Entity/Association

UML Unified Modeling Language

3NF Third Normal Form

4NF Fourth Normal Form

OLTP Online Transaction Processing

I/O Input/output

OLAP Online Analytical Processing

MDA Model-Driven Architecture

OMG Object Management Group

Author Contributions

Joachim Tankoano is the sole author. The author read and

approved the final manuscript.

Conflicts of Interest

The author declares no conflicts of interest.

References

[1] Qingsong Guo1, Chao Zhang, Shuxun Zhang, Jiaheng Lu.

Multi‑model query languages: taming the variety of big data.

Distributed and Parallel Databases (2024) 42: 31–71.

[2] Jiaheng Lu and Irena Holubova. Multi-model Databases: A

New Journey to Handle the Variety of Data. ACM Computing

Surveys. 2019, Vol. 0, No. 0.

[3] Jan Michels, Keith Hare, Krishna Kulkarni, Calisto Zuzarte,

Zhen Hua Liu, Beda Hammerschmidt, Fred Zemke. The New

and Improved SQL: 2016 Standard. SIGMOD Record. June

2018 (Vol. 47, No. 2).

[4] Kian Win Ong, Yannis Papakonstantinou, Romain Vernoux.

The SQL++ Unifying Semi-structured Query Language, and

an Expressiveness Benchmark of SQL-on-Hadoop, NoSQL

and NewSQL Databases. arXiv: 1405.3631 [cs.DB], Dec.

2015.

http://www.sciencepg.com/journal/ajcst

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

40

[5] Manjunatha Sughaturu Krishnappa, Bindu Mohan Harve,

Vivekananda Jayaram, Akshay Nagpal, Koushik Kumar

Ganeeb, Balaji Shesharao Ingole. ORACLE 19C Sharding: A

Comprehensive Guide to Modern Data Distribution. IJCET.

Sep-Oct 2024, Volume 15, Issue 5.

[6] Samuel Akinola. Trends in Open Source RDBMS: Perfor-

mance, Scalability and Security Insights. Journal of Research

in Science and Engineering (JRSE). July 2024, Volume-6, Is-

sue-7.

[7] Naresh Kumar Miryala. Emerging Trends and Challenges in

Modern Database Technologies: A Comprehensive Analysis.

International Journal of Science and Research (IJSR). No-

vember 2024, Volume 13 Issue 11.

[8] Abdullah Muhammed, Zul Hilmi Abdullah, Waidah Ismail1,

Ali Y. Aldailamy, Abduljalil Radman, Rimuljo Hendradi,

Radhi Rafiee Afandi. A Survey of NewSQL DBMSs focusing

on Taxonomy, Comparison and Open Issues. IJCSMC. De-

cember 2021. Volume 11, Issue 4.

[9] Tariq N. Khasawneh, Mahmoud Alsahlee, Ali Safieh. SQL,

NewSQL, and NOSQL Databases: A Comparative Survey. In

2020 11th International Conference on Information and

Communication Systems (ICICS)

[10] María Murazzo1, Pablo Gómez, Nelson Rodríguez, Diego

Medel. Database NewSQL Performance Evaluation for Big

Data in the Public Cloud. In Book Communications in Com-

puter and Information Science ((CCIS, volume 1050)), Naiouf,

M., Chichizola, F., Rucci, E. (eds) Cloud Computing and Big

Data. JCC&BD 2019.

[11] Andrew Pavlo, Matthew Aslett. What’s Really New with

NewSQL? SIGMOD Record. June 2016 (Vol. 45, No. 2).

[12] Maia, Francisco Carlos M. B. Oliveira. Sharding by Hash

Partitioning A database scalability pattern to achieve evenly

sharded database clusters. 17th ICEIS At: Barcelona, Spain,

April 2015.

[13] A. Moniruzzaman. NewSQL: Towards Next-Generation

Scalable RDBMS for Online Transaction Processing (OLTP)

for Big Data Management. arXiv preprint arXiv: 1411.7343,

2014.

[14] Joachim Tankoano. Providing in RDBMSs the flexibility to

Work with Various Non-Relational Data Models. Global

Journal of Computer Science and Technology: H Information

& Technology. 2023, Volume 23 Issue 2 Version 1.0.

https://doi.org/10.34257/GJCSTHVOL23IS2PG1

[15] Chen, P., P-S. The entity-relationship model - toward a unified

view of data. ACM TODS. March 1976, Volume 1, Issue 1. pp

9–36.

[16] Object Modeling Group. Unified Modeling Language Speci-

fication. October 2012, Version 2.5.

[17] Patrick Valduriez, Setrag Khoshajian, George Copeland. Im-

plementation Techniques of Complex Objects. 12th Int. Con-

ference on Very Large Data Bases - Kyoto, August 1986.

[18] Tirthankar LahiriSerge, Abiteboul Serge, Jennifer Widom.

Ozone: Integrating Structured and Semistructured Data. 7th Int.

Workshop on Database Programming Languages: Research

Issues in Structured and Semi-structured Database Program-

ming, December 1999.

[19] Marc H. Scholl. Extensions to the Relational Data Model.

Available from:

https://www.researchgate.net/publication/2381217_Extension

s_to_the_Relational_Data_Model (accessed 29 March 2025).

[20] Joachim Tankoano. Modèle relationnel imbriqué. In SGBD

relationnels – Tome 2, Vers les Bases de données Réparties,

Objet, Objet-relationnelles, XML, … Available from:

https://www.researchgate.net/publication/366548683_SGBD_

relation-

nels_-_Tome_2_Vers_les_Bases_de_donnees_Reparties_Obj

et_Objet-relationnelles_XML (accessed 29 March 2025).

[21] Z. Meral Ozsoyoglu, Li-Yan Yuan. On the normalization in

Nested Relational Databases. LNCS. 1989, volume 361.

[22] Daniel J. Abadi, Samuel R. Madden, Nabil Hachem. Col-

umn-Stores vs. Row-Stores: How Different Are They Really?

SIGMOD'08, June 9–12, 2008, Vancouver, BC, Canada.

[23] ORACLE. Oracle Database SQL Language. Reference 23ai,

F47038-19, November 2024.

[24] Comer, D. The Ubiquitous B-Tree. Computing Surveys. June

1979, vol. 11, n° 2.

[25] Valduriez P. Join Indices. ACM TODS. June 1987, Vol. 12, No.

2, Pages 218-246.

[26] Ashish P. Mohod, Manoj S. Chaudhari. Improve Query Per-

formance Using Effective Materialized View Selection and

Maintenance: A Survey. IJCSMC. April 2013, Vol. 2, Issue. 4,

pg. 485 – 490.

[27] International Organization for Standardization (ISO). Infor-

mation technology — Database languages SQL Part 16:

Property Graph Queries (SQL/PGQ). (Edition 1, 2023),

ISO/IEC 9075-16: 2023.

[28] Caio H. Costa, João Vianney B. M. Filho, Paulo Henrique M.

Yunkai Lou, Longbin Lai, Bingqing Lyu, Yufan Yang, Xiaoli

Zhou, Wenyuan Yu, Ying Zhang, Jingren Zhou. Towards a

Converged Relational-Graph Optimization Framework. Proc.

ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), December 2024.

[29] Ronald Fagin, Phokion G. Kolaitis, Alan Nash. Towards a

Theory of Schema-Mapping Optimization”. PODS’08, June 9–

12, 2008, Vancouver, BC, Canada.

[30] Jean Bézivin, Olivier Gerbé: Towards a precise definition of

the OMG/MDA framework. Proc. 16th Annual Int. Conf. on

Automated Software Engineering (ASE 2001)

[31] Chaimae Asaad and Karim Ba. NoSQL Databases: Seek for a

Design Methodology. 8th Int. Conference, MEDI 2018, Mar-

rakesh, Morocco, October 24–26, 2018.

[32] Carlyna Bondiombouy, Patrick Valduriez. Query Processing in

Multistore Systems: an overview. [Research Report] RR-8890,

INRIA Sophia Antipolis - Méditerranée. 2016, pp. 38.

hal-01289759v2.

http://www.sciencepg.com/journal/ajcst
https://www.researchgate.net/publication/2381217_Extensions_to_the_Relational_Data_Model
https://www.researchgate.net/publication/2381217_Extensions_to_the_Relational_Data_Model

American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst

41

[33] Paolo Atzeni, Francesca Bugiotti, and Luca Rossi. Uniform

Access to Non-relational Database Systems: The SOS Platform.

J. Ralyt é et al. (Eds.): CAiSE 2012, LNCS 7328, pp. 160–174,

2012.

[34] Ágnes Vathy-Fogarassy, Tamás Hugyák. Uniform data access

platform for SQL and NoSQL database systems. Information

Systems. September 2017, Volume 69, Pages 93-105.

[35] Kwangchul Shin, Chulhyun Hwang, Hoekyung Jung. NoSQL

Database Design Using UML Conceptual Data Model Based

on Peter Chen’s Framework. Int. Journal of Applied Engi-

neering Research ISSN 0973-4562 Volume 12, Number 5

(2017) pp. 632-636.

[36] Fatma Abdelhedi, Amal Ait Brahim, Faten Atigui, Gilles

Zurfluh. Logical Unified Modeling For NoSQL DataBases.

19th ICEIS 2017, Apr 2017, Porto, Portugal. pp. 249-256.

hal-01782574.

[37] Michael Stonebraker. NoSQL and Enterprises. Cacm | august

2011 | vol. 54 | no.

http://www.sciencepg.com/journal/ajcst

