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Abstract 

NewSQL DBMSs are hybrid systems that combine the advantages of both SQL DBMSs and NoSQL DBMSs. This paper 

proposes a method for designing a database to be implemented on a NewSQL DBMS. The objectives of this method are 

identifying and defining heterogeneous collections of values that adhere to different data models, which are essential for an 

enterprise's operations, with the goal of storing and managing them within only one database. This method is based on a 

Relational Data Store and the Nested Relational Model. It allows the designer to use the Data Store as a guarantor of integrity and 

to optimize it for hybrid workloads (transactional and analytical), performance, scalability, and continuous data availability. As 

for the nested relational model, it is used by the designer to: (1) clarify their choices regarding storage models that can enable fast 

access to data about complex real-world entities; (2) specify access paths that can meet user needs. The main interest and the 

originality of this methodological approach are that this enables us to use the Nested Relational Model as a Pivot Model to: (1) 

automatically generate the global external schemas of the NoSQL virtual databases, allowing users to view and manipulate the 

Data Store as if it were a NoSQL database (object-relational, XML, JSON, or graph-oriented), and (2) unify the processing of 

cross-model SQL queries through an innovative and efficient approach. This method consistently integrates, through five levels 

of abstraction, the design process of the relational Data Store and that of the virtual databases. The research method used 

consisted of: (1) defining the objectives of this approach, (2) identifying the required levels of abstraction in light of the targeted 

objectives, (3) determining, for each level of abstraction, its specific objectives as well as the role to be played by the designer, a 

design support tool, and the DBMS, and (4) applying this approach to a typical example reflecting the most common needs, in 

order to facilitate the understanding of its contributions and relevance with respect to the intended objectives. 
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1. Introduction 

NewSQL DBMSs are hybrid systems [1-13]. Their advent 

aims to promote new types of DBMSs with the required ca-

pability to better address the requirements of web applications 

compared to SQL DBMSs and NoSQL DBMSs. To achieve 

this, they focus on two key objectives: 

Maintain the advantages of SQL DBMSs by offering: (i) 

capabilities for managing fixed-schema collections of values 

that ensure data independence and integrity; (ii) a 

non-procedural interface language that facilitates query op-

timization; (iii) a transaction execution environment that 
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guarantees the Atomicity, Consistency, Isolation, and Dura-

bility (ACID) properties. 

Consider the advantages of NoSQL DBMSs, which include: 

(i) flexibility through flexible-schema or schema-less collec-

tions of values, adhering to various structures (e.g. structured, 

hierarchical-and-structured, hierarchical-and-semi-structured, 

unstructured, or graph-oriented); (ii) customizable data logi-

cal and physical organization enabling optimal query execu-

tion; (iii) unlimited horizontal scaling to accommodate 

workload changes; (iv) continuous data availability. 

Many of today's NewSQL DBMSs have been developed by 

leveraging a proven SQL DBMS and incorporating 

well-known concepts to provide the necessary functionality. 

This include: 

The integration of alternative NoSQL data models (c.f. the 

SQL3, SQL/XML, SQL/JSON and SQL/PGQ ISO standards) 

achieved by: (i) extending SQL as a complete programming 

language or integrating SQL into an existing one, that can in 

both cases serve as support for integration of alternative data 

models under the relational model, and for development of 

features and APIs that extend the capabilities of the DBMS; (ii) 

expanding the SQL data definition language with new value 

types, structure types, and table types; (iii) expanding SQL's 

relational predicative language with new functions and pred-

icates; (iv) adding new operators and clauses to SQL syntax; 

(v) defining the semantics of the operators of nested relational 

algebra as an extension of 1NF relational algebra; (vi) using 

these operators to define the semantics of path expressions in 

object-oriented/document-oriented models; (vii) allowing 

nested queries in SQL SELECT-FROM-WHERE clauses; 

(viii) defining a cross-model query language as an extension 

of SQL 2. 

The integration of a middleware into DBMS architecture 

for automatic and transparent sharding of the database, in-

cluding: (i) automatically fragmenting horizontally tables and 

indexes, and distributing fragments and their copies across 

geographically distributed database servers called shards; (ii) 

monitoring shards, rebalancing them, and adjusting their 

number based on workload; (iii) routing queries and coordi-

nating concurrent, distributed transactions while ensuring 

Atomicity, Consistency, Isolation, and Durability (ACID) 

properties. 

The incorporation of functionalities that enable DBMSs to 

offer both transactional and analytical processing capabili-

ties. 

Following the approach described, NewSQL DBMS have 

introduced a broad range of possibilities, thereby increasing 

the complexity of database design. 

Furthermore, some of these possibilities open the door to 

very poor practices. 

To our knowledge, there is currently no research on com-

prehensive methods for designing a database specifically 

aimed at NewSQL DBMSs, with the following objectives: (1) 

identifying and defining heterogeneous collections of values, 

adhering to different data models, for storage and manipula-

tion within only one database, ensuring they meet the needs of 

a business's operations; (2) guaranteeing performance, scaling 

capability, and continuous data availability. 

This paper outlines such a coherent and comprehensive 

methodological approach for designing a database specifi-

cally intended for a NewSQL DBMS. 

This approach is grounded on the ANSI/SPARC architec-

ture of the schemas depicted in Figure 1 as described in [14]. 

The key point of this architecture is that the logical model of 

the database utilized internally as the Data Store must con-

form to the relational model. 

This method allows the designer to use this relational Data 

Store as the guarantor of integrity and to optimize it for hybrid 

processing workloads (both transactional and analytical), 

performance, scaling, and continuous data availability. 

Furthermore, this method allow the designer to leverage the 

Nested Relational Model to: (1) clarify their choices regarding 

storage models that can enable fast access to data about 

complex real-world entities; (2) specify access paths that can 

meet user needs. 

In doing so, this method enables us to use the Nested Re-

lational Model as a Pivot Model to: (1) automatically generate 

the global external schemas of the NoSQL virtual databases, 

allowing users to view and manipulate the Data Store as if it 

were a NoSQL database (object-relational, XML, JSON, or 

graph-oriented), and (2) unify the processing of cross-model 

SQL queries through an innovative and efficient approach. 

This method integrates seamlessly the design methodolo-

gies of various types of databases (relational and NoSQL). 

It captures the various relevant aspects of a multi-model 

database across five levels of abstraction, which are com-

plementary but also consistent or orthogonal. 

As depicted in Figure 2, these five levels concern two de-

sign processes: (1) the relational Data Store design process; (2) 

the design process for the virtual NoSQL databases. 

The following presents and illustrates the capture of the 

different relevant aspects of a multi-model database through 

these five levels of abstraction by relying on a simple example 

of database and highlighting the known techniques that can be 

considered. 

A simple example of generation and optimization of the 

logical execution plan of a query formulated on this example 

of a multi-model database is also presented. 

The paper ends with a comparative analysis of the pre-

sented approach and related works, followed by a conclusion. 

2. The Database Conceptual Schema 

The conceptual schema of a multi-model database within a 

NewSQL DBMS corresponds to the conceptual representation 

used in our approach to identify: (i) real-world entities and 

their associations whose instances need to be described in this 

database, independently of use cases such as the models that 

must be used for the description and manipulation of value 

collections, as well as other non-functional requirements that 
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must be met (e.g., value access path, value access time, secu-

rity for access, scaling capability, data availability, etc.); (2) 

atomic value types required for this description; (3) integrity 

constraints that must be applied to these values, entities and 

associations to ensure consistency with the enterprise's busi-

ness rules. 

In our approach, the role of this conceptual schema is also 

to facilitate derivation of the global logical schema of a mul-

ti-model database for storage and manipulation of: (1) the 

collections of structured values (adhering to the relational 

model) describing the instances of simple entities; (2) the 

collections of hierarchical-and-structured values (adhering to 

the nested relational model) describing the instances of com-

plex entities with nested sub-entities; (3) the collections of 

hierarchical-and-semi-structured values whose structure is 

irregular and/or unpredictable (adhering to XML or JSON 

standards) describing the instances of what we refer to as gray 

entities (such as the entity "Article" in an online store where 

articles of diverse natures (food, clothing, household appli-

ances, etc.) are described by their suppliers according to dif-

ferent rules). 

Accordingly, this conceptual schema must highlight the 

real-world entities that need to be described in the database by 

clearly differentiating among three types of entities: simple 

entities, complex entities, and grey entities. 

 
Figure 1. ANSI/SPARC architecture of schemas [14]. 
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Figure 2. The two design processes and the five levels of abstraction of the database. 

Each real-world entity must be characterized within this 

conceptual schema, according to the users' information re-

quirements, through the atomic-valued attributes of its in-

stances. 

For simple entities and complex entities with sub-entities, 

the type of an attribute corresponding to a large and/or un-

structured value (e.g., text, image, audio, video), must be a 

special atomic abstract type ("LOB (Large OBject)", "Char-

acter", "Character Varying" …) which is part of the exten-

sions introduced by ISO from SQL3. This also applies to 

repetitive values (e.g., a customer's phone numbers) or values 

with varying structures (e.g., a customer identity which may 

consist of either his title (Ms, Mrs, Pr, Dr, etc.), his surname 

and first name, or his first name and surname, or the acronym 

and name of the enterprise). 

In this conceptual schema, complex entities should be dis-

tinguished by explicitly identifying in each association which 

entity is a sub-entity. A sub-entity is the entity whose exist-

ence of each of its instances depends on the existence of only 

one instance of the other entity with which it is it associated. 

As for gray entities, they must be differentiated by charac-

terizing them using only two attributes. The first attribute 

must be used to provide the value that uniquely identifies each 

instance of the gray entity in question, and the second attribute 

to provide the hierarchical-and-semi-structured value that 

describes this instance. The type of this second attribute at the 

conceptual level must be a special atomic abstract type ("LOB 

(Large OBject)", "Character", "Character Varying" …). 

When for each instance of a gray entity the data that describe 

it is used to supplement the data that describe an instance of 

another non-gray entity, these two entities must be linked by a 

"1:1" association. In this case, we will say that the gray entity 

is a gray entity detached from the non-gray entity to which it 

is associated. 

The most common formalisms for specifying this type of 

representation are the conceptual data models "E/A (Enti-

ty/Association)" [15] and "UML (Unified Modeling Lan-

guage)" [16]. 

In this paper, we utilize a UML-based formalism in which: 

(1) each entity is materialized by a UML class; (2) each 

sub-entity is distinguished by a dotted class symbol and a 

dotted association symbol that denotes its dependency; (3) 

each gray entity is differentiated using a gray background 

class symbol and possibly a dotted association symbol which 

indicates that it is a gray entity detached from the non-gray 

entity with which it is associated. 

The UML schema in Figure 3 is the conceptual represen-

tation for the example database used in this paper. In this 

schema, two associations are depicted using a dotted line, 

indicating that the entities represented by the "Post" and 

"Composition" classes are sub-entities of the complex entity 

"Composer". Each instance of these two sub-entities must 

depend on only one single instance of the complex entity 

"Composer" to which it belongs. 

3. Transforming into a Global Relational 

Logical Schema 

In the schema architecture shown in Figure 1, the global 

relational logical schema is that of the Data Store. Its role is to 

specify the logical representation that results from the engi-

neering of the schemas of the value collections within the 

Data Store. The finality of the design of these schemas must 

be to prevent storage anomalies and to allow DBMS to ensure 

integrity of these value collections. 

In the multi-model database design process presented in 

this paper, its global relational logical schema, where each 

relation schema is in 3NF, can be advantageously derived 

from the conceptual schema. This derivation relies on 

well-established transformation rules [14], which enable the 

DBMS to enforce the integrity constraints defined in the 

conceptual schema by the designer, based on the enterprise's 

business rules. In the resulting global relational schema, in-
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tegrity constraints related to multivalued dependencies that 

were not explicitly defined in the conceptual schema must be 

addressed by the designer. This is done by decomposing the 

affected relations to ensure that each relation schema is in 

4NF. 

 
Figure 3. Example of a UML Conceptual Schema for a Database. 

To accurately model complex entities as described in the 

conceptual schema, it is necessary to represent data about a 

sub-entity using a relation that includes a foreign key in its 

primary key. This foreign key must reference the primary key 

of the relation corresponding to the entity with which it is 

directly associated in the conceptual schema. Relations of this 

type are considered weak relations [15]. This approach mate-

rializes data about each complex entity in the global relational 

schema of the Data Store using a set of relations connected 

within a tree structure where each child includes a foreign key 

that references the primary key of its parent. 

Likewise, each gray entity in the conceptual schema must 

be represented in this global relational logical schema by a 

relation. The designer must specify in this relation the type of 

NoSQL model (XML or JSON) to which each hierar-

chical-and-semi-structured value describing an instance of 

this gray entity must adhere. This includes specifying the type 

of the attribute that designates this value and, if applicable, 

associating it with a schema that defines its internal structure. 

Moreover, if the gray entity is detached, in this relation and in 

the relation that materializes the non-gray entity from which it 

was detached, the primary key must be defined as also being a 

foreign key referencing the primary key of the other relation. 

Additionally, for every attribute (of a simple or complex 

entity) corresponding to repetitive values or values with var-

ying structures, the designer must specify the type of model he 

wishes to use for this attribute (either XML or JSON). He 

should also define a schema if the structure of these values can 

be predetermined. 

The content of Figure 4 provides an example of the trans-

formation of the conceptual schema of the database, defined 

in Figure 3, into a global relational schema. This transfor-

mation has been carried out in compliance with the general 

principles outlined above. 

In the resulting global relational schema, data about the 

instances of the complex entity "Composer" and its 

sub-entities "Post" and "Composition" are stored in the rela-

tions "Composers_R", "Posts_R", and "Compositions_R", 

respectively. The foreign key "ComposerId+" in the 

"Posts_R" relation is part of its primary key. Similarly, the 

foreign key "ComposerId+" in the "Compositions_R" relation 

is also part of its primary key. 

 

http://www.sciencepg.com/journal/ajcst


American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst 

 

27 

 
Figure 4. Example of a Global Relational Schema for the Data Store. 

This global relational schema prevents anomalies that may 

arise during insert, update, and delete operations. Additionally, 

it enables the DBMS to enforce database integrity, as defined 

in the conceptual schema regarding the management rules. 

4. Transforming into a Global Nested 

Relational Logical Schema 

Storage models are among the main means that a database 

designer must use depending on the use cases to enhance the 

speed of data access. For the data about instances of complex 

entities or detached gray entities, the two most recognized 

storage models are the direct storage model and the normal-

ized storage model [17, 18]. 

The direct storage model of the data that describe the in-

stances of a complex entity leads to logically grouping these 

data into only one table where each row contains the data 

about a single instance including the data of all the instances 

of the sub-entities that belong to it, arranging these data in a 

hierarchical manner regardless of their nesting levels [17]. 

This storage model is the one that is most suitable when the 

main need of the applications is to be able to access all or part 

of the data of each instance concerning this complex entity, 

whenever necessary, using the shortest possible time. 

Let "Eg" be a gray entity detached from the non-gray entity 

"Eng". The storage of the data describing the instances of 

"Eg" according to the direct storage model is accomplished by 

moving the attribute used to store these data from the relation 

corresponding to "Eg" to the relation corresponding to "Eng", 

followed by the removal of the relation corresponding to "Eg". 

This storage model is the most suitable when the primary 

requirement of the applications is to be able to access at the 

same time the data of each instance of "Eng" and the detached 

data in "Eg" which concern it, whenever necessary, while 

ensuring the shortest possible access time. 

The normalized storage model for the data about instances 

of a complex entity leads to distributing these data in several 

tables resulting from a normalization process by decomposi-

tion [17]. The purpose of this decomposition may be, for 

example, to ensure that there is, on the one hand, a dedicated 

table for storing the data relating to instances of the enclosing 

entity and, on the other hand, for each sub-entity a dedicated 

table for storing the data relating to its instances. For this 

example of decomposition, this storage model is best when 

the primary requirement for applications is to be able to di-

rectly access the data about the instances of each sub-entity, 

regardless of their nesting levels, without having to go 

through the data about the instance of the entity to which they 

belong, using the shortest possible time. 

Let "Eg" be a gray entity detached from the non-gray entity 

"Eng". The storage of the data describing instances of "Eg" 

according to the normalized storage model is done by repre-

senting "Eg" and "Eng" using separate relations. This storage 

model is the most suitable when the primary requirement of 

applications is to be able to manage and access separately the 

data that describes instances of "Eg" and the data that de-

scribes instances of "Eng". 

The direct storage model and the normalized storage model 

can be combined, to allow storing part of the data of each 

instance of a complex entity according to the direct storage 

model and storing the other part according to the normalized 

storage model [17]. 

As an example, for the data about the instances of the single 

complex entity (consisting of the entities "Composer", 

"Composition", and "Post") described in our example of da-

tabase, the global relational schema specified in Figure 4 

defines their organization in terms of relations that meet the 

requirements of the normalized storage model. 

As an example, the content of Figure 5a represents the 

transformation of this global relational schema into a global 

nested relational schema. In this transformation, data about 

the instances of the complex entity "Composer", including 

instances of its sub-entities "Post" and "Composition", have 

been grouped into a single nested relation "Composers_NR". 

This transformation meets the requirements of the direct 

storage model. 

As for the content of Figure 5b and Figure 5c, they illustrate 

two examples of a combination of these two types of storage 

models. 

In the rest of the paper, we consider that it is the storage 

model in Figure 5b that corresponds to the designer’s choice 

for this complex entity. 

The choice of the nested relational model for this refor-

mulation of the global logical schema of the Data Store—for 

the clarification of the designer's decisions regarding the 

storage models that can reduce access times to the data related 

to instances of the complex entities and detached gray enti-

ties—is fundamental in our methodological approach. 

This data model has been defined as an extension of the 

relational model to overcome the limits of its capability to 

model data describing instances of complex entities [19, 20]. 

The theoretical foundations of the nested relational model 

generalize those of the relational model by considering it as a 

particular case. This makes it possible to base on very 

well-established common theoretical foundations, the global 
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relational schema of the Data Store and the global logical 

schema that results from its reformulation using the nested 

relational model. In relational model and in nested relational 

model, the engineering of the schemas of the value collections 

is based on these theoretical foundations. 

 
Figure 5. Examples of Global Nested Relational Schemas Designed for Access Time Optimization. 

In addition, the nested relational model provides normal 

form conditions for nested relations, which serve as criteria 

for grouping atomic attributes into relational-valued attributes 

that nest within each other [20, 21]. These grouping criteria 

help identify any situation that, based on the business rules, 

could lead to storage anomalies. Therefore, they provide an 

additional tool to assist the designer in creating nested rela-

tional schemas with good properties. 

Let "GLschema" denote the global schema of the mul-

ti-model database that results from the reformulation of the 

conceptual schema using the nested relational model and 

"TabsSS", an abstract type such as XML or JSON whose 

values are flexible-schema or schema-less collections of 

structured, hierarchical-and-structured or hierar-

chical-and-semi-structured values. 

The previous observations show that the nested relational 

model allows the designer to ensure that, in "GLschema", both 

structured value collections (adhering to the relational model) 

and hierarchical-and-structured value collections (adhering to 

the nested relational model) are described using nested rela-

tional schemas designed to: (1) enable the DBMS to ensure 

database integrity; (2) prevent storage anomalies during cre-

ation, modification, and deletion operations; (3) minimize 

access times for applications to the strict minimum. 

The designer can also ensure that, within these nested re-

lational schemas, hierarchical-and-semi-structured value 

collections (for which the nested relational model does not 

provide the required flexibility for their description) are 

treated as atomic abstract values of type "TabsSS". This en-

sures compliance with the constraints of the nested relational 

model. 

As a result, the nested relational model is the most suitable 

choice to support the modeling of the integration, in a single 

NewSQL database, of heterogeneous collections of values 

that adhere to different models. It allows to derive, from the 

conceptual schema, a global logical schema "GLschema" 

where the nested relational schemas specify value collections 

that describe the instances of the simple, complex and gray 

entities of this conceptual schema, on the one hand by taking 

into account the choices of the designer with respect to the 

storage models about the complex entities and the detached 

gray entities and on the other hand, by considering the col-

lections of hierarchical-and-semi-structured values charac-

terized by the irregularity and/or by the unpredictability of 

their logical structure as being atomic abstract values of type 

XML or JSON. 

As a result, the nested relational model is also the most 

suitable choice to serve in our methodological approach as a 

pivot model (c.f. sections VI and VII) for: (1) transforming 

relational schemas into a NoSQL schemas; (2) unifying de-

sign approach of various database types (relational and 

NoSQL); (3) unifying the mechanisms for processing 

cross-model queries formulated using a language that inte-

grates into SQL various query languages (object-relational, 

XML and JSON). 

5. Customizing the Physical Database 

As highlighted in the introduction, one of the main objec-

tives of NewSQL DBMSs is to: (1) ensure query execution 

times that meet user requirements; (2) guarantee unlimited 

horizontal scaling according to workload demands; (3) ensure 

http://www.sciencepg.com/journal/ajcst


American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst 

 

29 

uninterrupted data availability. 

In existing NewSQL DBMS, achieving this objective de-

pends on the choices made by the designer at the physical 

schema level of the Data Store, i.e., how data is organized on 

the physical storage devices. In what follows, the key design 

choices for a Data Store adhering to the relational model 

related to sub-objective (1) are addressed in paragraphs 5.1 to 

5.6. The choices concerning sub-objectives (2) and (3) are 

discussed in paragraph 5.7. 

5.1. Row Storage Model 

The purpose of a query execution engine in a NewSQL 

DBMS, optimized for online transaction processing (OLTP), 

is to enable the concurrent execution of a large number of 

short-duration transactions involving the creation, reading, 

and updating of a small number of interdependent rows. 

To ensure table integrity, each of these I/O operations re-

quire access to all columns of each row. This necessitates that 

the designer make choices that lead the DBMS to physically 

store each involved table following the row storage model, i.e., 

the storage of the rows of each table within the physical 

blocks of the file on the disk dedicated to it [22]. 

5.2. Columnar Storage Model 

The purpose of a query execution engine in a NewSQL 

DBMS, optimized for online analytical processing (OLAP), is 

to enable the parallel execution of a large number of interac-

tive analytical processing procedures on massive datasets. 

One of the main characteristics of these analytical proce-

dures is that they involve only a small number of columns 

from the relevant tables and primarily perform read, sort, and 

aggregation operations on them. The data sources involved 

may be internal (historical operational data systematically and 

automatically collected from transactional processes) and/or 

external. 

To reduce the cost of operations performed on these tables, 

since they typically involve only a small subset of columns, 

the designer must make choices that lead the DBMS to 

physically store each involved table according to the colum-

nar storage model, where the data of each column are stored 

within the physical blocks of a file on the disk dedicated to 

this column [22]. 

5.3. Implementing the Direct Storage Model for 

Complex Entities Using a Table Cluster 

Regarding the direct storage model, we previously decided 

in Section IV to logically store the data about instances of a 

complex entity into a nested relational table where each row 

contains the data about a single instance of this complex entity 

including the data of all the instances of the sub-entities that 

belong to it. 

The physical implementation of this nested relational table 

can be efficiently carried out in the Data Store within a table 

cluster [23] that allows us to store in the same physical data 

block the data about each instance of this complex entity with 

the data of all the instances of the sub-entities that belong to it. 

In this implementation, the tuples containing the data about 

an instance of this complex entity and about its instances of 

the sub-entities that belong to it should be grouped and stored 

in a tree structure, as described in [14], within a physical data 

block of this cluster of tables, following the hierarchical data 

organization principles of the nested relational model, i.e., the 

embedded data approach. 

By doing so, at the physical level, the application of alge-

braic operators on data about the instances of a complex entity 

stored using the direct storage model will be interpreted as an 

application of implicit algebraic operators on data stored in 

main memory. 

5.4. Table Indexes 

Indexing a table aims for quick access to its rows. It creates 

an organization of the data in this table on the physical storage 

medium that allows for each value of a search key to deter-

mine the physical addresses of the rows that contain this value, 

without having to traverse the entire table. Indexing a table 

thus enables associative searches. 

The search key can consist of one or multiple columns 

corresponding to the primary key, an alternate key, or arising 

from application needs. The storage of the data related to an 

index occurs in a physical file distinct from the physical file 

used for storing the data of this table. However, the index on 

the primary key can be clustered, meaning it is stored in the 

same physical file as the table. 

Therefore, indexing the tables is a means by which a da-

tabase designer can enable the DBMS to access all data rel-

evant to each query, using the least amount of time possible, 

regardless of the complexity of the query and the size of the 

tables involved [24]. 

5.5. Join Indexes 

The creation of a join index between two tables 'R' and 'S' 

aims to perform repetitive join operations of these two tables 

based on a join condition defined on their columns, using the 

least amount of time possible. 

If 'r' denotes the system identifier of the rows in 'R' and 's' 

denotes the system identifier of the rows in 'S', the join index 

would correspond to the highly reduced table obtained by 

projecting the join operation result of the two tables 'R' and 'S' 

on the pair <r, s> and sorting the result against these two 

columns. 

The creation of the join indexes is therefore a means by 

which a database designer can allow the DBMS to execute 

repetitive join operation as efficiently as possible, such as 

those resulting from associations identified in the conceptual 

schema of the database [25]. 
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5.6. Materialized Views 

A materialized view consists of: (1) a view based on one or 

more tables; (2) an internal table whose content corresponds 

to the result of executing the query that defines this view. This 

query can be a join query and/or an aggregation query. The 

content of the internal table can be refreshed by DBMS ac-

cording to the criteria defined by the designer (e.g., each time 

a change occurs in the tables used for its computation, at a 

certain frequency, etc.). 

A materialized view can therefore be used for selective 

replication in a denormalized table of the data from the rela-

tional Data Store. As such, the materialized views constitute a 

means that the designer can use to reduce the execution time 

of analytical queries by retrieving and grouping together in a 

single table all the data they need [26]. 

5.7. Database Sharding 

The sharding of a database aims to ensure: (1) unlimited 

horizontal scaling according to workload demands; (2) unin-

terrupted data availability [5-12]. 

A sharded database is manipulated by applications as if it 

were a centralized database, while it is automatically distrib-

uted across a pool of databases called shards. These shards are 

implemented on separate database servers and may even be 

geographically distributed to ensure the goals of sharding are 

met. 

The sharding of a database is implemented using a mid-

dleware that acts as a proxy. This middleware provides vari-

ous services, including query filtering and routing, caching of 

query results, monitoring and rebalancing shard servers, and 

dynamically adjusting the number of shards based on the 

workload. 

The role of this middleware is twofold: (1) automatically 

and transparently manage the horizontal partitioning of the 

tables and their indexes, as well as the distribution of resulting 

fragments and their replicas across shards; (2) monitor the 

shards, balance their workload, scale their number up or down 

depending on workload variations, route queries, and coor-

dinate the distributed and concurrent execution of transactions 

while ensuring Atomicity, Consistency, Isolation, and Dura-

bility (ACID properties. 

The query evaluation model for a sharded database in-

volves transferring each elementary operation to the shard 

containing the required data while maximizing parallelism at 

both the transaction execution level and the elementary oper-

ation execution level. 

To achieve optimal performance, the designer must make 

strategic choices that also minimize network communication 

overloads. In this query evaluation model, this objective can 

be met by making the middleware to adopt fragmentation and 

distribution strategies that ensure, as much as possible, the 

collocation of joinable rows within the same shard. 

An example of a such choice is the implementation of the 

direct storage model for complex entities by using table 

clusters. Choosing the direct storage model for detached grey 

entities is also another example. 

6. Transforming Into Global External 

Logical Schemas 

Transforming into external logical schemas takes place 

only after: (1) the conceptual schema of the database has been 

specified; (2) the global relational schema of the Data Store 

and the global nested relational schema, which clarifies the 

designer’s choices regarding storage models for complex 

entities and detached gray entities have been designed con-

sistently; (3) the physical schema of the Data Store has been 

designed to ensure performance, scaling, and fault tolerance. 

In other words, this transformation occurs only after cre-

ating all the tables of the Data Store incorporating all deci-

sions made at the physical schema level. 

In the ANSI/SPARC architecture of the schemas, shown in 

Figure 1, global external logical schemas redefine the Data 

Store as a multi-model database. This means that the Data 

Store can be viewed and manipulated by developers, applica-

tion integrators, and data analysts as if it were, virtually, a 

relational, object-relational, XML, JSON, or graph-oriented 

database. This approach provides them with the agility and 

flexibility needed to work with their preferred data models [14] 

and unifies the design methods of various NoSQL database 

types. 

From the designer's point of view, redefining the Data Store 

as a virtual object-relational, XML, or JSON database follows 

a different approach than that about virtual graph-oriented 

databases. The following presents these two approaches. 

6.1. Redefining as a Virtual Database 

(Object-relational, XML, or JSON) 

Let "GLPschema" be the global logical schema derived 

from "GLschema" (as defined in Section IV) by integrating 

access paths that can meet user needs. 

Figure 6 provides, as an example, the global logical schema 

derived from the global logical schema in Figure 5b by inte-

grating access paths that can be inferred from the conceptual 

schema in Figure 3. 

The design objectives of "GLPschema" are to: (1) enable 

the DBMS to ensure database integrity; (2) prevent storage 

anomalies; (3) enable fast access to data about complex re-

al-world entities; (4) provide users with the access paths that 

can meet their needs. 

In our methodological approach, the role of "GLPschema" 

is to serve as a global nested relational pivot schema. 

To allow users to work with their preferred data models 

(object-relational, XML, and/or JSON), the designer must 

derive, for each of these models, the global external schema of 

a virtual database from the same underlying global nested 

relational pivot schema, namely "GLPschema". 
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This involves: (1) creating the user-defined ob-

ject-relational type, XML schema, or JSON schema that 

specifies the structural integrity constraints for each typed 

view; (2) providing the DBMS with the necessary specifica-

tions to dynamically handle the "relational model ↔ 

non-relational model" data mapping, enabling the manipula-

tion of typed views in virtual databases whenever needed. 

The creation of a user-defined object-relational type, an 

XML schema, or a JSON schema, which defines the structure 

of instances of a typed view in a virtual database, as well as 

the generation of the logical execution plan for the dynamic 

derivation of the instances of this typed view from the relevant 

data in the Data Store, can result from an automatic trans-

formation process of the required underlying nested relational 

pivot schema defined in "GLPschema". 

To achieve this, the designer must define, if necessary, for 

atomic-valued attributes in "GLPschema", specific rules for a 

customized automatic transformation of the nested relational 

schemas. 

These specific rules can be used, for example, to indicate 

that: (1) the atomic-valued attributes "ZipCode", "Town", and 

"Country" must be grouped into a composite-valued attribute 

"Address"; (2) the atomic-valued attribute "PartNumber" 

must be treated in an XML document as an XML element 

rather than as an XML attribute. 

 
Figure 6. Example of a Global Nested Relational Pivot Schema, Derived From the Schema in Figure 5b By Integrating Access Paths, Un-

derlying the NoSQL Virtual Databases. 

Alternatively, the designer also has the option to manually 

define the schema of each typed view and to create the SE-

LECT statement required to generate the logical execution 

plan for the dynamic derivation of instances of this typed view 

from relevant data in the Data Store. 

The automatic generation of the logical execution plan for 

the derivation of the instances of a non-relational typed view 

(object-relational, XML, or JSON) based on the transfor-

mation rules can be seen as a two-step data mapping process. 

6.1.1. The First Step of the Data Mapping Process 

The first step is identical for all three models (ob-

ject-relational, XML, and JSON). This step involves the ap-

plication of the transformation rules on the required under-

lying nested relational pivot schema to derive a sequence of 

nested relational algebra operations. The purpose of this se-

quence is to define a logical execution plan for the generation 

of the tuples of a table that adheres to this required underlying 

nested relational pivot schema. The tables used for generating 

these tuples must be the tables of the Data Store. 

Figure 7 contains an example that concerns a typed view 

(object-relational, XML or JSON) containing the data about 

the instances of the complex entity "Composer" including the 

data about the instances of its sub-entity "Post" and the data 

about access paths. The content of this figure is the logical 

execution plan that could be generated from the underlying 

nested relational schema of Figure 6, namely "Compos-

ers_NRP", based on the transformation rules. 

The purpose of this logical execution plan is to generate the 

tuples of a table that adheres to "Composers_NRP", using the 

tables "Composers_R", "Posts_R", and "Compositions_R" of 

the Data Store, as described in Figure 4. 

Each tuple generated by this logical execution plan is about a 

composer. It consists of the atomic attributes "ComposerId", 

"ComposerName", "ComposerBirthDate", "ComposerBirth-

Place", "IsMentoredBy" and the relational-valued attributes 

"Posts_R" (containing all the posts that concern this composer), 

"Is_MentorOf" (containing as access paths all the identifiers of 

the composers he mentors), and "Has_Produced" (containing as 

access paths all the identifiers of the productions he authored). 

As for Figure 8, it contains the logical execution plan that 

could be generated from the underlying nested relational 

schema of Figure 6, namely "Compositions_NRP", for a typed 

view (object-relational, XML or JSON) containing the data 

about the instances of the entity "Composition" including data 

about the access paths, using the tables "Compositions_R" and 

"Programs_R" of the Data Store (see Figure 4). 

6.1.2. The Second Step of the Data Mapping Process 

As for the second step of the data mapping process, it in-

volves transforming each logical execution plan generated 

during the first step into a logical execution plan that produces 

all the instances of the relevant non-relational typed view. 

This can be done by relying on the transformation rules to 

apply the appropriate transformation functions (defined for 

this purpose in the ISO standards) to the results of operations 

or groups of operations in each logical execution plan pro-

duced in the first step. 
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The structure of each instance produced in this second step must adhere to the schema of the concerned typed view. 

 
Figure 7. Logical execution plan for generating the rows adhering to the nested relational pivot schema "Composers_NRP" underlying a typed 

view regardless of its model. 

 
Figure 8. Logical execution plan for generating the rows adhering to the nested relational schema "Compositions_NRP" underlying a typed 

view regardless of its model. 

For example, Figure 9 contains three logical execution 

plans. The transformation functions shown in plans (2) and (3) 

are functions of the ORACLE'S DBMS, used for illustration 

purposes. 

Plan (1) is extracted from the logical execution plan in 

Figure 7, derived during the first step of the data mapping 

process from an underlying nested relational pivot schema, 

regardless of the data model of the concerned view. This plan 

computes the value of the relational-valued attribute 

"HasProduced" for each tuple generated by the logical exe-

cution plan in Figure 7. This value is a relation consisting of a 

single attribute, "CompositionId", meaning it is a set of values 

for this attribute corresponding to access paths. Each value 

must correspond to a foreign key referencing a tuple in the 

"Compositions_R" relation. 

Plan (2) is the result of transforming Plan (1) during the 

second step of the data mapping process for an ob-

ject-relational virtual database. The "MAKE_REF(T, a)" 

function converts the foreign key value "a" into a logical 

pointer to the referenced row in table "T". The composite 

function "CAST(MULTISET(SubQuery) AS NewType)" con-

verts the collection type produced by the subquery 

"SubQuery" into a user-defined type ("ProducedProduction-

List"), which defines nested tables. 

As for plan (3), it is the result of the transformation of plan (1) 

carried out during the second step of the data mapping process 

when dealing with an XML virtual database. The function 

"XMLELEMENT (ElmtName, ElmtValueExpr)" replaces the 

result of evaluating the expression "ElmtValueExpr" with an 

XML element named "ElmtName" with a body equal to the 

result of evaluating the expression "ElmtValueExpr". The 

composite function "XMLAGG(SubQuery XMLELE-

MENT(ElmtName, ElmtValueExpr))" replaces the collection 

resulting from the execution of the subquery "SubQuery" 

passed as a parameter with a collection of XML elements, each 

named "ElmtName" with a body equal to the value of the pro-

jection of the attribute "CompositionId" on a row of the result of 

this subquery "SubQuery" passed as a parameter. 

6.2. Redefining as a Virtual Graph-Oriented 

Database 

As a reminder, in the global logical schema of a relational 

database, foreign keys result from the materialization of asso-

ciations defined in its conceptual schema. In the database, each 

foreign key value establishes a semantic link (i.e., a relationship) 

between two instances of one or two real-world entities. 

Thus, it is possible to infer from the data stored in an opera-

tional relational database, the set of semantic links that exist 

between the instances of the real-world entities described in it. 

 
Figure 9. Examples of Applying Transformation Functions to Logical Execution Plans. 
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The graph-oriented data model enables the representation 

of these semantic links using a graph. In this graph, each 

vertex corresponds to an instance of a real-world entity de-

scribed in the database. Each edge represents a semantic link 

between two instances of one or two real-world entities, as 

established in the database through the value of a foreign key. 

Each vertex and edge is defined by a label that determines its 

type and by a set of properties. 

The ISO SQL/PGQ (Property Graph Query) standard [27] 

defines a set of features that enable the materialization of a 

graph using tables of vertices (or nodes) and tables of edges 

(or semantic links) where each element corresponds to a row 

in an operational relational database table. Just like views, 

these tables of vertices and these tables of edges do not have a 

real existence; they exist only through their definitions. Each 

of their elements is dynamically determined whenever needed, 

based on the corresponding row in the operational relational 

database. This "relational model → graph model" data map-

ping is handled by the DBMS, relying on the specifications 

provided by the designer in the graph metadata. 

Figure 10 provides an example of an SQL statement for 

creating a graph titled "composers_graph", derived from the 

"Composers_R" table defined in the relational logical schema 

of our example database, as described in Figure 4. This 

statement specifies that this graph will be materialized in the 

vertex table "Composers_R" and the edge table "Compos-

ers_R". 

Furthermore, the features specified in the ISO SQL/PGQ 

standard [27] allow developers to formulate an SQL pat-

tern-matching query on a graph created in this way, enabling 

them to discover all subgraphs that match the pattern defined 

by this query. 

The purpose of the query language defined by this standard 

is to integrate graph manipulation into SQL, while making the 

specification of computing operations more compact and less 

complex than in approaches based on the explicit use of the 

relational join operator. 

The integration of graph processing within the "SELECT" 

statement is primarily achieved through the use of the 

"GRAPH_TABLE" operator in the "FROM" clause, along with 

the "MATCH" and "COLUMNS" clauses. This operator and 

these clauses serve two purposes: (1) defining a pattern for 

graph pattern matching; (2) specifying a virtual table to store 

the matching results. 

A "FROM" clause containing such specifications can also 

include non-graph-oriented tables required for evaluating the 

"SELECT" statement. This makes it possible to formulate 

cross-model queries that combine tables from different data 

models, including the graph-oriented model. 

Figure 11 contains an example of a pattern-matching SQL 

query on the graph whose creation statement is shown in 

Figure 10. This query returns the list of composers who have a 

mentor, indicating for each composer his name and the name 

of his mentor. 

 
Figure 10. Example of SQL statement for creating a graph. 

 
Figure 11. Example of SQL pattern-matching query on a graph. 

The redefinition of the Data Store as a virtual 

graph-oriented database therefore consists for the designer in 

creating a set of graphs using vertex tables and edge tables 

that do not have real existence, where each element corre-

sponds to a row of a table of the Data Store. The identification 

of these graphs must result from an analysis of the enterprise's 

needs in terms of analysis of the semantic links existing be-

tween the instances of the real-world entities described in the 

Data Store. 
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7. Query Processing in the Multi-Model 

Database 

A multi-model database, stored within a Data Store adher-

ing to relational model, optimized for hybrid processing (both 

transactional and analytical), and accessed by developers and 

data analysts through relational and non-relational virtual 

databases (object-relational, XML, JSON) defined via exter-

nal schemas, provides exceptional flexibility to its users. 

They can manipulate it freely and with no overload as: (1) a 

relational database; (2) a non-relational database (ob-

ject-relational, XML, JSON); (3) a hybrid database consisting 

of typed views that conform to different data models (rela-

tional, object-relational, XML, JSON). 

In other words, the user can formulate a cross-model SQL 

query that manipulates typed views of different types (rela-

tional, object-relational, XML, JSON), potentially containing 

textual values that correspond to flexible-schema or sche-

ma-less XML or JSON data, which are natively processed 

using the query language of their respective model. 

In NewSQL DBMS, the manipulation of NoSQL values 

within SQL is largely achieved using query functions defined 

by the ISO standards such as "SQL3", "SQL/XML" and 

"SQL/JSON". These standards aim to ensure interoperability 

between SQL and NoSQL query languages. 

These query functions typically take two input parameters: 

(1) in on hand, a list of values, where each value corresponds 

to either a table row or an instance of a NoSQL typed view 

being processed, or a NoSQL value contained within a table 

row or within an instance of a NoSQL typed view being 

processed; (2) in the other hand, the NoSQL query to be ap-

plied to the first parameter. 

The role of the NoSQL query is to extract values from the 

NoSQL values within the first parameter. 

When used in a "SELECT" clause, the query functions 

enable results that include columns of different types (scalar 

types, user-defined object-relational types, XML types, JSON 

types). These columns may come from virtual tables of dif-

ferent types (relational, object-relational, XML, JSON) cited 

in the "FROM" clause. 

These query functions can also serve as selection test 

functions in the "WHERE" clause. 

As mentioned in Section VI, in our approach, the NoSQL 

virtual databases that allow users to manipulate the Data Store 

as both an object-relational, XML, and JSON database share 

the same underlying global nested relational pivot schema, 

namely "GLPschema", from which they were derived. Let 

"Si" be a schema within "GLPschema". The logical execution 

plan derived from "Si" (as indicated in Section VI) for gen-

erating instances of a typed view is identical for all three 

models (object-relational, XML, and JSON) when mod-

el-specific transformation functions are ignored (see as ex-

ample Figure 9). 

The processing of cross-model SQL queries can therefore 

involve the DBMS treating in a first step these queries as if 

they are formulated on tables adhering to the underlying 

nested relational pivot schemas, regardless of the model of the 

typed views involved. These underlying pivot schemas may 

contain string-type attributes that hold XML or JSON docu-

ments, which can be manipulated using the query language 

specific to their model. 

This section illustrates, using an example, this approach 

that enables the unification of cross-model SQL query pro-

cessing, specifically by showing how to transform these que-

ries into optimized logical execution plans. 

Figure 12 presents an example of a cross-model SQL query 

that takes as input two object-relational typed views, "Com-

posers_OR" and "Compositions_OR". As a reminder, the 

logical execution plans presented in Figures 7 and 8 corre-

spond respectively to these two typed views, regardless of the 

model type to which they adhere, which could also have been 

XML or JSON. These logical execution plans were generated 

to derive instances of the tables that adhere to their underlying 

nested relational schemas in Figure 6, namely, "Compos-

ers_NRP" and "Compositions_NRP". 

The result of this cross-model query is a tuple consisting of 

two atomic-valued attributes ("Title": the title of a composition 

with the identifier "200", "ComposerName": the name of the 

composer) and one relational-valued attribute ("PostedTo-

Composer": a list of posts related to this composer, restricted to 

the columns indicating the creation date and source). 

In this cross-model SQL query, the transformation function 

"TABLE" is used to convert the content of the relation-

al-valued attribute "Postes_R" (from the instance of the typed 

view "Composers_OR" being processed) into a relational 

table. 

 
Figure 12. Example of a Cross-Model SQL Query. 

Figure 13 presents the gross logical execution plan that the DBMS could derive from this cross-model SQL query. 
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Figure 13. Gross Logical Execution Plan for Query in Figure 12. 

To enable the evaluation of this execution plan on the Data 

Store, it is sufficient to replace the two object-relational typed 

view with the logical execution plans shown in Figures 7 and 

8 as if this query was formulated on the tables adhering to the 

underlying nested relational pivot schemas of these two typed 

views, namely, "Composers_NRP" and "Compositions_NRP". 

Figure 14 shows the resulting execution plan. In this exe-

cution plan, the object-relational typed views "Compos-

ers_OR" and "Compositions_OR" have been replaced by the 

three relational tables ("Composers_R", "Posts_R", and 

"Compositions_R") used to compute their instances. 

Simplifying the logical execution plan of Figure 14 leads to 

the execution plan of Figure 15. 

As discussed in Section II, "Composer" is a complex entity 

with "Post" as its sub-entity. The global nested relational 

schema in Figure 5b indicates that the designer chose a hybrid 

storage model for this complex entity. As a result, the rela-

tional tables "Composers_R" and "Posts_R", used in this 

logical execution plan, must be considered part of a table 

cluster. This means that: (1) the data about each composer and 

the posts concerning him are stored in the same physical block 

of the disk; (2) the relational algebraic operators involved in 

processing these data must consequently be interpreted as 

implicit relational algebraic operators, which the DBMS 

evaluates in main memory. 

 
Figure 14. Gross Logical Execution Plan for Evaluating Query in Figure12 on the Data Store. 

 
Figure 15. Optimized Logical Execution Plan for Evaluating the Query in Figure12 on the Data Store. 

Therefore, having in addition a join index between "Com-

posers_R" and "Compositions_R" would allow this 

cross-model query to be executed in the shortest possible 

time. 

Figure 16 shows a transformation, in a second step, of the 

logical execution plan from Figure 15, aiming to generate a 

result where each column's type matches the type inferred 

from the initial cross-model query. In this transformation, the 

type of the relational-valued attribute "PostedToComposer" 

has been converted into an Oracle user-defined nested table 

type, namely "PostedToComposerList", using the 

"CAST-MULTISET" transformation functions. 
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Figure 16. Application of Transformation Functions on the Optimized Logical Execution Plan for the Final Rendering of the Evaluation of the 

Query in Figure12 on the Data Store. 

Figures 17 and 18 highlight how the processing of a path 

expression should be handled in our approach, using the ob-

ject-relational model as an example. 

In Figure 17, "IsProducedBy" results from the transfor-

mation of the foreign key "ComposerId" (defined in the un-

derlying nested relational schema "Compositions_NRP" from 

Figure 6) into a logical pointer in the object-relational model. 

Finally, as discussed in Section VI, the "FROM" clause in a 

cross-model SQL query that manipulates views of different 

types (relational, object-relational, XML, JSON) can also 

include the specification of a table that contains the result of a 

graph pattern matching operation. This possibility allows SQL 

cross-model queries supporting graph manipulation. To en-

sure that the evaluation of such queries follows the same 

approach as the one illustrated, it requires the use of a new 

relational algebraic operator, namely the MAP operator [28]. 

 
Figure 17. Query using a path expression. 

 
Figure 18. Gross Logical Execution Plan for the Query in Figure 17. 

8. A Framework for Supporting the 

Design Process 

A data model can be viewed as a virtual machine character-

ized by four sets: (1) a set of value types; (2) a set of structure 

types to which complex values can adhere; (3) a set of opera-

tion types enabling the manipulation of values; (4) a set of 

integrity constraint types that can be enforced by the DBMS. 

If M1 and M2 represent two different data models, the 

mapping of a schema S1 from M1 to M2 consists of redefin-

ing (i.e., transforming) S1 into a schema S2 in M2 that is 

equivalent to S1. 

The transformation mechanisms for mapping a schema 

from one model to another have been extensively studied, 

both theoretically [29] and practically [30], for various ap-

plications. 

These mechanisms can be integrated into a graphical tool 

within a database-oriented application design and develop-

ment platform to automate a significant part of the design 

methodology presented in this paper, which is primarily based 

on a schema mapping process. 

The role of such a tool can be as follows: 

Assist the designer in drawing a conceptual schema free of 

semantic heterogeneity, where simple entities, complex enti-

ties, and gray entities are properly modeled. 

Assist the designer to transform the conceptual schema into 

a global relational logical schema of the Data Store and a 

global nested relational logical schema, ensuring compliance 

with the rules defined in Sections III and IV. 

Guide the designer in making choices regarding the phys-

ical layout of the Data Store. 

Create in the database dictionary, under the designer’s su-

pervision, the tables of the Data Store and their indexes, in-

corporating all design choices. 

Generate in the dictionary of the database, with the de-

signer’s assistance, all the artifacts required for the creation 

of the virtual databases: underlying nested relational pivot 

schemas including access paths, annotated user-defined 

types, annotated XML schemas, annotated JSON schemas, 

typed views and their execution plans for deriving their 

instances. 

9. Related Work 

The approach presented in this paper allows an assessment 
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of the capability of NewSQL DBMSs to meet the objectives 

for which they were introduced, namely, to offer the ad-

vantages of NoSQL DBMSs while avoiding their drawbacks 

and preserving the benefits of SQL DBMSs. This presentation 

also allows for a comparison of the advantages of NewSQL 

DBMSs with those provided by other types of approaches. 

This section successively broach: (1) the strengths and the 

weaknesses of NewSQL DBMSs in achieving their objectives, 

regarding their capabilities highlighted in the approach we 

described; (2) a brief comparison with the approach that in-

volves evolving existing NoSQL DBMSs into their mul-

ti-model versions; (3) a brief comparison with the approach 

that aims the creation of a new model that natively integrates 

the capabilities of several models; (4) a brief comparison with 

multistore system approaches; (5) a brief comparison with 

NoSQL Database Design Methods. 

A comprehensive overview of the various existing ap-

proaches can be found in [1, 2, 31]. 

9.1. Strengths of NewSQL DBMSs 

Digital transformation has made databases one of the key 

foundations upon which modern societies are built. They 

serve as the memory that enables societies to establish good 

governance, simplify the lives of all stakeholders, drive in-

novation across industries, increase productivity, and reduce 

production and service costs. 

To achieve this, a database must be versatile and applica-

tion-independent, a guarantor of reliability and accessibility, 

ensuring the accuracy of the information it stores and the 

insights and predictions it enables, robust while maintaining a 

straightforward implementation. 

NewSQL DBMSs allow the designer to choose the rela-

tional model as the primary model for the Data Store. 

In the current state of the art, this technological offering 

represents the best choice for enabling the DBMS to serve as 

the guarantor of integrity for structured or hierar-

chical-and-structured value collections (adhering to the rela-

tional or nested relational models), where this aspect is con-

sidered mission-critical by users. 

This technological offering also enables, within a column of 

a relational table, the native storage of value collections that 

adhere to XML or JSON standards. For these types of data, the 

primary requirement is not integrity but rather their highly 

flexible format, which allows them to be self-documenting, 

complex, hierarchical, and semi-structured. 

It also enables the designer to provide developers, applica-

tion integrators, and data analysts with the agility and flexi-

bility needed to seamlessly interact with the relational Data 

Store, without overload, as if it were, virtually a relational, 

object-relational, XML, JSON, and graph-oriented database 

simultaneously. 

The integration of object-relational, XML, JSON, and 

graph-oriented query languages into SQL ensures that, within 

each cross-model query, each value can be processed using 

the query language of its respective model. 

In other words, this technological offering provides the 

possibility of ensuring, using a single DBMS, the storage and 

manipulation of hybrid collections of values adhering to dif-

ferent models as needed. 

Furthermore, this technological offering provides the de-

signer with multiple options for organizing data on the phys-

ical storage devices used for data persistence. These options 

can help: (1) minimize query execution time; (2) ensure un-

limited horizontal scaling and uninterrupted data availability; 

(3) coordinate concurrent and distributed transaction execu-

tion while guaranteeing the ACID properties. 

As a final advantage, it is worth noting that NewSQL 

DBMSs are extensible to new data models, following the 

same approach used for the integration of XML, JSON, and 

the graph-oriented model. 

9.2. Weaknesses of NewSQL DBMSs 

NewSQL DBMSs also allow the designer to store the data 

in tables of different types (relational, object-relational, 

XML, and JSON) that have a real existence. For the NoSQL 

tables (object-relational, XML, and JSON), this capability is 

generally based on the integration of their storage engines 

with the SQL storage engine, enabling either storing NoSQL 

data in its native format, or automatically shredding NoSQL 

data into internal tables (relational or object-relational, for 

example). The goal of this feature is to ensure that the pri-

mary model of the Data Store can be any model, not just the 

relational model. 

Leveraging this capability can lead to poorer practices for 

three main reasons: (1) NoSQL models encourage the de-

signer to define the logical structure of values based on both 

their semantics and access paths required by developers. In 

contrast, the relational model requires defining the logical 

structure of values solely based on their semantics; (2) 

NoSQL models promote materializing associations using 

pairs of semantic links, where each link in each pair must be 

the inverse of the other, while the DBMS has no built-in 

mechanism to guarantee the integrity of this materialization 

[14]; (3) the integrity constraints that NoSQL models allow 

the DBMS to enforce are only a subset of those provided by 

the relational model. 

This second option, related to choosing the primary model 

for the Data Store, can therefore make the database less ver-

satile and less independent from applications. Furthermore, it 

may also reduce DBMS’s ability to ensure data reliability, 

potentially forcing developers to handle integrity controls 

themselves, which is an error’s prone task. This can make the 

database significantly less robust. 

Finally, it is important to note that in NewSQL DBMSs, 

most of the physical database organization options described 

in Section V apply only to relational tables. This is especially 

true for database sharding. 

http://www.sciencepg.com/journal/ajcst


American Journal of Computer Science and Technology http://www.sciencepg.com/journal/ajcst 

 

38 

9.3. The Evolution of Existing NoSQL DBMSs 

Towards Their Multi-model Versions 

In this approach, existing offerings [1, 2] can only support a 

limited number of different models. 

Except for the possibilities it offers for storing data that 

adhere to multiple models, the advantages of this approach are 

the same as those of the original model. 

9.4. The Creation of a New Model That Natively 

Integrates the Capabilities of Several 

Models 

Just like the NewSQL approach this category aims at uni-

fying data models. For example, SQL++ [4] is a 

semi-structured model that extends the capabilities of the 

relational model and JSON in terms of modeling possibilities. 

SQL++ also provides a query language that is fully backward 

compatible with SQL while integrating the capabilities of 

semi-structured models. 

The NewSQL approach and the SQL++ approach are fun-

damentally different. The NewSQL approach relies on 

standards to integrate other models under the relational model. 

The SQL++ approach starts from scratch to define a new 

model that incorporates the features of multiple models (i.e. a 

model composed of several models). 

Each approach has its own benefits. The NewSQL ap-

proach follows an evolutionary path, ensuring backward 

compatibility and allowing businesses to gradually adopt its 

new capabilities. The SQL++ approach takes a revolutionary 

path, enabling the creation of an entirely new technological 

offering, leveraging lessons learned and the latest advance-

ments in database technology. Thus, one could say that 

SQL++ paves the way for new types of lighter and more ef-

ficient DBMSs. 

However, in terms of modeling capability, NewSQL and 

SQL++ are potentially equivalent, as both could theoretically 

allow the integration within a single database of the same 

types of value collections adhering to same types of models. 

9.5. Multistore Systems 

The purpose of multistore systems is to provide users (de-

velopers, application integrators, and data analysts) with the 

necessary tools to manipulate heterogeneous collections of 

values stored in autonomous databases that adhere to different 

data models (relational and NoSQL). These databases may 

have been designed independently or simultaneously for 

predefined needs. Heterogeneity can affect multiple aspects, 

including: (1) structural differences, such as variations in how 

the logical structure of data describing the instances of the 

entities is defined; (2) impedance mismatches between the 

data types supported by the different types of DBMSs; (2) 

syntactic differences in query languages; (4) semantic issues, 

such as the presence of synonyms and homonyms. 

Providing the necessary tools for manipulating these data 

collections requires providing users with a unified global 

view and a cross-model query language based on this view. 

To achieve this, various approaches have been proposed, 

relying on a middleware composed of one mediator and 

several wrappers, each dedicated to a specific type of DBMS 

[32-34]. 

NewSQL DBMS and multistore systems have been de-

signed to meet different objectives. They offer different ad-

vantages that are complementary. NewSQL DBMS provide 

the ability to integrate heterogeneous collections of values 

that adhere to different types of data models within a single 

database while ensuring scaling, fault tolerance, availability, 

and ACID properties (Atomicity, Consistency, Isolation, Du-

rability). Multistore systems, on the other hand, enable the 

federation of relational, NoSQL, and NewSQL databases 

implemented on autonomous servers without compromising 

their autonomy and without impacting their properties. This is 

a fundamental aspect for enterprises that want to access Big 

DATA 

9.6. NoSQL Database Design Methods 

Initially, the implementation of a NoSQL database only 

focused on the physical level. 

The main goal of the design methods of NoSQL databases 

is to ensure that the design process starts with the functional 

requirements of users, rather than non-functional require-

ments (such as performance, scalability, high availability), 

similar to the methods developed for relational databases. 

The main research efforts on this topic have highlighted the 

possibility of defining unified design methods, independent of 

the type of NoSQL DBMS, by distinguishing three levels of 

abstraction: the conceptual level, the logical level, and the 

physical level [35]. 

Among the methods based on this approach, "UM-

LtoNoSQL" [36] is one of the most comprehensive. 

This approach leverages the MDA (Model-Driven Archi-

tecture) paradigm, defined by the OMG (Object Management 

Group), for the automatic transformation of schemas [30]. It 

uses: (1) the UML model to define at the conceptual level a 

UML diagram that adheres to a metamodel; (2) automatic 

transformation rules at the logical level to convert the UML 

diagram into a generic logical schema, adhering to a meta-

model compatible with three NoSQL models (column-family, 

document-oriented, or graph-oriented); (3) automatic trans-

formation rules at the physical level to convert the generic 

logical schema into a NoSQL database (column-family, 

document-oriented, or graph-oriented). 

As for the NewSQL approach presented in this paper, it 

implements two design processes where each process con-

sider four levels of abstraction. In these two design processes, 

the global nested relational pivot schema plays a unifying 

role. 

In the "UMLtoNoSQL" approach, schema transformations 
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are performed fully automatically, whereas in the NewSQL 

approach, related to these two design processes, transfor-

mations are mostly semi-automatic to allow the designer to 

customize the resulting schemas. This customization enables 

the consideration of user specific requirements. 

In addition to schema mapping, the NewSQL approach 

described in this paper also requires dynamic data mapping at 

runtime. This means that data conversions occur dynamically, 

transforming data adhering to one model into data adhering to 

another model. These conversions take place between the 

Data Store and the virtual NoSQL databases. 

10. Conclusion 

The evolution of SQL DBMSs toward NewSQL DBMSs 

has led to the incorporation of functionalities that provide 

database designers with a wide range of possibilities, thereby 

increasing the complexity of database design. 

In this paper, we have shown through an example how to 

design and implement, on a NewSQL DBMS, a database that 

combines the advantages of both SQL and NoSQL databases 

by leveraging on: (1) the comprehensive methodological 

approach that we propose for integrating consistently, by 

relying on five levels of abstraction, the design process of a 

relational Data Store and the design process of virtual data-

bases that allow the Data Store to be viewed and manipulated 

as a NoSQL database (object-relational, XML, JSON or 

graph-oriented); (2) the possibilities highlighted for data or-

ganization on storage devices; (3) the identified possibilities 

for handling operations on the NoSQL virtual databases using 

a uniform, innovative, and efficient approach. 

The ISO standards for extending the relational model, as 

well as the capabilities highlighted in our methodological 

approach as fundamental for data organization on storage 

devices, have not yet been fully implemented by all SQL 

DBMSs, particularly with regard to the most recent features 

such as SQL/JSON and SQL/PGQ standards, table clusters 

[14], and database sharding. 

Currently, database technology is still largely dominated by 

the relational model [37]. As a result, many businesses face 

challenges in adapting their mission-critical applications to 

the web's demands for scalability and data availability. For 

these companies, NewSQL DBMSs offer significant ad-

vantages: (1) the ability to help them overcome their current 

challenges; (2) backward compatibility, ensuring the contin-

ued smooth operation of existing applications; (3) the ability 

to run on low-cost standard servers, leading to reduced in-

vestment and recurring costs; (4) a vast community of de-

signers and web application developers already familiar with 

most of the core concepts on which NewSQL is based. 

The world of SQL DBMSs is currently undergoing active 

exploration for a transformation that can best meet this new 

demand from businesses [6, 7]. 

This presentation enables researchers and technology pro-

viders to identify key areas that require special attention to 

bring significant improvements to NewSQL DBMSs. 
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DBMS Database Management System 

SQL Structured Query Language 

NoSQL Not Only SQL 
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4NF Fourth Normal Form 
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