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Abstract 

The pursuit of more efficient and reliable numerical methods to solve nonlinear systems of equations has long intrigued many 

researchers. Among these, the Broyden method has stood out since its introduction, serving as a foundational technique from 

which various derivative methods have evolved. These derivative methods, commonly referred to as Broyden-like iterative 

methods, often surpass the traditional Broyden method in terms of both the number of iterations required and the 

computational time needed. This study aimed to develop new Broyden-like methods by incorporating weighted combinations 

of different quadrature rules. Specifically, the research focused on leveraging the Composite Trapezoidal rule with n=3n=3, and 

comparing it against the Midpoint, Trapezoidal, and Simpson quadrature rules. By integrating these approaches, three novel 

methods were formulated. The findings revealed that several of these new methods demonstrated enhanced efficiency and 

robustness compared to their established counterparts. In a detailed comparative analysis with the classical Broyden method 

and other improved versions, the Midpoint–Composite Trapezoidal (M𝑇3) method emerged as the top performer. This method 

consistently provided superior numerical outcomes across all benchmark problems examined in the study. The results highlight 

the potential of these new methods to significantly advance the field of numerical analysis, offering more powerful tools for 

researchers and practitioners dealing with complex nonlinear systems of equations. Through this innovative approach, the 

study not only broadens the understanding of Broyden-like methods but also sets the stage for further advancements in the 

development of efficient numerical solutions. 
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1. Introduction 

In the realm of mathematical computations, finding solu-

tions to equations is crucial for solving practical problems. 

These solutions, often represented as the roots of equations, 

are essential across various fields of study [1]. Consequently, 

there's a continuous quest to develop efficient numerical 

methods to obtain accurate results. This pursuit becomes 

even more challenging when dealing with systems of non-

linear equations, which are prevalent in engineering and sci-

entific applications. 

Despite considerable research efforts, solving nonlinear 

equations remains a complex task [2]. One significant chal-

lenge is the selection of suitable initial guesses for solutions, 

as it greatly influences the effectiveness of traditional nu-

merical methods like Newton's method [3]. To address this, 
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researchers have explored combining traditional methods 

with intelligent algorithms [4]. However, such approaches 

can be complex and computationally demanding, especially 

when dealing with multiple nonlinear equations simultane-

ously [5, 6]. 

Among the different numerical schemes available, the 

Newton–Raphson method is widely used but has drawbacks, 

such as the need to iteratively calculate the inverse Jacobian 

matrix, making it inefficient for large-scale problems. This 

limitation has led to the development of alternative methods 

like the Broyden method, which has undergone significant 

improvements over time, inspiring further innovations in the 

field [7]. 

Researchers have introduced various techniques to en-

hance the efficiency of solving nonlinear systems of equa-

tions. These include using central finite differences to ap-

proximate the inverse Jacobian matrix, resulting in improved 

schemes. Additionally, strategies like the Steepest Descent 

method have been employed to obtain adequate initial 

guesses for subsequent Broyden method solutions [8-11]. 

A recent trend involves formulating iterative schemes us-

ing quadrature rules, reflecting efforts to develop more effi-

cient methods for computing solutions to systems of nonlin-

ear equations. Numerous references are available on methods 

utilizing quadrature rules, highlighting ongoing efforts to 

improve computational approaches in this area [12, 13]. 

Newton-Cotes quadrature rules encompass techniques for 

numerical integration that involve evaluating the integrand at 

uniformly spaced points [14]. Named after Isaac Newton and 

Roger Cotes, these rules use polynomial approximations of 

local order k to fit the data. This method involves assessing 

the function at k evenly spaced nodes              and 

assigning weights            to these nodes, the New-

ton-Cotes quadrature formulas estimate the integral of a 

function ∫       
 

 
 [15, 21]. Among the commonly known 

Newton-Cotes quadrature formulas are the Mid-point, Trap-

ezoidal, and Simpson's rules. The general structure of the 

Newton-Cotes formula is expressed as: 

∫       
 

 
= ∑  𝑘   𝑘 

 
𝑘=             (1) 

Newton's method can be obtained by expanding a function 

(which is of a single variable), denoted as     , using Tay-

lor's series around a specific point   : 

    =      +   −     
′    +

 

 !
  −    

  ′′    + ⋯ (2) 

In this scenario, both the function   and its first and se-

cond derivatives, denoted as  ′, and  ′′, respectively, are 

assessed at the point   . If dealing with a function F that 

involves multiple variables and maps from        , it 

can be demonstrated [20] that equation (2) is equivalent. 

    =    𝑘 + ∫  ′ 𝑡  𝑡
𝑥

𝑥𝑘
                 (3) 

The array of partial derivatives denoted as  ′ 𝑡  in equa-

tion (3) represents the Jacobian matrix, which is denoted as J. 

Here, the integral from ∫  ′ 𝑡  𝑡
𝑥

𝑥𝑘
, as described in equation 

(4), involves multiple integrals. 

∫  ′ 𝑡  𝑡
𝑥

𝑥𝑘
=

∫ ∫ ⋯∫  ′ 

𝑥𝑘  

 

𝑥𝑘  

 

𝑥𝑘  
                  −        (4) 

An alternative method treats the multiple integral as a se-

quence of nested one-dimensional integrals, applying a 

one-dimensional quadrature rule to each variable in turn [16]. 

This allows us to estimate ∫  ′ 𝑡  𝑡
𝑥

𝑥𝑘
 by combining 

weighted quadrature formulas. Various techniques have been 

proposed by the authors [16, 17] and others cited therein for 

approximating the integral in equation (4) using New-

ton-Cotes formulas ranging from zero to first order. In a re-

lated study, a modification of the Broyden-like method was 

suggested, employing a weighted combination of the Trape-

zoidal, Simpson, and Midpoint quadrature rules, resulting in 

the TSMM Broyden-like method [18], as expressed below: 

𝑚𝑘 =  𝑘 − 𝐵𝐾
−    𝑘  

 𝑘+ =  𝑘 − 24[5𝐵  𝑘 + 14𝐵 𝑧𝑘 + 5𝐵 𝑚𝑘 ]
−    𝑘  (5) 

where: 𝑧𝑘 =
𝑥𝑘+ 𝑘

 
  =   1   

The TSMM method's performance was assessed in com-

parison to various existing methods, including Classical 

Broyden (CB), Trapezoidal-Broyden (TB), and Mid-

point-Simpson-Broyden (MSB). The TSMM method showed 

superior performance over all the others [19]. In a follow-up 

study conducted the next year by the same author, a robust 

variant of the Broyden-like method was introduced, called the 

Midpoint-Trapezoidal (MT) method. The iterative process of 

this method is described as follows: 

𝑚𝑘 =  𝑘 − 𝐵𝐾
−    𝑘  

 𝑘+ =  𝑘 − 4[𝐵  𝑘 + 2𝐵 𝑧𝑘 + 𝐵 𝑚𝑘 ]
−    𝑘    (6) 

for 𝑧𝑘 =
𝑥𝑘+ 𝑘

 
  =   1   

The MT method was evaluated against other existing 

methods, including Classical Broyden (CB), Trapezoi-

dal-Broyden, and Midpoint-Simpson-Broyden (MSB). The 

results showed that the MT method significantly outper-

formed all the others [20]. A significant observation among 

these Broyden-like methods is their consistent use of three 

common quadrature rules: Trapezoidal, Midpoint, and 

Simpson rules. It was suggested that further improvements 

could be made by refining these quadrature rules. 

In another study, the integral in Equation (4) was approx-

imated using a weighted combination of quadrature rules 

including Trapezoidal, Midpoint, Simpson, Simpson’s 1/3, 
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and Simpson’s 3/8 quadrature rules, resulting in the devel-

opment of MS-1/3, MS-3/8, TS-1/3, TS-3/8, SS-1/3, and 

SS-3/8 methods. Among these, the MS-3/8 method was found 

to be superior to all existing methods [21]. 

This study aims to assess the effectiveness of methods 

formed through a weighted combination of the composite 

trapezoidal rule when compared to the midpoint, trapezoidal, 

and Simpson rules. The table below illustrates how the 

quadrature rules were combined: 

Table 1. Combination of Quadrature Rules to Yield New Broyden-like Methods. 

Quadrature rules Midpoint (M) Trapezoidal (T) Simpson (S) 

Composite Trapezoidal (𝑇3) M𝑇3 T𝑇3 𝑆𝑇3 

 

In a study by the authors [21], a Broyden-like method 

named the Trapezoidal-Simpson’s 3/8 method was devised, 

utilizing a weighted combination of the Trapezoidal and 

Simpson’s 3/8 quadrature rules. While this method showed 

superiority in certain benchmark problems compared to other 

Broyden-like methods, there were instances where alternative 

methods yielded better results. 

This study aims to achieve the following objectives: (i) 

Develop three new Broyden-like methods by utilizing 

weighted combinations of quadrature rules; (ii) Evaluate the 

new methods by comparing their number of iterations, CPU 

time, and robustness index using selected systems of nonlin-

ear equations as test problems. The paper is structured as 

follows: Section 2.0 outlines the general formula of the 

composite trapezoidal quadrature rule, Section 3.0 details the 

derivation of the newly developed methods, Section 4.0 pre-

sents numerical tests and results, and Section 5.0 provides a 

summary conclusion of the research findings. 

2. The General Formula of Composite 

Trapezoidal Rule 

The Composite Trapezoidal Rule is a numerical integra-

tion method used to approximate the definite integral of a 

function over a specified interval. The Composite Trapezoi-

dal Rule is based on approximating the area under the curve 

of a function by dividing the interval into smaller subinter-

vals and approximating each subinterval's area using trape-

zoids. 

For a function      over the interval [   ], the Compo-

site Trapezoidal Rule formula is: 

∫       ≈
ℎ

 
[    + 2∑    𝑖 

 − 
𝑖= +     ]

 

 
     (7) 

Where   is the width of each   subinterval and  𝑖 are 

the partition points. 

For the purpose of this research, the composite trapezoidal 

rule with  = 3 is what is considered for the study. This 

special composite trapezoidal rule is therefore denoted as 𝑇3. 

This means we are dividing the interval [a, b] into three 

equal subintervals. Denoting   as the width of each subin-

terval, means  =
 − 

3
. The points where the function is 

evaluated within each subinterval as: 

 0 =   

  =  +   

  =  + 2  

 3 =   

Using these points, we can apply the composite Trapezoi-

dal rule formula: 

∫       ≈
ℎ

 
[    + 2     + 2     +     ]

 

 
   (8) 

Substituting the expressions           in terms of 

       . 

∫       ≈
ℎ

 
[    + 2   +   + 2   + 2  +     ]

 

 
 (9) 

Given that  =
 − 

3
 

∫       ≈
(
𝑏−𝑎

3
)

 
*    + 2 ( +

 − 

3
) + 2 ( +

 

 

2
 − 

3
) +     +              (10) 

∫       ≈
  −  

6
*    + 2 ( +

 − 

3
) + 2 ( +

 

 

2
 − 

3
) +     +                (11) 

∫       ≈ (
 − 

6
) *    + 2 (

  + 

3
) + 2 (

 +  

3
) +

 

 

    +                 (12) 
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3. Derivation of New Methods 

This section aims to develop a novel Broyden-like method 

formed through the weighted combination of the composite 

trapezoidal quadrature rule, compared against the midpoint, 

trapezoidal, and Simpson quadrature rules. The weighted 

combinations yield the M𝑇3, T𝑇3 and S𝑇3 methods as out-

lined below. 

3.1. Derivation of M𝐓𝟑 Method 

Given the Composite Trapezoidal (𝑇3  quadrature rule 

∫       ≈ (
 − 

6
) *    + 2 (

  + 

3
) + 2 (

 +  

3
) +

 

 

    +        (13) 

And Midpoint quadrature rule 

∫     ≈   −    (
 + 

 
) 

 

 
       (14) 

Approximating the integral in equation (3) by the average 

of Midpoint and Composite Trapezoidal (M𝑇3) quadrature 

rules yields: 

∫  ′ 𝑡  𝑡
𝑥

𝑥𝑘
= 

𝑥−𝑥𝑘

 
( ′ (

𝑥𝑘+𝑥

 
)) + (

𝑥−𝑥𝑘

  
) * ′  𝑘 +

2 ′ (
 𝑥𝑘+𝑥

3
) + 2 ′ (

𝑥𝑘+ 𝑥

3
) +  ′   +             (15) 

Substituting equation (15) into (3), we have 

    =    𝑘 +
𝑥−𝑥𝑘

 
* ′ (

𝑥𝑘+𝑥

 
)+ + (

𝑥−𝑥𝑘

  
) * ′  𝑘 +

2 ′ (
 𝑥𝑘+𝑥

3
) + 2 ′ (

𝑥𝑘+ 𝑥

3
) +  ′   + (16) 

    =  , hence 

 =    𝑘 +
𝑥−𝑥𝑘

 
* ′ (

𝑥𝑘+𝑥

 
)+ + (

𝑥−𝑥𝑘

  
) * ′  𝑘 +

2 ′ (
 𝑥𝑘+𝑥

3
) + 2 ′ (

𝑥𝑘+ 𝑥

3
) +  ′   +      (17) 

Multiplying through (17) by 
  

𝑥−𝑥𝑘
 

 =
  

𝑥−𝑥𝑘
   𝑘 + 6 * ′ (

𝑥𝑘+𝑥

 
)+ + * ′  𝑘 + 2 ′ (

 𝑥𝑘+𝑥

3
) +

2 ′ (
𝑥𝑘+ 𝑥

3
) +  ′   +           (18) 

 =
  

𝑥−𝑥𝑘
   𝑘 + 6 ′ (

𝑥𝑘+𝑥

 
) +  ′  𝑘 + 2 ′ (

 𝑥𝑘+𝑥

3
) +

2 ′ (
𝑥𝑘+ 𝑥

3
) +  ′             (19) 

−  

𝑥−𝑥𝑘
   𝑘 = 6 ′ (

𝑥𝑘+𝑥

 
) +  ′  𝑘 + 2 ′ (

 𝑥𝑘+𝑥

3
) +

2 ′ (
𝑥𝑘+ 𝑥

3
) +  ′               (20) 

 −  𝑘 =
−  𝐹 𝑥𝑘 

6𝐹′(
𝑥𝑘+𝑥

2
)+𝐹′ 𝑥𝑘 + 𝐹′(

2𝑥𝑘+𝑥

3
)+ 𝐹′(

𝑥𝑘+2𝑥

3
)+𝐹′ 𝑥  

  (21) 

 =  𝑘 − 12 *6 ′ (
𝑥𝑘+𝑥

 
) +  ′  𝑘 + 2 ′ (

 𝑥𝑘+𝑥

3
) +

2 ′ (
𝑥𝑘+ 𝑥

3
) +  ′    +

− 

   𝑘                 (22) 

Setting  =  𝑘+  and  𝑘 =  𝑘 in equation (22), we have 

 𝑘+ =

 𝑘 − 12 *6 ′ (
𝑥𝑘+𝑥𝑘+1

 
) +  ′  𝑘 + 2 ′ (

 𝑥𝑘+𝑥𝑘+1

3
) +

2 ′ (
𝑥𝑘+ 𝑥𝑘+1

3
) +  ′  𝑘+   +

− 

   𝑘            (23) 

Setting  ′ (
 𝑥𝑘+𝑥𝑘+1

3
) ≈  ′ (

𝑥𝑘+ 𝑥𝑘+1

3
) ≈  ′ (

𝑥𝑘+𝑥𝑘+1

 
) 

 𝑘+ =  𝑘 − 12 *6 ′ (
𝑥𝑘+𝑥𝑘+1

 
) +  ′  𝑘 + 2 ′ (

𝑥𝑘+𝑥𝑘+1

 
) +

2 ′ (
𝑥𝑘+𝑥𝑘+1

 
) +  ′  𝑘+   +

− 

   𝑘           (24) 

 𝑘+ =

 𝑘 − 12 * ′  𝑘 + 1  ′ (
𝑥𝑘+𝑥𝑘+1

 
) +  ′  𝑘+   +

− 

   𝑘  (25) 

Which is an implicit equation because the presence of 

 𝑘+  at both sides of the equation, hence to avoid its implicit 

nature we use the   + 1  ℎ  iteration of the Broyden’s 

method in the right hand side. Thus we have; 

 𝑘+ =  𝑘 − 12[ ′  𝑘 + 1  ′ 𝑧𝑘 +  ′ 𝑚𝑘 ]
−    𝑘  (26) 

Let 𝐵𝑘 = 𝐵  𝑘 + 1 𝐵 𝑧𝑘 + 𝐵 𝑚𝑘  

⟹  𝑘+ =  𝑘 − 12𝐵𝐾
−    𝑘                  (27) 

3.2. Derivation of T𝐓𝟑 Method 

Given the Composite Trapezoidal (𝑇3  quadrature rule as 

in equation (13). 

And Trapezoidal quadrature rule: 

∫     ≈ (
 − 

 
)      +      

 

 
            (28) 

Approximating the integral in equation (3) using the aver-

age of the Midpoint and Composite Trapezoidal (M 𝑇3 ) 

quadrature rules results in: 

∫  ′ 𝑡  𝑡
𝑥

𝑥𝑘
= 

𝑥−𝑥𝑘

4
( ′   +  ′  𝑘 ) + (

𝑥−𝑥𝑘

  
) * ′  𝑘 +

2 ′ (
 𝑥𝑘+𝑥

3
) + 2 ′ (

𝑥𝑘+ 𝑥

3
) +  ′   +               (29) 

Substituting equation (29) into (3), we have 

    =    𝑘 +
𝑥−𝑥𝑘

4
[ ′   +  ′  𝑘 ] + (

𝑥−𝑥𝑘

  
) * ′  𝑘 +
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2 ′ (
 𝑥𝑘+𝑥

3
) + 2 ′ (

𝑥𝑘+ 𝑥

3
) +  ′   +        (30) 

    =  , hence 

 =    𝑘 +
𝑥−𝑥𝑘

4
[ ′   +  ′  𝑘 ] + (

𝑥−𝑥𝑘

  
) * ′  𝑘 +

2 ′ (
 𝑥𝑘+𝑥

3
) + 2 ′ (

𝑥𝑘+ 𝑥

3
) +  ′   +          (31) 

Multiplying through (31) by 
  

𝑥−𝑥𝑘
 

 =
  

𝑥−𝑥𝑘
   𝑘 + 3[ ′   +  ′  𝑘 ] + * ′  𝑘 +

2 ′ (
 𝑥𝑘+𝑥

3
) + 2 ′ (

𝑥𝑘+ 𝑥

3
) +  ′   +        (32) 

 =
  

𝑥−𝑥𝑘
   𝑘 + 3 ′   + 3 ′  𝑘 +  ′  𝑘 + 2 ′ (

 𝑥𝑘+𝑥

3
) +

2 ′ (
𝑥𝑘+ 𝑥

3
) +  ′           (33) 

 =
  

𝑥−𝑥𝑘
   𝑘 + 4 ′   + 4 ′  𝑘 + 2 ′ (

 𝑥𝑘+𝑥

3
) +

2 ′ (
𝑥𝑘+ 𝑥

3
)                      (34) 

 −  𝑘 =
−  𝐹 𝑥𝑘 

 4𝐹′ 𝑥 +4𝐹′ 𝑥𝑘 + 𝐹′(
2𝑥𝑘+𝑥

3
)+ 𝐹′(

𝑥𝑘+2𝑥

3
)
          (35) 

 =  𝑘 − 12 *4 ′   + 4 ′  𝑘 + 2 ′ (
 𝑥𝑘+𝑥

3
) +

2 ′ (
𝑥𝑘+ 𝑥

3
) +

− 

   𝑘                 (36) 

Setting  =  𝑘+  and  𝑘 =  𝑘 in equation (36), we have 

 𝑘+ =  𝑘 − 12 * 4 ′  𝑘+  + 4 ′  𝑘 + 2 ′ (
 𝑥𝑘+𝑥𝑘+1

3
) +

2 ′ (
𝑥𝑘+ 𝑥𝑘+1

3
)+

− 

   𝑘                 (37) 

Setting  ′ (
 𝑥𝑘+𝑥𝑘+1

3
) ≈  ′ (

𝑥𝑘+ 𝑥𝑘+1

3
) ≈  ′ (

𝑥𝑘+𝑥𝑘+1

 
), 

 𝑘+ =

 𝑘 − 12 *4 ′  𝑘  + 2 ′ (
𝑥𝑘+𝑥𝑘+1

 
) + 2 ′ (

𝑥𝑘+𝑥𝑘+1

 
) +

4 ′  𝑘+  +
− 

   𝑘                 (38) 

 𝑘+ =

 𝑘 − 12 *4 ′  𝑘 + 4 ′ (
𝑥𝑘+𝑥𝑘+1

 
) + 4 ′  𝑘+   +

− 

   𝑘  (39) 

Which is an implicit equation because the presence of 

 𝑘+  at both sides of the equation, hence to avoid its implicit 

nature we use the   + 1  ℎ  iteration of the Broyden’s 

method in the right hand side. Thus we have; 

 𝑘+ =  𝑘 − 12[4 ′  𝑘 + 4 ′ 𝑧𝑘 + 4 ′ 𝑚𝑘 ]
−    𝑘  (40) 

Let 𝐵𝑘 = 4𝐵  𝑘 + 4𝐵 𝑧𝑘 + 4𝐵 𝑚𝑘  

⟹  𝑘+ =  𝑘 − 12𝐵𝐾
−    𝑘             (41) 

3.3. Derivation of S𝐓𝟑 Method 

Given the Simpson quadrature rule: 

∫     ≈ (
 − 

 
) (    + 3 (

 + 

 
) +     )

 

 
   (42) 

And the Composite Trapezoidal (𝑇3  quadrature rule as in 

equation (13). 

Approximating the integral in equation (3) by the average 

of Simpson and Composite Trapezoidal quadrature rules 

yields: 

∫  ′ 𝑡  𝑡
𝑥

𝑥𝑘
= 

𝑥−𝑥𝑘

4
( ′  𝑘 + 3 ′ 

𝑥+𝑥𝑘

 
 + ′   ) +

(
𝑥−𝑥𝑘

  
) * ′  𝑘 + 2 ′ (

 𝑥𝑘+𝑥𝑘

3
) + 2 ′ (

𝑥𝑘+ 𝑥

3
) +  ′   + (43) 

Substituting equation (43) into (3), we have 

    =    𝑘 +
𝑥−𝑥𝑘

4
( ′  𝑘 + 3 ′ 

𝑥+𝑥𝑘

 
 + ′   ) +

(
𝑥−𝑥𝑘

  
) * ′  𝑘 + 2 ′ (

 𝑥𝑘+𝑥

3
) + 2 ′ (

𝑥𝑘+ 𝑥

3
) +  ′   +  (44) 

    =  , hence 

 =    𝑘 +
𝑥−𝑥𝑘

4
( ′  𝑘 + 3 ′ 

𝑥+𝑥𝑘

 
 + ′   ) +

(
𝑥−𝑥𝑘

  
) * ′  𝑘 + 2 ′ (

 𝑥𝑘+𝑥

3
) + 2 ′ (

𝑥𝑘+ 𝑥

3
) +  ′   + (45) 

Multiplying through (45) by 
  

𝑥−𝑥𝑘
 

 =
  

𝑥−𝑥𝑘
   𝑘 + 4 ( ′  𝑘 + 3 ′ 

𝑥+𝑥𝑘

 
 + ′   ) +

* ′  𝑘 + 2 ′ (
 𝑥𝑘+𝑥

3
) + 2 ′ (

𝑥𝑘+ 𝑥

3
) +  ′   + +      (46) 

 =
  

𝑥−𝑥𝑘
   𝑘 + 4 ′  𝑘 + 12 ′ 

𝑥+𝑥𝑘

 
 +4 ′   +

 ′  𝑘 + 2 ′ (
 𝑥𝑘+𝑥

3
) + 2 ′ (

𝑥𝑘+ 𝑥

3
) +  ′         (47) 

−  

𝑥−𝑥𝑘
= 12 ′ (

𝑥+𝑥𝑘

 
)+5 ′   + 5 ′  𝑘 + 3 ′ (

 𝑥𝑘+𝑥

3
) +

3 ′ (
𝑥𝑘+ 𝑥

3
)               (48) 

−  

𝑥−𝑥𝑘
=

5 ′  𝑘 + 12 ′ (
𝑥+𝑥𝑘

 
) + 3 ′ (

 𝑥𝑘+𝑥

3
) + 3 ′ (

𝑥𝑘+ 𝑥

3
) +

5 ′                   (49) 

 −  𝑘 =
−  𝐹 𝑥𝑘 

5𝐹′ 𝑥𝑘 +  𝐹′(
𝑥+𝑥𝑘

2
)+3𝐹′(

2𝑥𝑘+𝑥

3
)+3𝐹′(

𝑥𝑘+2𝑥

3
)+5𝐹′ 𝑥 

 50) 
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 =  𝑘 − 12 *5 ′  𝑘 + 12 ′ (
𝑥+𝑥𝑘

 
) + 3 ′ (

 𝑥𝑘+𝑥

3
) +

3 ′ (
𝑥𝑘+ 𝑥

3
) + 5 ′   +

− 

   𝑘            (51) 

Setting  =  𝑘+  and  𝑘 =  𝑘 in equation (51), we have 

 𝑘+ =

 𝑘 − 12 *5 ′  𝑘 + 12 ′ (
𝑥𝑘+1+𝑥𝑘

 
) + 3 ′ (

 𝑥𝑘+𝑥𝑘+1

3
) +

3 ′ (
𝑥𝑘+ 𝑥𝑘+1

3
) + 5 ′  𝑘+  +

− 

   𝑘             (52) 

Setting  ′ (
 𝑥𝑘+𝑥𝑘+1

3
) ≈  ′ (

𝑥𝑘+ 𝑥𝑘+1

3
) ≈  ′ (

𝑥𝑘+𝑥𝑘+1

 
) , 

equation (52) becomes 

 𝑘+ =

 𝑘 − 12 *5 ′  𝑘 + 18 ′ (
𝑥𝑘+𝑥𝑘+1

 
) + 5 ′  𝑘+  +

− 

   𝑘  (53) 

Which is an implicit equation because the presence of 

 𝑘+  at both sides of the equation, hence to avoid its implicit 

nature we use the   + 1  ℎ  iteration of the Broyden’s 

method in the right hand side. Thus we have; 

 𝑘+ =  𝑘 − 12[5  𝑘 + 18 ′ 𝑧𝑘 + 5 ′ 𝑚𝑘 ]
−    𝑘  (54) 

with 𝑚𝑘 =  𝑘 − 𝐵𝐾
−    𝑘  and 𝑧𝑘 =

𝑥𝑘+ 𝑘

 
 

Now replacing  ′  𝑘 ,  ′ 𝑚𝑘  and  ′ 𝑧𝑘  by 𝐵  𝑘 , 

𝐵 𝑚𝑘  and 𝐵 𝑧𝑘  respectively and use the same procedure 

as prescribed in [4-9], we get 

 𝑘+ =  𝑘 − 12[5  𝑘 + 18 ′ 𝑧𝑘 + 5 ′ 𝑚𝑘 ]
−    𝑘    (55) 

Let 𝐵𝑘 = 5𝐵  𝑘 + 18𝐵 𝑧𝑘 + 5𝐵 𝑚𝑘  

⟹  𝑘+ =  𝑘 − 12 𝐵𝐾
−    𝑘          (56) 

4. Numerical Test 

To evaluate the effectiveness of the new methods, they 

were tested on three benchmark problems described by Osi-

nuga et al. in 2018. These tests involved varying dimensions, 

ranging from 5 to 1065 variables. The results were compared 

using three primary metrics: the number of iterations (NI), 

CPU time in seconds, and the Robustness Index (RI). The 

computations were conducted using Python (Anaconda 

Navigator 2.4.0) on a computer with the following specifica-

tions: Intel® Core™ i5-3427U CPU @ 1.80GHz 2.30GHz 

processor, 8.00GB RAM (7.87GB usable), and a 64-bit Op-

erating System, ×64-based processor. 

The program was set to stop execution once the number of 

iterations reached 500. Any method that failed to meet these 

convergence criteria is denoted by a dash ('-'), as shown in the 

results Table 1. 

The problems that were used for the test are: 

Problem One 

 𝑖   =  𝑖 𝑖+ − 1,      =     − 1, 𝑖 = 1 2    −

1      0 =   .8  .8    .8 𝑇 

Problem Two 

 𝑖   =  𝑖 𝑖+ − 1,      =     − 1 𝑖 = 1 2    −

1      0 =   .5  .5    .5 𝑇 

Problem Three 

 𝑖   =  𝑖
 − cos   − 1  𝑖 = 1 2          0

=   .5  .5    .5 𝑇 

5. Results and Discussion 

The performance of three newly developed methods was 

evaluated by applying them to solve three benchmark prob-

lems. Python code was crafted for each method to compute 

three key parameters: CPU time, Number of Iterations (NI), 

and the Robustness Index (RI). CPU time indicates the dura-

tion, in seconds, required by the method to solve the problem, 

while the number of iterations represents how many iterations 

were necessary to approximate a solution. The Robustness 

Index indicates the method's consistency in solving the 

problem. 

For the M𝑇3  method, testing it on the first benchmark 

problem revealed a consistent four (4) iterations required to 

reach an approximation, irrespective of the value of 'n.' The 

CPU time ranged from 0.0000 to 0.7856 seconds, with the 

lowest recorded at 'n=15' and 'n=35' and the highest at 

'n=1065.' A Robustness Index of 0.5000 was consistent across 

all 'n' values, indicating its stability. For the second and third 

problems, the M𝑇3  method consistently required five (5) 

iterations for all 'n' values. CPU times ranged from 0.0000 to 

1.1484 for problem two and were 0.9542 for problem three. 

Robustness indices ranged between 0.9357 to 0.9999 for 

problem two and 0.5015 to 0.8242 for problem three. 

The T𝑇3 method, when applied to the first benchmark 

problem, consistently required five (5) iterations for all 'n' 

values. CPU times ranged from 0.0000 to 0.9572 seconds, 

with a Robustness Index ranging from 0.5000 to 0.7417. For 

the second problem, it required five (5) iterations, and for the 

third, six (6). CPU times ranged from 0.0156 to 1.0197 for 

problem two and from 0.0221 to 1.1879 for problem three. 

The method showed a consistent Robustness Index of 0.5000 

for problem two, and for problem three, it recorded 0.9637 for 

'n=665' and 0.8852 for 'n=1065' only. 

Regarding the S𝑇3  method, it exhibited a significantly 

higher number of iterations for all benchmark problems (48, 

50, and 49 for problems one, two, and three, respectively). 

CPU time ranges were 0.0156 to 10.3777, 0.0313 to 9.6954, 

and 0.0312 to 10.6786 for problems one, two, and three, re-
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spectively. The method consistently recorded a Robustness 

Index of 0.5000 for all 'n' values across all problems. Table 2 

summarizes all results in the study. 

Table 2. Comparison of Newly Developed Methods. 

Problem n 

1  2  3  

M𝐓𝟑  T𝐓𝟑  S𝐓𝟑  

NI CPU RI NI CPU RI NI CPU RI 

1 

5 4 0.0156 0.5000 5 0.0000 0.5000 48 0.0156 0.5000 

15 4 0.0000 0.5000 5 0.0000 0.5000 48 0.0377 0.5000 

35 4 0.0000 0.5000 5 0.0156 0.5000 48 0.0156 0.5000 

65 4 0.0156 0.5000 5 0.0000 0.5000 48 0.0468 0.5000 

165 4 0.0555 0.5000 5 0.0312 0.5000 48 0.1536 0.5000 

365 4 0.0685 0.5000 5 0.0846 0.6024 48 0.8701 0.5000 

665 4 0.2944 0.5000 5 0.3542 0.7417 48 3.4445 0.5000 

1065 4 0.7856 0.5000 5 0.9572 0.8403 48 10.3777 0.5000 

2 

5 5 0.0156 - 5 0.0156 0.5000 50 0.0313 0.5000 

15 5 0.0000 0.9357 5 0.0000 0.5000 50 0.0221 0.5000 

35 5 0.0000 0.9945 5 0.0000 0.5000 50 0.0469 0.5000 

65 5 0.0156 0.9957 5 0.0156 0.5000 50 0.0534 0.5000 

165 5 0.0156 0.9999 5 0.0156 0.5000 50 0.1784 0.5000 

365 5 0.1159 0.9999 5 0.0864 0.5000 50 1.1726 0.5000 

665 5 0.4351 0.9999 5 0.3320 0.5000 50 4.0700 0.4999 

1065 5 1.1484 0.9999 5 1.0197 0.5000 50 9.6954 0.4999 

3 

5 5 0.0000 0.5015  0.0221 - 49 0.0312 0.5000 

15 5 0.0156 0.5023  0.0000 - 49 0.0377 0.5000 

35 5 0.0000 0.5023 6 0.0156 - 49 0.0469 0.5000 

65 5 0.0156 0.5077 6 0.0156 - 49 0.0846 0.5000 

165 5 0.0377 0.5335 6 0.0312 - 49 0.3363 0.5000 

365 5 0.1158 0.6010 6 0.1381 - 49 1.2304 0.5000 

665 5 0.3320 0.7218 6 0.4825 0.9637 49 3.5947 0.5000 

1065 5 0.9542 0.8242 6 1.1879 0.8852 49 10.6786 0.5000 

In Figure 1 below, it is evident that regardless of the values of  , the M𝑇3 method consistently exhibited the shortest com-

putational time (CPU time), closely trailed by T𝑇3. Consequently, it can be inferred that for problem one, M𝑇3 achieved the 

lowest CPU time, as depicted in Figure 1 S𝑇3 on the other hand, recorded the highest CPT time. 
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Figure 1. Problem One: Comparison of Methods with Respect to CPU Time. 

Regarding problem one, Figure 2 distinctly illustrates that all methods exhibited robustness, as they demonstrated minimal 

variation in response to changes in parameters. 

 

Figure 2. Problem One: Comparison of Methods with Respect to Robustness Index (RI). 

Similar to Figure 1 above, both M𝑇3 and T𝑇3 methods displayed the lowest recorded CPU time values for problem two, 

highlighting their efficiency. Conversely, S𝑇3 once again exhibited significantly higher CPU time, as depicted in Figure 3. 
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Figure 3. Problem Two: Comparison of Methods with Respect to CPU Time. 

In Figure 4, it is evident that there was a fluctuation in the robustness index for the initial two values of 'n' when employing the 

M𝑇3 method. Nonetheless, the robustness index remained consistent for the subsequent 'n' values. Conversely, the T𝑇3 and S𝑇3 

methods exhibited a comparable, unchanging robustness index across all 'n' values. 

 

Figure 4. Problem Two: Comparison of Methods with Respect to Robustness Index (RI). 

Once more, problem three exhibited notably low and comparable CPU times for M𝑇3 and T𝑇3, whereas S𝑇3 continued to 

display elevated CPU time, as depicted in Figure 5. 
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Figure 5. Problem Three: Comparison of Methods with Respect to CPU Time. 

In Figure 6, it's noticeable that M𝑇3 and S𝑇3 displayed consistent robustness indices, whereas that of T𝑇3 varied significantly 

with an increase in the n values for problem three. 

 

Figure 6. Problem Three: Comparison of Methods with Respect to Robustness Index (RI). 

6. Conclusion 

In this manuscript, we embarked on a journey to enhance 

the efficacy of numerical methods for solving systems of 

nonlinear equations, focusing on the development and analy-

sis of Broyden-like iterative schemes. Inspired by the success 

of methods integrating quadrature rules, we introduced three 

novel Broyden-like methods M𝑇3 , 𝑇𝑇3 , and S𝑇3 formed 

through weighted combinations of the Composite Trapezoidal 

rule with the Midpoint, Trapezoidal, and Simpson quadrature 
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rules, respectively. 

Through meticulous derivation and performance analysis, 

we unveiled the potential of these methods in achieving su-

perior convergence rates and computational efficiency com-

pared to established counterparts. Particularly, the M 𝑇3 

method emerged as the standout performer, consistently 

outperforming other methods across various benchmark 

problems. Its robustness and numerical efficacy make it a 

promising candidate for practical applications in engineering 

and scientific domains. 

The derivation process elucidated the theoretical founda-

tion of these methods, emphasizing the integration of quad-

rature rules to approximate the Jacobian matrix. By leverag-

ing the Composite Trapezoidal rule alongside other quadra-

ture rules, we effectively balanced accuracy and computa-

tional overhead, leading to enhanced convergence behavior. 

7. Recommendation 

Based on the findings and insights gleaned from this study, 

several recommendations emerge to guide future research and 

practical applications in computational mathematics and en-

gineering: 

1) Further Theoretical Analysis: Conduct rigorous theo-

retical investigations into the convergence properties 

and stability of the proposed methods under varying 

conditions. Analyze the impact of different weighting 

schemes and quadrature rule combinations on method 

performance to deepen our understanding of their be-

havior. 

2) Experimental Validation: Validate the proposed meth-

ods through extensive numerical experiments across a 

diverse range of nonlinear systems. Assess their per-

formance against real-world problems to ascertain their 

practical utility and robustness in different application 

scenarios. 

3) Algorithm Optimization: Explore optimization strate-

gies to further enhance the computational efficiency of 

the proposed methods, particularly for large-scale sys-

tems. Investigate parallelization techniques and algo-

rithmic refinements to expedite convergence and reduce 

computational overhead. 

4) Extension to Multivariate Systems: Extend the proposed 

methods to handle multivariate systems of nonlinear 

equations, catering to a broader range of applications in 

engineering and scientific computing. Investigate the 

scalability and efficacy of these methods in 

high-dimensional problem domains. 

5) Integration with Machine Learning Techniques: Explore 

synergies between iterative numerical methods and 

machine learning techniques to develop hybrid ap-

proaches capable of adaptively adjusting algorithm pa-

rameters and improving convergence behavior. Inves-

tigate the potential of reinforcement learning and neural 

network-based approaches in optimizing method per-

formance. 

By pursuing these recommendations, researchers can ad-

vance the state-of-the-art in numerical methods for solving 

nonlinear equations, paving the way for more efficient and 

reliable computational tools with diverse applications across 

various disciplines. 
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