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Abstract 

This paper presents the derivation of Lorentz transformations in curvilinear coordinates utilizing generalized biquaternions. 

Generalized biquaternions are rotations in curvilinear coordinates, including on the tx, ty, and tz planes. These space-time 

rotations are precisely the Lorentz transformations in curvilinear coordinates. The orbital rotation of the source and/or receiver, 

which mathematically represents the Lorentz transformation in spherical coordinates, is identified as the cause of the transverse 

Doppler effect. The change in wave frequency, specifically the "redshift," results in nonlinearities of Hubble's law manifesting as 

phenomena such as accelerated and anisotropic expansion of the universe, aberration, and wave polarization. Apparently, 

redshift exists even without radial expansion of the universe, i.e., without the "Big Bang". The reasons for the accelerated 

expansion of the universe, the anisotropic (angular) distribution of relic radiation, and the polarization of light from distant stars 

become clear in this approach. This greatly simplifies the mathematical description and understanding of the supposedly 

complex processes occurring in the universe. 
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1. Introduction 

The cause of the wave frequency shift is attributed to the 

satellite's orbital motion, specifically the transverse motion of 

the signal source in a direction perpendicular to the observer. 

This phenomenon is known as the transverse Doppler effect 

[1]. The signal frequency offset (redshift) is a function of the 

orbital altitude and velocity of the satellite: Δω = f (h, v). 

Corrections [2] to adjust the data are consistently incorporated 

into the calculations in satellite navigation. 

The classical formulation of the transverse Doppler effect 

(in the Cartesian coordinate system) represents a significant 

simplification that constrains the generalization of this prin-

ciple to elucidate numerous phenomena. 

The objective of this study is to derive the Lorentz trans-

formation [3] and its associated phenomena, namely the 

Doppler effect and aberration, in a generalized form using 

curvilinear coordinates. This comprehensive approach offers 
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universal applicability and facilitates a more profound un-

derstanding of various mechanisms, including the accelerated 

[4] and anisotropic [5] expansion of the Universe, as well as 

the nonlinear nature of the Hubble law and parameter [6]. 

2. Results 

2.1. Biquaternions in Cartesian Coordinates 

In abstract (Clifford) algebra, rotations and transformations 

on planes in pseudo-Euclidean space are given by formulas: 

       ̃                     (1) 

or    ̃                        (2) 

Here Rα is a biquaternion, Ṝα is the inverse or com-

plex-conjugate biquaternion [7]: 

    ̃        
       

 
         

       

 
   (3) 

or Rα(Ṝα) = exp (±γαγ0 zα/2)             (4) 

I is a unit 4 x 4 matrix; γ0, γα (α =1, 2, 3) are Dirac matrices; 

γ = γ0γ1γ2γ3 is a matrix analog of the imaginary unit: γ
2
 = - I; 

γαγ0 zα /2 is a bivector; 

  ∑   
 
       is the space-time vector in the stationary 

coordinate system (K);    ∑   
 
        is the same vector 

in the moving coordinate system (K
’
); zα = I ηα + γ φα is a 

complex matrix. 

φα are ―purely spatial‖ rotations on the x0y, y0z, and z0x 

planes. Since we will only consider Lorentz transformations, 

we will omit these rotations in the following. ηα are angles of 

rotation of the t0x, t0y, and t0z planes, or so-called rapidities. 

It is obvious that 

RαRα 
-1= Rα Ṝα = I                 (5) 

The algorithm ((1) and/or (3)) is explained in various 

sources, such as [8]. 

Note: If there is no sum sign (Σα xα), then there is no sum-

mation, i.e., no summation over repeated indices (Einstein's 

summation). For example, there is no summation over α in Rα 

Ṝα or gαα k
α
 x

α
. 

2.2. Biquaternions in Generalized Form 

The generalization of the transformations (1) and (3) in 

curvilinear coordinates will be the following formulas: 

       ̃                     (6) 

or    ̃                        (7) 

Here    and  ̃  are a biquaternion and an inverse bi-

quaternion in a generalized form [9]: 

    ̃   
 

|   |
  |   |     

  

 
        

  

 
       (8) 

  ∑   
 
      is a 4-vector in a fixed basis K;    

∑   
 
       is the same vector in the moving basis   ; τα0 = eα 

∧ e0 is the bivector, i.e. the outer product of vectors eα and e0 

[10]; 

|τα0 | = |eα ∧ e0 | = I(gα0 gα0-g00 gαα)
0.5 

is the modulus 

(―length‖) of the bivector eα ∧ e0 [11]; gij is a matric tensor; 

ei are vectors in the system of curvilinear coordinates; ∧ and 

• are symbols of outer and inner products of vectors [10]. 

The set of four such vectors {ei} forms a local basis (frame) 

in the 4-dimensional space. It is obvious that the biquaternions 

(8) satisfy the condition: 

    ̃    

Note. The name ―vector‖ for ei is conventional. In reality, ei 

are 4 x 4 matrices related to Dirac matrices through coordi-

nate transformation functions Xj (q
i
): 

   ∑
   

   
 
       

2.3. Lorentz Transformation in Generalized 

Form 

Let us find the explicit form of the transformation (7). Let 

us substitute the biquaternions xʹ and x (8) into (7). 

According to Clifford's double cross product [2] 

z•(x ∧y) =– (x ∧y)•z = (z •x) y-(z •y)x      (9), 

we can write 

   ̃         ̃   ̃            (10) 

Indeed, the identity        ̃     is the place to be, 

since vectors       and       commutate with I(| eα∧

e0|cosh(zα/2) but anticommutate with I(eα∧e0)sinh(zα/2). 

In curvilinear coordinates, the products of        and 

e0•τα0 are [12]: 

{
             ∧              −           −𝑔    

             ∧              −           𝑔    
  (11) 

For simplicity, we will consider an orthogonal coordinate 

system, i.e., ei•ej = gij, if i=j and ei•ej = 0, if i≠j. Accordingly 

|τα0 |= I(– g00 gαα)
0.5.

 

Then from equation (10) we get 

          
    

        |   |         
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We substitute (11.1) and (11.2) into this equality. Multi-

plying the brackets and simplifying, we get 

    
       

                
            

   𝑔  |   |         − 𝑔    |   |          

Separating this equality by vectors e0 and eα and simplify-

ing, we get the Lorentz transformation in curvilinear coordi-

nates: 

{
              |   | 𝑔             

             − |   | 𝑔                (12) 

Formula (12) is the Lorentz transformation in generalized 

form. 

2.4. Generalized Form of the Doppler Effect and 

Aberration 

Now we can derive the Doppler effect in curvilinear coor-

dinates from (12). The change of frequency and direction of 

propagation (aberration of light) of a spherical monochro-

matic wave are determined by the condition of equality of 

phases of the same wave in both frames of reference [13]: 

𝑔         𝑔         𝑔       𝑔         (13) 

Substituting the values x
0
, x

α
 from (12) into (13) and sim-

plifying, we obtain: 

𝑔         𝑔          

 𝑔              −   |   |            

   |   |           𝑔               

By comparing the coefficients of the same variables, we 

have: 

{
            − |   | 𝑔           

             |   | 𝑔           

      (14) 

Formula (14.1) is the Doppler effect, and (14.2) is the ab-

erration of the wave. 

The plane       touches the surface l      at the point 

 . For small angles    and   , the arcs              

and         are a little different from straight lines. As 

we are considering an orthogonal coordinate system, all axes 

(including the time axis) are perpendicular to each other. 

Therefore, we take the rotation in the plane t lθ as in the clas-

sical case (in pseudo-Euclidean space): 

coshηθ = (1- β2
θ)

-0.5 

sinhηθ = βθ (1- β2
θ)

-0.5 

tanhηθ = βθ 

βθ = vθ /c. vθ is the linear velocity of system vφ relative to 

system K in the direction of tangent vector eθ. c is light ve-

locity. 

 
Figure 1. Tangent plane. 

Note. We will find the geometrical and physical meaning of the 

functions coshηα, sinhηα, and tanhηα in (12) and (14) (Figure 1) in the 

spherical coordinate system. 

Also coshηφ = (1- β2
φ)-0.5 

sinhηφ = βφ (1- β2
φ)-0.5 

tanhηφ = βφ 

βφ = vφ /c. vφ is the linear velocity of the system K
’
 relative 

to the system K in the direction of the tangent vector eφ. 

Since r is a straight line segment, the rotation in the plane 

t0r does not differ from the classical case:  

coshηr = (1- β2
r)

-0.5 

sinhηr = βr (1- β2
r)

-0.5 

βr = vr /c. vr is the velocity along r. 

3. Calculations 

We will not give Lorentz transformations and wave ab-

errations in Cartesian coordinates. The reference of rota-

tions on the t0x, t0y, t0z planes in Minkowski space where 

g00 =1, g11 = g22 = g33 = -1 and |τα0 |= I (– g00 gαα)
0.5 

= 1 can 

be found in [13]. 

3.1. Lorentz Transformations and the Doppler 

Effect in the Time-Spherical Coordinate 

System: ct, r, θ, φ (Figure 2) 

Let us find the form of the Lorentz transformation (12) and 

the Doppler effect (14.1) in the time-spherical coordinate 
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system: q
0
= ct is time or zero axis; q

1
= r is the radius vector; 

q
2
= θ is zenith or polar angle; q

3
= φ is the azimuthal angle. 0 < 

t ≤ ∞, 0 ≤ r ≤ ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. 

Let α =3, i.e., x
’0

 = ct
’
, x

0
 = ct, x

’3
 = φ

’
, x

3
 = φ, g00 = 1, g33 =– 

r
2
sin

2
θ, | τ30|= r sinθ. 

 
Figure 2. Wave aberration. 

Then, from (12), we obtain the Lorentz transformations for 

the motion in the azimuthal plane with the velocity βφ. 

{
 𝑡    𝑡         𝛽      √1 − 𝛽 

 

      
𝛽𝜑

𝑟     
  𝑡   √1 − 𝛽 

 
     (15) 

Let's find the type of Doppler effect and aberration. Our 

first objective is to determine the wave vector type for azi-

muthal motion βφ (βr = βθ = 0) (Figure 3). βφ is a velocity of 

system K’ relative to K that is tangent to the arc (along φ). 

 
Figure 3. Body movement along axes. 

The wave vector n is perpendicular to the front of a spher-

ical monochromatic wave. The angle between n and x is equal 

to φ. The angle between vector n’ and x is equal to φ +δ. 

The aberration angle δ is the angle between the vectors n 

and nʼ. 

From equation (14) we get 

{
𝜔  𝜔   1 −        𝛽   √1 − 𝛽 

 

𝜔     𝛿  𝜔   1 −
𝛽𝜑

𝑟     
  √1 − 𝛽 

 
      (16) 

The aberration angle δ is the difference between the angle 

of wave incidence from the source and the observed angle, 

which varies due to the rotation of the receiver (e.g., the Earth) 

in orbit. 

(16.1) is the Lorentz transformation, and (16.2) is the ab-

erration of the wave at the azimuthal velocity of the source 

(receiver). The aberration angle δ is defined relative to the 

wave vector n in formula (16.2). 

We find δ relative to the observer (point 0) (Figure 3). Since 

⦟z^n = φ and ⦟z^nʼ = φ + δ, then 

   
 

 
    ,     

  

 
      𝛿 ,    

 

 
,     

  

 
. 

Then equations (14) for α=3 can be written as: 

𝜔  𝜔         −                     

𝜔       𝛿  𝜔            −
 

𝑟     
          

Substituting the first equation into the second one, we get: 

      𝛿  
       

 𝜑

      

   𝑟           𝛽𝜑
            (17) 

On the radial motion of the wave source or receiver (g00 =1, 

g11 = -1), we obtain the relativistic Einstein aberration formula 

[14] from (17). 

If φ = π/2, then from (17) we get 

   𝛿  𝛽                        (18) 

Let's calculate the annual aberration of the stars. We take r 

=ρ/1au and θ = π/2 in formula (18). 

1 au = 149 597 870 700 m is an astronomical unit. 

On aphelion, the Earth's orbital velocity is βφ=29.29/3∙105, 

and it's ρ = 1.016 au from the Sun [15]. On perihelion, the 

Earth's orbital velocity is βφ=30.29/3∙105 and the distance to 

the Sun is ρ = 0.98329 au [15]. 

Calculations using the formula (18) show that the annual 

aberration angle is equal to: 

δa = 19.80753477
’’
-for afelius; δp = 21.17978416

’’
-for 

perihelion; 𝛿̅               – mean value; 

δexp =20.49552
’’
 is the officially accepted annual aberration 

value [16]. 

The measurement error (   𝛿   − 𝛿̅  𝛿    ) in the cal-

culation of δ is less than Δ < 10
-3

%. 

We will not consider the case    , i.e., motion along the 

direction of the vector eθ (x
’0

 = ct
’
, x

’2
 = θ

’
, x

0
 = ct, x

2
 = θ, g00 =1, 

g22 = -r
2
, |τ20| = r), since α = 2 is a special case of α = 3. 

Also the case α = 1 (radial motion of the source and/or re-

ceiver) does not differ from the classical case (Cartesian co-

ordinate system). 

3.2. Hubble's Law 

We now find the dependence of the redshift 

http://www.sciencepg.com/journal/ajaa
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z = (ω-ω
˺
)/ω

˺
 on the distance r between the source and re-

ceiver of the wave. 

Substituting (16.1) into z, we get 

  
     𝛽𝜑

  𝑟      𝛽𝜑
                 (19) 

To be precise, the galaxy's recessional velocity v is by no 

means equal to, but only proportional to c∙z (the product of the 

speed of light c and the redshift z). Therefore, we multiply 

formula (19) by k∙c and obtain the dependence of the galaxy 

scattering velocity v on the distance between them r, i.e., 

Hubble's law [17]: 

      
     𝛽𝜑 𝑟

  𝑟      𝛽𝜑
               (20) 

For ―small distances‖ (up to 4 Mpc), the coefficient k = 

291.2583845 is determined by the least square method from 

the experiment [20], which is given in Table 1 (light yellow 

columns). 

Table 1. Experimental data for Hubble's law. 

Experimental data for Hubble's law 

   
from [20] 

 

from [21] 

 

from [20]+[21] 

r v r v r v 

0 -25 015.0 1380 000 -25 

0.032 170 031.3 2304 000.032 170 

0.034 290 038.7 3294 000.034 290 

0.214 -130 039.5 3149 000.214 -130 

0.263 -70 043.2 3272 000.263 -70 

0.275 -202.5 045.1 3106 000.275 -202.5 

0.45 200 050.9 4398 000.45 200 

0.5 280 053.3 3545 000.5 280 

0.62 300 056.0 4124 000.62 300 

0.63 200 057.3 4869 000.63 200 

0.67 400 058.0 4227 000.67 400 

0.79 290 058.3 4061 000.79 290 

0.8 300 062.2 4749 000.8 300 

0.9 215.1665 066.6 4924 000.9 215.1665 

1. 760. 066.7 4730 001 760 

1.1 537.5 066.8 4847 001.1 537.5 

1.16 800 068.2 4820 001.16 800 

1.2 580 071.8 5424 001.2 580 

1.24 600 074.3 4982 001.24 600 

1.27 730 077.9 5434 001.27 730 

1.4 500 082.4 6673 001.4 500 

1.42 700 085.6 7143 001.42 700 

1.49 810 088.4 7016 001.49 810 

1.52 650 088.6 5935 001.52 650 

1.53 800 089.2 6709 001.53 800 
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Experimental data for Hubble's law 

   
from [20] 

 

from [21] 

 

from [20]+[21] 

r v r v r v 

1.7 960 096.7 7241 001.7 960 

1.73 650 102.1 7765 001.73 650 

1.74 940 114.9 8930 001.74 940 

1.79 800 117.1 9801 001.79 800 

2 810 119.7 8604 002 810 

2.06 900 121.5 7880 002.06 900 

2.23 1140 127.8 8691 002.23 1140 

2.35 1100 132.7 10446 002.35 1100 

2.37 1300 134.7 9065 002.37 1300 

3.45 1800 136.0 9024 003.45 1800 

  
149.9 10715 015.0 1380 

  
151.4 10696 031.3 2304 

  
158.9 12012 038.7 3294 

  
176.8 12871 039.5 3149 

  
183.9 13707 043.2 3272 

  
185.6 14634 045.1 3106 

  
19.80 1088 050.9 4398 

  
198.6 15055 053.3 3545 

  
20.70 1607 056.0 4124 

  
202.3 14764 057.3 4869 

  
202.5 13518 058.0 4227 

  
215.4 15002 058.3 4061 

  
235.9 17371 062.2 4749 

  
236.1 15567 066.6 4924 

  
238.9 16687 066.7 4730 

  
262.2 18212 066.8 4847 

  
274.6 22426 068.2 4820 

  
280.1 18997 071.8 5424 

  
303.4 21190 074.3 4982 

  
309.5 23646 077.9 5434 

  
391.5 26318 082.4 6673 

  
467.0 30253 085.6 7143 

    
088.4 7016 

    
088.6 5935 

    
089.2 6709 

    
096.7 7241 
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Experimental data for Hubble's law 

   
from [20] 

 

from [21] 

 

from [20]+[21] 

r v r v r v 

    
102.1 7765 

    
114.9 8930 

    
117.1 9801 

    
119.7 8604 

    
121.5 7880 

    
127.8 8691 

    
132.7 10446 

    
134.7 9065 

    
136.0 9024 

    
149.9 10715 

    
151.4 10696 

    
158.9 12012 

    
176.8 12871 

    
183.9 13707 

    
185.6 14634 

    
19.80 1088 

    
198.6 15055 

    
20.70 1607 

    
202.3 14764 

    
202.5 13518 

    
215.4 15002 

    
235.9 17371 

    
236.1 15567 

    
238.9 16687 

    
262.2 18212 

    
274.6 22426 

    
280.1 18997 

    
303.4 21190 

    
309.5 23646 

    
391.5 26318 

    

467.0 30253 

 

In (20), all variables (z, βφ = vφ/c, r) are dimensionless, so 

we accept r = d /R0. R0 = 14300 Mpc [18] is the radius of the 

effective particle horizon, up to which we can see particles 

created since the Big Bang; 

d is the distance from the object to the observer, measured 

in Mpc; 

𝛽                    is the linear velocity at the 

periapsis of S4714ʼs proper orbit [19]. This is the highest 
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velocity in our galaxy (Milky Way). 

Then (20) has the form (sinθ ≈ 1): 

v= 0.08k∙cd / (R0 -0.08d)           (21) 

Figure 4 shows the approximation of the data from [20] by 

function (21). ∎-data from [20], red dashed line-function (21). 

We can see that formula (21) agrees well with experiments up 

to distances d ∼4 Mpc. 

 
Figure 4. Hubble’s law. 

If we consider Hubble's law as before, i.e., the dependence 

v∼ f(d) is linear (Figure 5) 

v = H (r, θ, vφ) ∙ d, 

then we get the Hubble parameter H (r, θ, vφ): 

          
     𝛽𝜑    

       𝛽𝜑  
            (22) 

 
Figure 5. Hubble parameter. 

here   ̅         km/c/Mpc. (488.825 < H (r, θ, vφ) 

<488.835) is mean value (dark line in Figure 5). This value 

(488.83 km/c/Mpc), calculated by formula (22), is very close 

to the proportionality coefficient found by Hubble (500 

km/c/Mpc). 

In fact, H (r, θ, vφ) depends on d, θ, and vφ. Therefore, the 

Hubble parameter grows weakly with increasing 

source-receiver distance (Figure 5). 

It would be more correct to take the dependence z∼ f (d) 

instead of v ∼ f (d). Hubble's law was originally derived em-

pirically, also from the assumption that the redshift of the 

spectrum is due to the radial velocity of objects. In addition, 

the assumption was that the dependence would be linear. But 

formula (21) shows that Hubble's law is nonlinear: as the 

distance between objects increases, the ―galaxy expanding 

velocity,‖ or more precisely, the redshift (Hubble parameter, 

too), increases even at low velocities and without radial ve-

locity, i.e., without galaxy expansion (vr = 0). 

At large distances (up to 500 Mpc), the redshift and the 

Hubble parameter increase further (Figure 6), red dotted line). 

The small inside figure is a Hubble diagram. The red square 

at the origin shows the comparative scale and location of the 

Hubble diagram. 

 
Figure 6. Hubble's Law at Long Distances. 

The function (21) tends to infinity, i.e., it will have a sin-

gularity at 0.08 d → R0. 

For distances (up to 500 Mpc), the coefficient k 

=42.21890063 is determined by the least square method from 

the experiment [20, 21], which is given in Table 1 (light blue 

columns). 

The cause of redshift is not only radial motion but also an 

orbital motion of the source and/or receiver. Simply put, the 

radial recede of galaxies is not the main reason for redshift. 

The source and/or receiver's orbital motion is likely the pri-

mary cause of the redshift. 

Now consider the dependence of redshift z on the zenith 

angle θ and the distance between objects d: z∼ f (d, θ). 

From (20) we get 

  
           

              
                (23) 

Figure 7 shows the dependence: z∼ f (d, θ). The 

two-dimensional plot (Figure 7A) shows that z reaches a 

maximum at θ = π/2 for all values of d (d1>d2>d3>d4). As-

tronomers often take the angle θ (zero) not from the North 

Pole [22], but from the ecliptic plane, i.e., from the plane of 
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the Earth's orbit around the Sun. Then we should use cosθ 

instead of sinθ in formula (23). We'll continue that tradition. 

 
Figure 7. Dependence z∼ f(d, θ) and its section by d. 

Figure 7B shows the projection of f (d, θ) onto the z, θ plane. 

The graph shows that the closer the angle θ is to the ecliptic 

(θ→ 0) and the larger the distance d, the larger the redshift z. 

We can only observe longitude 0 ≤ φ ≤ 2π and latitude –π/2 

≤ θ ≤ 2π in the sky. We don't see the depth of the sky, i.e., the 

distance d to the celestial object. We determine it by indirect 

evidence (brightness, etc.). We calculate the redshift z by 

formula (23). However, formula (23) depends not on angle φ 

but on angle θ (Figure 7B). 

If the dependence z∼ f (d, θ) (24) is plotted on a map of the 

Universe (latitude and longitude), we get the picture as in 

Figure 8A. 

Figure 8B shows a map of the anisotropy of the relic radi-

ation [23] in the K, Ka, Q, V, and W bands. A plot of z versus 

zenith angle θ (- 900 ≤ θ ≤900 vertically) on the lati-

tude-longitude map is shown on the left (Figure 8A). 

We see that the z maxima are centered on a narrow band for 

all d (red shaded band in Figure 8A). In the experiment, the 

"hot" (red) regions are also located in the center of the ecliptic 

(Figure 8B). 

 
Figure 8. Universe map in latitudes and longitudes. 

We see that the z maxima are centered on a narrow band for 

all d (red shaded band in Figure 8A). In the experiment, the 

"hot" (red) regions are also located in the center of the ecliptic 

(Figure 8B) (Figure 8В). Simply put, the observer (telescope) 

fixes large ("hot") z 's closer to the ecliptic and small ("cold") 

z 's farther from the ecliptic. This is similar to how an astro-

naut from space cannot tell the height of mountain ranges on 

Earth but only sees stripes where the ridges are. 

Note again that the width and length of the red shaded band 

(Figure 8A) depend on z: narrow and short bands correspond 

to large z, and wide and long bands correspond to small z. 

This is visually consistent with the data on the right: K <Ka 

<Q <V <W. 

The irregularity of the bands in Figure 8B (randomness, 

scattering) is most likely due to the random distribution of the 

object velocity and the proximity of the clusters. The "disor-

derly" arrangement of bright points in cold regions (further 

from the ecliptic) is probably due to a random distribution of 

distances d between the source and the receiver (observer). 

3.3. Polarization of the Waves 

The wave vector changes direction relative to the observer 

due to the satellite's orbital rotation. The direction of the wave 

vector changes by an angle δ (aberration angle) due to the 

rotation of the stars in their orbits and/or the rotation of the 

Earth around the Sun. The rotation of the source and/or re-

ceiver along the orbit is the cause of the change in the direc-

tion of the wave vector, causing the change from n to n
’
. This 

change in the direction of the wave is the cause of the trans-

verse Doppler effect, the aberration, and the polarization of 

the "refracted" wave. 

By analogy with geometrical optics in formula (17), we 

denote: 

π/2-φ = α is the angle of incidence of the wave; π/2-(φ+δ) = 

γ is the angle of refraction of the wave; 

Considering 

cos (φ + δ) = cos (π/2 - γ) = sinγ and 

cosφ = cos (π/2 - α) = sinα 

and simplifying from equation (17), we get 

    

    
 

  𝑟           𝛽𝜑

  𝛽𝜑 𝑟          
  

Let θ = π/2. Then 

    

    
 

  𝑟      𝛽𝜑

  
 𝜑

      

               (24) 

By analogy with Snell's law [24], let us introduce the "re-

fractive index" of the vacuum: 

  
  𝑟      𝛽𝜑

  
 𝜑

      

                (25) 

If g33 = r∙ sinα = -1 (rectangular coordinates), then (25) 

gives n=1– the classical "refractive index" of vacuum. In 

curvilinear coordinates, the refractive index of vacuum   

differs from unity. For example, for an observer on Earth at 

aphelion n=0.9999967655 < 1, at perihelion n = 1.000003403 > 

1. 

Let the "incident" monochromatic wave n be directed along 

the unit vector k and the velocity of the wave source be along 
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the unit vector j. The direction of the "refracted" wave n
’
 will 

be k
’
, and the direction of the velocity n

’
 will be j

’
 (Figure 9). 

 
Figure 9. Wave polarization. 

Figure 9A shows the incident wave K and the wave K
’ 
(with 

velocity βφ on orbit) in a spherical coordinate system. Figure 9B 

shows the waves Κ and Κ
’
 on the incision plane through a vertical 

plane (the azimuthal angle is φ). Note that j and j
’
 coincide. 

We directed n along k freely, at our discretion, and the ve-

locity 𝛽  along j. But the choice of kʼ, jʼ, and iʼ is not free, 

but rigidly connected with k, j, and i. 

Let's consider the electrical components of the "incident" 

wave: 

        𝑟             − 𝜔𝑡           − 𝜔𝑡  

  is the wave vector. 

Of course, all of the above also applies to the magnetic 

field. 

Let’s introduce vectors: 

          − 𝜔𝑡    ;  

              − 𝜔𝑡     ; 

     
       − 𝜔𝑡     ;  

         
       − 𝜔𝑡      . 

Then E = i ∙a +j ∙b, E
’
 = i

'
∙a

’
 +j

’
∙b

’
 

Figure 9B clearly shows that the angle between a and aʼ is 

equal to 𝛿, as is the angle between i^iʼ and between k^kʼ. The 

angle between b and bʼ is zero, as is the angle between j^jʼ. 

The projections of aʼ onto a and bʼ onto b are: 

a
'ʹ 
= a∙ cosδ and b

’ʹ
=b 

The polarization vector is along k. Since we have described 

n in the right-handed coordinate system (right-handed vector 

triad), nʼ will also be right-handed polarized. 

Let's find the polarization vector P (a=b): 

  
  

    
 

  
    

  
          

          
  

Incident wave (n) is natural, not polarized. For natural light, 

where waves of different polarizations are equally mixed and 

all directions are equal. Assuming that the polarized wave nˈ 

(after "refraction") is half the natural wave, we get: 

  
 

 
 

       

       
                 (26) 

From formula (26), we can find the degree of polarization 

for annual aberration. Substituting (18) into (26) and simpli-

fying, we get: 

  
 

 
 

     

       
 

   

          
 or 

  
   

  𝛽𝜑
   𝑟         

              (27) 

At aphelion (βφ=29.29/300000, r=1.0167 au, θ = 0)-Pα = 

2.31∙10
-9

. At perihelion (βφ=30.29/300000, r=0.98329 au, θ = 

0)-Pp = 2.64∙10
-9

. 

We took the zenith angle from the ecliptic, following the 

astronomers: sinθ → cosθ. Of course, the effects are very 

weak: Pα and Pp. 

In general, the degree of polarization (27) depends on the 

distance between the source and receiver and the zenith angle 

(elevation angle). 

The starlight polarization dependence denoted as 

   
     

  𝛽𝜑
                  

 ,           (28) 

is illustrated in Figure 10. 

 
Figure 10. Starlight polarization dependence P = f (d, θ). 

βφ = 10
-4

 is Earth's average orbital velocity; R0 =14300∙106 

pc [18]; d is distance from observer (on Earth) to wave source. 

k=0.03. 

The degree of polarization, P, of the starlight at the moment of 

emission (at the beginning) is unknown. According to observa-

tions reported in [25], the degree of polarization is approximately 

1.5% for stars at a distance of 1000 parsecs. Therefore, the coef-

ficient of proportionality is taken to be k = 0.03. 

It is important to note that the graphs depicted in Figure 10 

of the study on starlight polarization should not be regarded as 

a quantitative analysis in the strict sense of the term. Rather, 

they serve as a visual representation of the trends in the laws 

of starlight polarization. 

The dependences of P∼ f(θ) at d1 > d2 > d3 > d4 are shown 

in Figure 10B. 
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Figure 10B is an incision of the 3-dimensional Figure 10A 

by the plane θ: P∼ f (d, θ). It is obvious that for large d and θ ∼ 

0, the degree of polarization P is maximum. 

Figure 11 shows plots of experimental data on measure-

ments of the degree of polarization of stars [25]. 

 
Figure 11. Experimental data of the polarized starlight. 

Graph 10A does not conflict with Graph 11B, which is the 

experiment. Graph 11A doesn’t contradict Graph 10B if the 

latter is placed on the θ, φ plane. 

It is obvious that here, as in the case of the redshift (Figure 

8), we also see a stripe close to the ecliptic (θ∼0) (Figure 10). 

 
Figure 12. CMB polarization. 

Figure 12 shows starlight polarization vectors in galactic 

coordinates for 5513 stars. {52} for a local cloud (upper) 

and for an average polarization vector over many clouds 

(lower). 

Our calculations for measuring the degree of polariza-

tion do not include statistical hypothesis testing (due to the 

small sample). Nevertheless, both graphs (Figures 11 and 

12) visually demonstrate the correctness of our assumption 

about the dependence of the degree of polarization on 

distance and polar angle: the greater the distance between 

the source and receiver of the wave and the closer the el-

evation angle to the ecliptic (   ), the greater the degree of 

polarization. In other words, large redshifts z and maxi-

mum degrees of polarization P are concentrated near the 

ecliptic plane. 

Abbreviations 

CMB Cosmic Microwave Background 

pc Parsec 

Mpc Mega Parsec 
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