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Abstract 

First-Person View (FPV) drone swarms are revolutionizing asymmetric warfare by merging low-cost hardware with 

decentralized machine learning, enabling resource-constrained actors to challenge conventional militaries. This paper analyzes 

their tactical efficacy and ethical risks through the lens of the Russia-Ukraine conflict, where over 50,000 FPV drones are 

deployed monthly, reducing artillery costs by 80%. We formalize swarm coordination as a decentralized partially observable 

Markov decision process (Dec-POMDP), introducing a reinforcement learning framework with dynamic role allocation and 

counterfactual regret minimization (CFR) to optimize resilience under adversarial conditions. Simulations in Gazebo reported a 

93% mission success rate for swarms using Q-learning with dynamic roles—37% higher than centralized systems—even under 

GPS spoofing and communication jamming. Field data from Ukraine’s "Army of Drones" initiative reveals how $500 drones 

neutralize $5M armored vehicles via AI-optimized top-attack profiles and open-source command-and-control (C2) software. 

Ethically, we identify systemic risks in autonomous targeting through analysis of 342 strike recordings. Collateral damage near 

civilian infrastructure (18% of cases) stems from map data latency (45-minute delays) and path optimization biases prioritizing 

efficiency over International Humanitarian Law (IHL) compliance. Accountability gaps emerge when swarms override operator 

commands due to sensor spoofing or signal loss, challenging the legal notion of "meaningful human control." To mitigate these 

risks, we propose dynamic geofencing—a real-time restricted zone system using satellite/SIGINT feeds—and explainable AI 

(XAI) mandates enforced via SHAP-based audits. Simulations show geofencing reduces no-strike zone violations by 62%, while 

XAI logs identified 22 high-risk autonomy overrides in field trials. Our findings underscore the dual-use dilemma of machine 

learning: FPV swarms democratize military power but necessitate adaptive governance frameworks to balance innovation with 

humanitarian imperatives. We advocate for modular regulation, quantum-resistant encryption, and global certification bodies to 

address evolving threats like quantum-enabled jamming. This work bridges algorithmic rigor and policy pragmatism, offering a 

roadmap for IHL-compliant autonomous systems in high-stakes environments. 

Keywords 

Autonomous Weapons, Swarm Robotics, Reinforcement Learning, International Humanitarian Law, Explainable AI 

 

1. Introduction 

Asymmetric warfare has undergone a paradigm shift with 

the democratization of advanced technologies, enabling 

non-state actors and resource-constrained militaries to chal-

lenge conventionally superior forces. Among these technolo-
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gies, First-Person View (FPV) drone swarms have emerged as 

a disruptive innovation, combining low-cost hardware (200–

200–200–500 per unit), machine learning (ML)-driven au-

tonomy, and real-time human oversight. Unlike traditional 

unmanned aerial vehicles (UAVs), which rely on centralized 

command systems and expensive infrastructure, FPV swarms 

leverage decentralized coordination algorithms and commer-

cial off-the-shelf (COTS) components, making them accessi-

ble to non-institutional actors [1]. 

The ongoing Russia-Ukraine conflict exemplifies this shift: 

over 50,000 FPV drones are deployed monthly by Ukrainian 

forces, achieving an 80% reduction in artillery expenditure 

through precision strikes on high-value targets (e.g., armored 

vehicles and supply lines). This tactical success underscores a 

broader trend—the "democratization of airpower"—where 

swarms of expendable drones neutralize multi-million-dollar 

systems, eroding the cost-imposition strategies of conven-

tional militaries [2]. 

 
Figure 1. Simulation environment and first-person views (FPV). 

1.1. Research Context and Gaps 

While prior work has explored swarm robotics in controlled 

environments (e.g., [1]’s bio-inspired algorithms), real-world 

applications in contested battlefields remain under examined 

[3]. Key gaps include: 

1.  Decentralized Coordination Under Constraints: Exist-

ing frameworks (e.g., DARPA’s Prefix) assume stable 

communication, neglecting adversarial jamming and 

latency in dynamic environments [4]. 

2.  Ethical-AI Disconnect: Legal scholarship on autono-

mous weapons [2] focuses on state actors, failing to 

address accountability in human-AI hybrid systems like 

FPV swarms. 

1.2. Objectives and Contributions 

This paper bridges computer science and military ethics to 

address two interconnected questions: 

1.  Tactical: How can reinforcement learning (RL) opti-

mize swarm coordination under adversarial communi-

cation constraints (e.g., GPS spoofing, bandwidth lim-

itations)? 

2.  Ethical: What technical and regulatory safeguards en-

sure compliance with International Humanitarian Law 

(IHL) when human operators share control with au-

tonomous swarms [5]? 

Our contributions include: 

1) A decentralized POMDP framework for swarm coor-

dination, validated via Gazebo simulations under jam-

ming scenarios. 

2) Empirical analysis of 342 FPV strike recordings from 

Ukraine, revealing systemic risks in autonomous tar-

geting [6]. 

3) Policy proposals for dynamic geofencing and explaina-

ble AI (XAI) mandates to align ML innovation with IHL 

[7]. 

1.3. Paper Structure 

Section 2 formalizes swarm coordination as a multi-agent 

RL problem and presents case studies from the Ukraine con-

flict. Section 3 analyzes ethical dilemmas, including ac-

countability gaps and collateral risks. Section 4 concludes 

with recommendations for AI governance and future research 

directions [8]. 

2. Tactical Innovations 

FPV drone swarms represent a fusion of decentralized 

machine learning and battlefield pragmatism. This section 

formalizes their coordination mechanisms and validates their 

efficacy through real-world case studies [9]. 

 
Figure 2. Sample images of FPV drone views. 
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2.1. Swarm Coordination as a Decentralized 

POMDP 

We model FPV swarm decision-making as a Decentralized 

Partially Observable Markov Decision Process (Dec-POMDP) 

[10]. Each drone operates under: 

1) State space SSS: Position, battery level, sensor data. 

2) Action space AAA: Movement vectors, target prioriti-

zation, communication relay. 

3) Observations Oi: Local sensory input (e.g., GPS, visual 

feeds) with 30% noise injection to simulate adversarial 

jamming. 

The reward function R (s, a) is defined as: 

R (s, a)=α⋅Target Accuracy+β⋅Energy Efficien-

cy−γ⋅Collision Risk 

where α, β, γ are weights calibrated via Q-learning. 

Simulation & Results 

Using ROS/Gazebo with 50 drones in a cluttered urban 

environment, we compared three coordination strategies: 

Table 1. Comparison of three strategies. 

Strategy Success Rate Avg. Collisions 

Centralized Control 58% 12.4 

Q-Learning (Static Roles) 76% 6.8 

Q-Learning (Dynamic 

Roles) 
93% 2.1 

Dynamic role allocation reduced mission failure by 37% by 

assigning leader/follower roles based on real-time battery 

levels (<20%threshold) and proximity to targets [11]. 

 
Figure 3. CFR convergence curve. 

Adversarial Robustness 

To counter GPS spoofing, swarms trained via counterfac-

tual regret minimization (CFR) achieved 92% success rates in 

spoofed environments [12]. CFR enabled drones to: 

1.  Detect spoofing via consensus checks among neigh-

bors. 

2.  Switch to vision-based SLAM for localization. 

2.2. Case Study: Ukraine’s "Army of Drones" 

Initiative 

Ukraine’s decentralized "Drone Army" highlights three 

innovations [14]: 

Cost Asymmetry 

1) FPV vs. Tanks: 500-dollar drones neutralized 

5-million-dollar T-90 tanks using top-attack profiles 

(exploiting armor weak points). 

2) Payload Optimization: 3D-printed shrapnel casings in-

creased lethality by 40% while reducing weight [15]. 

Open-Source C2 Software 

Ukraine’s Delta System integrates: 

1) Swarm telemetry with NATO’s Link 16 via API bridges. 

2) A crowdsourced target database updated by frontline 

units. 
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Counter-Swarm Tactics 

Russian EW units achieved <30% interception rates against 

AI-optimized: 

1) Frequency Hopping: 100+ channels cycled per second 

using lightweight SDRs. 

2) Mesh Networking: Redundant peer-to-peer links main-

tained connectivity despite 60% node loss. 

 
Figure 4. Performance comparison in different Dec-POMDP modes. 

2.3. Hardware Innovations 

Modular Design 

1) Interchangeable Payloads: Night vision (FLIR Boson) 

and signal jammers (1–5 GHz range). 

2) Hybrid Propulsion: Electric motors + nitro boosters for 

150 mph bursts. 

Energy Efficiency 

Solar-Recharging Swarms: While loitering, drones re-

charged approximately 15% of battery capacity per hour using 

flexible perovskite solar cells [13]. 

2.4. Comparative Analysis 

Our framework outperformed traditional methods in 

scalability and resilience: 

Table 2. Comparative Analysis. 

Metric 
Centralized 

UAVs 

Bio-Inspired 

Swarms 

Our Ap-

proach 

Latency Tolerance 200 ms 500 ms 50 ms 

Scalability 

(Drones) 
≤10 ≤30 ≤100 

Jamming Re-

sistance 
Low Medium High 
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Figure 5. Investigating the effect of XAI parameters on the readability of outputs. 

2.5. Limitations and Future Work 

1) Quantum Vulnerabilities: Current encryption (AES-256) 

may fail against quantum-enabled EW. 

2) Human-AI Trust: Operators overrode autonomous de-

cisions in 22% of cases due to mistrust. 

3. Ethical Challenges 

The tactical advantages of FPV drone swarms are inextri-

cably linked to profound ethical risks. This section analyzes 

dilemmas arising from human-AI hybrid control and proposes 

regulatory frameworks to mitigate harm [16]. 

3.1. Autonomy-targeting Dilemma 

FPV swarms operate in a legal gray zone, challenging 

foundational principles of International Humanitarian Law 

(IHL), particularly distinction (civilian vs. military targets) 

and proportionality [17]. 

Case Analysis: Ukraine’s Strike Database 

Our review of 342 FPV strikes (2022–2023) revealed sys-

temic risks: 

1) Collateral Damage: 18% of strikes near civilian infra-

structure (e.g., schools, hospitals) resulted from: 

2) Map Data Latency: 45-minute delays in no-strike zone 

updates. 

3) Path Optimization Bias: Swarms prioritized shortest 

routes, disregarding IHL safeguards in 27% of missions. 

4) Accountability Gaps: In 14 cases, swarms overrode op-

erator commands due to: 

5) Sensor Spoofing: In some instances, In some instances, 

AI misinterpreted infrared decoys as high-value targets. 

6) Communication Failures: Autonomy protocols activated 

during signal loss, leading to unintended engagements. 

Legal Precedent vs. Technical Reality 

The Tallinn Manual 2.0 assumes human "meaningful con-

trol," but FPV swarms exhibit: 

1) Adaptive Autonomy: ML models evolve 

post-deployment, altering decision logic unpredictably. 

2) Opaque Attribution: Swarm decisions stem from col-

lective AI/human inputs, complicating liability under 

Article 8(2)(b)(iv) of the Rome Statute. 

3.2. Regulatory Proposals 

To align FPV swarm deployment with IHL, we advocate 

for: 

3.2.1. Dynamic Geofencing 

A real-time geofencing system leveraging: 

1.  Multi-Source Data Fusion: Satellite (SAR), SIGINT, 

and ground-truth reports update restricted zones every 

30 seconds. 

2.  Hierarchical ML Architecture: 
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1) Global Model: Predicts conflict zones via UN-

OSAT/ACLED data. 

2) Edge Model: Onboard drones, enforces zone compli-

ance using federated learning [18]. 

Simulation Results: 

1) Geofencing reduced violations near schools by 62% in 

Kyiv test scenarios. 

2) Latency-induced errors dropped from 18% to 5%. 

3.2.2. Explainable AI (XAI) Mandates 

To audit swarm decisions, we propose: 

1) SHAP-Based Post-Hoc Analysis: Quantifies feature 

importance (e.g., target classification weights). 

2) Human-Readable Logs: JSON-based decision trails 

timestamping AI/human inputs [19]. 

Ukraine Field Trial: 

XAI logs identified 22 "high-risk" autonomy overrides, 

prompting software patches. 

3.3. Comparative Regulatory Landscapes 

Current frameworks inadequately address hybrid hu-

man-AI systems: 

Table 3. Comparative Regulatory Landscapes. 

Regulatory Initiative 
FPV Swarm 

Coverage 
Key Gaps 

UN CCW (2023) Limited 
No binding rules 

on autonomy. 

EU Drone Regulation 

(2023) 
Partial 

Ignores military 

applications. 

Our Framework Comprehensive 
Integrates IHL + 

ML governance. 

3.4. Ethical-technical Tradeoffs 

1) Privacy vs. Efficacy: Real-time geofencing requires 

sharing civilian location data—a potential IHL violation 

(Art. 13, Geneva Convention IV). 

2) Explainability vs. Security: Detailed XAI logs could 

expose swarm vulnerabilities to adversaries. 

3.5. Recommendations for Policymakers 

1) Adopt Modular Regulation: Separate governance for (a) 

hardware (b) AI algorithms. 

2) Establish ML Certification Bodies: Audit swarm models 

pre-deployment (inspired by FDA drug trials). 

3) Global Incident Database: Track and analyze 

swarm-related IHL violations [20]. 

4. Conclusion 

FPV drone swarms epitomize the dual-use paradox of 

machine learning: they democratize military capabilities for 

under-resourced actors while posing unprecedented ethical 

and security risks. This paper bridges technical and humani-

tarian perspectives to advance both algorithmic frameworks 

and governance paradigms. 

4.1. Key Contributions 

1.  Tactical Innovation: Our decentralized POMDP 

framework achieved a 93% mission success rate in ad-

versarial simulations, demonstrating that dynamic role 

allocation and counterfactual regret minimization (CFR) 

significantly enhance swarm resilience under jamming 

and spoofing. Field data from Ukraine validated these 

findings, showcasing cost-asymmetric impacts (e.g., 

$500 drones neutralizing $5M armored vehicles). 

2.  Ethical Governance: By analyzing 342 real-world 

strikes, we identified systemic risks in autonomous tar-

geting, including map data latency (45-minute delays) 

and accountability gaps. Our proposals—dynamic 

geofencing and XAI mandates—reduced no-strike zone 

violations by 62% in simulations, offering a blueprint 

for IHL-compliant AI. 

4.2. Broader Implications 

1.  Military Strategy: The proliferation of FPV swarms 

undermines traditional cost-imposition doctrines, ne-

cessitating new electronic warfare (EW) and coun-

ter-swarm tactics. 

2.  AI Governance: Hybrid human-AI systems demand 

modular regulation, separating hardware standards (e.g., 

jamming resistance) from algorithmic transparency 

(e.g., SHAP-based audits). 

3.  International Law: Current frameworks like the UN 

CCW must evolve to address adaptive autonomy and 

collective human-AI liability. 

4.3. Future Directions 

1.  Quantum-Resistant Swarms: Develop post-quantum 

encryption (e.g., lattice-based cryptography) to counter 

emerging quantum-enabled EW systems. 

2.  Human-AI Trust Calibration: Investigate federated 

learning architectures to reduce operator override rates 

(currently 22%) while preserving safety. 

3.  Global Governance: Establish a multilateral body to 

certify swarm algorithms, akin to the IAEA’s role in 

nuclear technology. 

4.4. Final Recommendations 

1.  For Militaries: Invest in open-source C2 systems (e.g., 
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Ukraine’s Delta) to maintain interoperability and rapid 

innovation. 

2.  For Policymakers: Mandate real-time IHL compliance logs 

and third-party XAI audits for all autonomous systems. 

3.  For Researchers: Prioritize interdisciplinary collabora-

tion to align ML advancements with societal values, 

avoiding purely techno centric solutions. 

Abbreviations 
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Dec-POMDP Decentralized Partially Observable 

Markov Decision Process 

CFR Counterfactual Regret Minimization 
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