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Abstract 

A mathematical model has been developed to assess the multilayer heterogeneous biocatalytic system. A nonlinear system of the 

mathematical model's analytical expressions for the non-steady state conditions obtained by the new homotopy perturbation 

method (NHPM) has been computed. In the mathematical model, there are three scenarios: When the substrate degradation 

diffuses out of the biosensor, when the product diffuses for the biosensor and when both the substrate and product degradation 

diffuse for the biosensor. Profiles of how the substrate and product degradation rates do not affect the biosensor response have 

been created in three situations. The third situation is solved by the Akbari-Ganji method (AGM), which describes not effect of 

degradation rates' impact on the biosensor response. Furthermore, the numerical simulations of the problem are presented using 

MATLAB. These numerical results are compared with analytical results, and a good agreement is obtained. A graphical 

procedure is carried out for the degradation rates of species, kinetic parameters and current for steady and non-steady state 

conditions. 
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1. Introduction 

Biosensors have a wide range of uses in both industry and 

medicine. Biosensor response of Amperometric, Potentiom-

etric and its applications [1, 2], the numerical algorithm pre-

sented [3-6]. In multiple technical and scientific fields, linear 

and non-linear phenomena are fundamentally significant. The 

majority of models of real-world issues remain highly chal-

lenging to resolve. It is inappropriate to consider the mathe-

matical modelling of a multilayer heterogeneous analytical 

system due to the accumulation of independent models de-

fined in corresponding layers. The complete multilayer bio-

sensor must be treated as a single, integrated system in 

mathematical analysis. The proposed mathematical modelling 
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of the biosensor action can define a range of biosensor pa-

rameters and their weights in response formation. 

Many electrochemical biosensors have at least two layers: 

an outer protection membrane and an enzyme layer. Several 

mechanisms (enzymatic reaction, diffusion, degradation) can 

occur in some or all layers to produce the biosensor response; 

nevertheless, these processes interact in specific nontrivial 

ways. Hence, rather than attempting to total the results of 

various models described in the appropriate levels, mathe-

matical and numerical modelling of a multilayer biosensor 

must treat all layers as one integrated system [3-6]. 

In actual situations, a variety of internal and external ele-

ments have an impact on the biosensor's reaction. A substrate 

(a) can be consumed (or degraded) by unrelated enzymes, 

microbes, spontaneous decomposition, or other side reactions 

after it has been transformed into a product (b) in the enzy-

matic layer. Similar causes can cause the degradation of 

product P as well [7]. 

Tadas Meskauskas proposed a numerical electrochemical 

biosensor model without including substrate and product deg-

radation components Different layers contain enzymatic reac-

tion, diffusion, and degradation of substrate and product in such 

layers [8]. These layers produce the biosensor response. The 

biosensor response and numerical algorithm have been reported 

[8]. Enzymatic reactions can degrade a substrate after trans-

forming it into a product in the enzyme layer. Similar causes 

can cause the degradation of the product as well. Latterly, T 

Meskauskas explained numerical simulations for degradation 

concentrations [9]. This work deals with a mathematical model 

that accounts for substrate and product degradation (with dif-

ferent degradation rates) [9]. The approximate analytical solu-

tion was derived using the new homotopy perturbation method 

(NHPM). This technique is the most powerful and advanta-

geous for linear and non-linear conditions. A small parameter is 

assumed when using the perturbation approach. 

The primary purpose of this article is to study the analytical 

expressions corresponding to the non-steady-state concentra-

tion of Substrate, Product, Current, and steady-state Current 

potential curves derived using the new homotopy perturbation 

method (NHPM). There are three limiting cases in the 

mathematical model: when the substrate diffuses for the bio-

sensor when the product degradation diffuses out of the bio-

sensor, and when both the substrate and product degradation 

diffuse for the biosensor is obtained. Three scenarios have led 

to the creation of profiles showing how the substrate and 

product degradation rates have no effect on the biosensor 

response. The Akbari-Ganji method (AGM) resolves the third 

scenario by degradation rates that do not affect the biosensor's 

response. 

2. Mathematical Formulation of the 

Problem 

The rate of the substrate (a) and the product (b) with deg-

radation is expressed by [8, 9]. 

𝑎 
𝐸𝑛𝑧𝑦𝑚𝑒
→      𝑏                    (1) 

𝑏 
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒
→       c +/- 𝑛𝑒  𝑒

−(𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠)         (2) 

The scheme of representation of electrochemical biosensor 

is presented in Figure 1. The system of nonlinear reac-

tion-diffusion equations is given as follows (t > 0) 

 
Figure 1. The electrochemical biosensor schemes. 

For enzyme layer 

𝜕𝑎𝑒(𝑥,𝑡)

𝜕𝑡
 =  𝐷𝑎𝑒

𝜕2𝑎𝑒(𝑥,𝑡)

𝜕𝑥2
− 𝐸1𝑎𝑒 −

𝑉𝑚𝑎𝑥𝑎𝑒

𝐾𝑀+𝑎𝑒
       (3) 

𝜕𝑏𝑒(𝑥,𝑡)

𝜕𝑡
 =  𝐷𝑏𝑒

𝜕2𝑏𝑒(𝑥,𝑡)

𝜕𝑥2
− 𝐸2𝑏𝑒 −

𝑉𝑚𝑎𝑥𝑎𝑒

𝐾𝑀+𝑎𝑒
 𝑥 ∈ (0, 𝑑𝑒)  (4) 

For diffusion layer 

𝜕𝑎𝑑(𝑥,𝑡)

𝜕𝑡
 =  𝐷𝑎𝑑

𝜕2𝑎𝑑(𝑥,𝑡)

𝜕𝑥2
− 𝐸1𝑎𝑑           (5) 

𝜕𝑏𝑑(𝑥,𝑡)

𝜕𝑡
 =  𝐷𝑏𝑑

𝜕2𝑏𝑑(𝑥,𝑡)

𝜕𝑥2
− 𝐸2𝑏𝑑  𝑥 ∈ (𝑑𝑒 , 𝑑𝑒 + 𝑑𝑑)   (6) 

Where 𝑎𝑒 , 𝑎𝑑  and 𝑏𝑒 , 𝑏𝑑 are the substrate and product of 

enzyme and diffusion layer. 𝐷𝑎𝑒 , 𝐷𝑎𝑑  and 𝐷𝑏𝑒 , 𝐷𝑏𝑑  are dif-

fusion coefficient of this layers, 𝑉𝑚𝑎𝑥 the rate of the reaction, 

𝐾𝑀  the Michalis Menten kinetics, 𝐸1  and 𝐸2  are reaction 

rate of degradation, 𝑑𝑒 , 𝑑𝑑 are the relative thickness. 

The initial and boundary conditions are 

For enzyme 

𝑡 = 0, 0 < 𝑥 < 𝑑𝑒, 𝑎𝑒 = 0, 𝑏𝑒 = 0.            (7) 

𝑡 > 0, 𝑥 = 0 
𝜕𝑎𝑒(𝑥,𝑡)

𝜕𝑥
= 0, 𝑏𝑒 = 0.           (8) 

𝑡 > 0, 𝑥 = 𝑑𝑒, 𝑎𝑒 = 𝑎𝑒0, 𝑏𝑒 = 0.           (9) 
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For diffusion 

𝑡 = 0, 𝑑𝑒  < 𝑥 < 𝑑𝑒 + 𝑑𝑑  𝑎𝑑 = 0, 𝑏𝑑 = 0.      (10) 

𝑡 > 0, 𝑥 = 𝑑𝑒  𝑎𝑑 = 𝑎𝑑0, 𝑏𝑑 = 𝑏𝑑0.        (11) 

𝑡 > 0, 𝑥 = 𝑑𝑒 + 𝑑𝑑  𝑎𝑑 = 𝑎𝑑1, 
𝜕𝑏𝑑(𝑥,𝑡)

𝜕𝑥
= 0.      (12) 

The current density I of the product b on the electrode is 

I= lim
𝑛→∞

𝑖(𝑡) 

i(t) = 𝑛𝑒 F 𝐷𝑏𝑒(
𝜕𝑏𝑒(𝑥,𝑡)

𝜕𝑥
) at x = 0.       (13) 

Here i(t) denotes the time dependent current density. 

The non-dimensional form using the following dimen-

sionless parameters: 

𝑈 =  
𝑎

𝐾𝑀
, 𝑉 =  

𝑏

𝐾𝑀
, 𝜒 =

𝑥

𝑑𝑒
, 𝜏 =

𝑡𝐷

𝑑𝑒
2, 𝛿 =

𝑑𝑑

𝑑𝑒
, 𝑢0 =

 
𝑎0

𝐾𝑀
, 𝑣0 = 

𝑏0

𝐾𝑀
, 𝑟 =  

𝐷𝑏

𝐷𝑎
, 𝛼 =  

𝐸1  𝑑
2

𝐷
, 𝛽 =

𝐸2  𝑑
2

𝐷
, 𝜑2 =

𝑉𝑚𝑎𝑥𝑑
2

𝐷𝐾𝑀
 (14) 

Where U (𝜒, 𝜏), V (𝜒, 𝜏) are the dimensionless accumu-

lation of the substrate, product respectively. 𝜒 is the dimen-

sionless distance, 𝜏 stands for the dimensionless time, δ is the 

relative thickness. Let r be a ratio between finite diffusion 

coefficient, 𝛼 and 𝛽 are the ratio between degradation of 

relative thickness and diffusion coefficient, 𝜑2 is the Thiele 

modulus. 

Using equation (14), we get equations (3) to (6) in dimen-

sionless form as follows 

𝜕𝑈𝑒(𝜒,𝜏) 

𝜕𝜏
 =  

𝜕2𝑈𝑒(𝜒,𝜏)

𝜕𝜒2
 –  𝛼𝑈𝑒(𝜒, 𝜏) − 

𝜑2𝑈𝑒(𝜒,𝜏)

1+𝑈𝑒(𝜒,𝜏)
     (15) 

𝜕𝑉𝑒(𝜒,𝜏) 

𝜕𝜏
 =  

𝜕2𝑉𝑒(𝜒,𝜏)

𝜕𝜒2
 –  𝛽 𝑉𝑒(𝜒, 𝜏) +  

𝜑2𝑈𝑒(𝜒,𝜏)

1+𝑈𝑒(𝜒,𝜏)
 0 <

𝜒 < 1 (16) 

The initial and boundary conditions are: 

𝜏 = 0, 0 < 𝜒 < 1 𝑈𝑒 = 0, 𝑉𝑒 = 0.  

𝜒 = 0 
𝜕𝑈𝑒(𝜒,𝜏) 

𝜕𝜒
= 0, 𝑉𝑒 = 0. 

𝜒 = 1 𝑈𝑒 = 𝑢𝑒0, 𝑉𝑒 = 0. 0 < 𝜒 < 1       (17) 

𝜕𝑈𝑑(𝜒,𝜏) 

𝜕𝜏
 =  

𝜕2𝑈𝑑(𝜒,𝜏)

𝜕𝜒2
 –  𝛼𝑈𝑑  (𝜒, 𝜏)       (18) 

𝜕𝑉𝑑(𝜒,𝜏) 

𝜕𝜏
 =  

𝜕2𝑉𝑑(𝜒,𝜏)

𝜕𝜒2
 –  𝛽 𝑉𝑑 (𝜒, 𝜏) 1 < 𝜒 < 1 + 𝛿  

 (19) 

The initial and boundary conditions are: 

𝜏 = 0, 1 < 𝜒 < 1 + 𝛿 𝑈𝑑 = 0, 𝑉𝑑 = 0.  

𝜒 = 1 𝑈𝑑 = 𝑢𝑑0, 𝑉𝑑 = 𝑣𝑑0. 

𝜒 = 1 + 𝛿 𝑈𝑑 = 𝑢𝑑1, 
𝜕𝑉𝑑(𝜒,𝜏)

𝜕𝜒
= 0.       (20) 

The dimensionless current is 

𝜓(𝑡) = 
𝐼

𝑛𝑒 F 𝐷𝑉𝑒
 = 

𝜕𝑉𝑒(𝜒,𝜏)

𝜕𝜒
 at 𝜒 = 0.         (21) 

3. Analytical Expression for the 

Concentration with Degradation Using 

New Homotopy Perturbation Method 

Asymptotic methods such as the variational iteration 

method, Adomian decomposition method, Homotopy analysis 

method, Homotopy perturbation method, and the new ap-

proach to Homotopy perturbation to get approximation ana-

lytic solutions to non-linear differential equations, the newly 

developed Homotopy perturbation method is applied for 

non-linear differential equations [10-15]. In analytical and 

semi-analytic techniques to nonlinear partial differential 

equations, the Homotopy analysis method ability to readily 

demonstrate the convergence of the series solution is unique. 

Compared to all other techniques, the new Homotopy per-

turbation method provides a more straightforward approxi-

mate solution in the zeroth iteration alone. This approach does 

not require a small system parameter, making it useful for a 

wide range of non-linear differential equation solutions. 

Numerous authors have recently used the new homotopy 

perturbation method (NHPM) to tackle the non-linear 

boundary value issue in physics and engineering sciences 

[16-27]. 

Using this method (Refer Appendix I), we get the ap-

proximate expressions (15) to (19) as follows 

𝑈𝑒(𝜒, 𝜏) = 𝐵 cos ℎ√𝑚+𝛼 𝜒
𝜑2 cos ℎ√𝑚+𝛼

 −
4𝜋𝐵∑ (−1)𝑛(2n + 1)cos (

𝜋

2
)(2n + 1)𝜒𝑒

− 𝜏
4⁄ (𝐴)∞

𝑛=0

𝜑2𝐴
                     (22) 

𝑉𝑒(𝜒, 𝜏) =  
𝐵 cos ℎ√𝛽 𝜒

cosℎ√𝑚+𝛼(𝑚−𝛽)
− 

4𝜋𝐵 ∑ (−1)𝑛(2n + 1) cos ℎ√
4𝛽−𝐴

4
 𝜒𝑒

− 𝜏
4⁄ (𝐴) ∞

𝑛=0

(𝐴)(𝑚−𝛽)

 + 
𝐵 sin ℎ√𝛽 𝜒

sin ℎ√𝛽 (𝑚−𝛽)
 −

𝐵 sin ℎ√𝛽 𝜒 cosℎ√𝛽

sin ℎ√𝛽 (𝑚−𝛽) cosℎ√𝑚+𝛼
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−
𝐵 cosℎ√𝑚+𝛼 𝜒

cos ℎ√𝑚+𝛼(𝑚−𝛽)
+ 

4𝜋𝐵∑ (−1)𝑛(2n + 1)cos(
𝜋

2
)(2n + 1)𝜒𝑒

− 𝜏
4⁄ (𝐴) ∞

𝑛=0

(𝐴)(𝑚−𝛽)
 +
4𝜋𝐵∑ (−1)𝑛(2n + 1) cosℎ√

4𝛽−𝐴

4
 sin ℎ√

4𝛽−𝐴

4
 𝜒𝑒

− 𝜏
4⁄ (𝐴) ∞

𝑛=0

(𝐴)(𝑚−𝛽) sin ℎ√
4𝛽−𝐴

4
 

  

+𝐵∑ (−1)𝑛(2𝜋n) sinn𝜋 𝜒𝑒
−((

n𝜋
𝛿
)2+𝐵)𝜏

 ∞
𝑛=0

((𝑛𝜋)2+𝛽)(𝑚−𝛽)
− 

𝐵∑ (−1)𝑛(2𝜋n) sinn 𝜋 𝜒𝑒
−((

n𝜋
𝛿
)2+

𝐵
𝑚)𝜏 ∞

𝑛=0

((𝑛𝜋)2+𝛽)(𝑚−𝛽) cosℎ√𝑚−((𝑛𝜋)2+𝛽) 
                 (23) 

Where A= 𝜋2(2𝑛 + 1)2 + 4𝑚 + 4𝛼, B = 𝑚𝑢𝑒0 and 𝑚 = 
𝜑2

2
. 

𝑈𝑑(𝜒, 𝜏) =𝑢𝑑0
sin ℎ(√𝛼 𝜒−√𝛼(1+𝛿))

sin ℎ√𝛼(𝛿)
−
𝑢𝑑0𝛿 ∑ (−1)𝑛(2𝜋n) sin ( 𝐶 𝜒−𝐶(1+𝛿))𝑒−((𝐶)

2+𝛼)𝜏 ∞
𝑛=0

(𝐶)2+𝛼
 

+
𝑢𝑑1 sin ℎ(√𝛼 −√𝛼(𝜒))

sin ℎ(√𝛼(𝛿))
+
𝑢𝑑1𝛿 ∑ (−1)𝑛(2𝜋n) sin ( 𝐶 −𝐶(𝜒))𝑒−((𝐶)

2+𝛼)𝜏 ∞
𝑛=0

(𝐶)2+𝛼
                      (24) 

Where C = 
n𝜋

𝛿
 

𝑉𝑑( 𝜒, 𝜏) =  
𝑣𝑑0 cos ℎ√𝛽( 𝜒−1−𝛿)

cosℎ√𝛽(𝛿)
− 

4𝜋𝑣𝑑0𝛿
2∑ (−1)𝑛(2n + 1)cos (

𝜋

2(𝛿)
)(2n + 1)(𝜒−1−𝛿)𝑒

− 
𝜏(𝜋2(2𝑛+1)2+4𝛽𝛿2)

4𝛿2  ∞
𝑛=0

𝜋2(2𝑛+1)2+4𝛽𝛿2
          (25) 

Using equations (21) and (23), The current expression for non steady state case is 

𝜓(𝑡) =
𝐵√𝛽

sin ℎ√𝛽 (𝑚−𝛽)
−

𝐵√𝛽 cos ℎ√𝛽

sinℎ√𝛽 (𝑚−𝛽) cosℎ√𝑚+𝛼
+𝐵∑ (−1)𝑛(2(𝑛𝜋)2)𝑒

−((
n𝜋
𝛿
)2+𝐵)𝜏

 ∞
𝑛=0

((𝑛𝜋)2+𝛽)(𝑚−𝛽)
 −

𝐵 ∑ (−1)𝑛(2(𝑛𝜋)2)𝑒
−((

n𝜋
𝛿
)2+

𝐵
𝑚)𝜏 ∞

𝑛=0

((𝑛𝜋)2+𝛽)(𝑚−𝛽) cos ℎ√𝑚−((𝑛𝜋)2+𝛽)
+

4𝜋𝐵∑ (−1)𝑛(2n + 1) cosℎ(√
4𝛽−𝐴

4
) √

4𝛽−𝐴

4
𝑒
− 
𝜏(𝐴)
4  ∞

𝑛=0

(𝐴)(𝑚−𝛽)sin ℎ√
4𝛽−𝐴

4
 

                            (26) 

When 𝜏 → ∞ equation (26) becomes 

𝜓(𝑠) =
𝐵√𝛽

sin ℎ√𝛽 (𝑚−𝛽)
−

𝐵√𝛽 cosℎ√𝛽

sin ℎ√𝛽 (𝑚−𝛽)cos ℎ√𝑚+𝛼
                           (27) 

Equations (27) is called the current expression for steady state case. 

Where A= 𝜋2(2𝑛 + 1)2 + 4𝑚 + 4𝛼, B = 𝑚𝑢𝑒0 and 𝑚 =  
𝜑2

2
 

4. Limiting Cases 

This section derived analytical expressions for the concentration of substrate, product and current for special cases. 

4.1. Case 1: When the Rate of Substrate Degradation 𝜶 = 𝟎 

Suppose we consider initially, when the rate of degradation substrate 𝛼 = 0 and then the Eqn. (15) & (18) reduced to be as 

follows [27-30], 

𝜕𝑈𝑒(𝜒,𝜏) 

𝜕𝜏
 =  

𝜕2𝑈𝑒(𝜒,𝜏)

𝜕𝜒2
 −  

𝜑2𝑈𝑒(𝜒,𝜏)

1+𝑈𝑒(𝜒,𝜏)
 0 < 𝜒 < 1                            (28) 

𝜕𝑈𝑑(𝜒,𝜏) 

𝜕𝜏
 =  

𝜕2𝑈𝑑(𝜒,𝜏)

𝜕𝜒2
 1 < 𝜒 < 1 + 𝛿                               (29) 

Using (17) and (20) boundary conditions for the above equation can be found the analytical expressions derived in (Refer 

Appendix II) as, 
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𝑈𝑒(𝜒, 𝜏) = 
𝑢𝑒0 cos ℎ√𝑚 𝜒

cosℎ√𝑚
−
4𝜋𝑢𝑒0∑ (−1)𝑛(2n + 1)cos𝜋 2⁄ (2n + 1)𝜒𝑒

− 𝜏
4⁄ (𝜋

2(2𝑛+1)2+4𝑚)∞
𝑛=0

(𝜋2(2𝑛+1)2+4𝑚)
               (30) 

𝑈𝑑(𝜒, 𝜏) =
𝑢𝑑1𝛿 ∑ (−1)𝑛(2𝜋n) sin ( 𝐶 −𝐶(𝜒))𝑒−((𝐶)

2)𝜏 ∞
𝑛=0

(𝐶)2
− 

𝑢𝑑0𝛿 ∑ (−1)𝑛(2𝜋n) sin ( 𝐶 𝜒−𝐶(1+𝛿))𝑒−((𝐶)
2)𝜏 ∞

𝑛=0

(𝐶)2
          (31) 

Where C= 
n𝜋

𝛿
 & 𝑚 =  

𝜑2

2
 

4.2. Case 2: When the Rate of Product Degradation 𝜷 = 𝟎 

Suppose we consider initially, when the rate of degradation product 𝛽 = 0 and then the Eqn. (16) & (19) reduced to be as 

follows [27-30], 

𝜕𝑉𝑒(𝜒,𝜏) 

𝜕𝜏
 =  

𝜕2𝑉𝑒(𝜒,𝜏)

𝜕𝜒2
 +  

𝜑2𝑈𝑒(𝜒,𝜏)

1+𝑈𝑒(𝜒,𝜏)
 0 < 𝜒 < 1                           (32) 

𝜕𝑉𝑑(𝜒,𝜏) 

𝜕𝜏
 =  

𝜕2𝑉𝑑(𝜒,𝜏)

𝜕𝜒2
 1 < 𝜒 < 1 + 𝛿                             (33) 

Using (17) and (20) boundary conditions for the above equation can be found the analytical expressions derived in (Refer 

Appendix III) as, 

𝑉𝑒(𝜒, 𝜏) =  
𝐵

cosℎ√𝑚+𝛼(𝑚)
− 

4𝜋𝐵∑ (−1)𝑛(2n + 1) cosℎ√
(−𝐴)

4
 𝜒𝑒

− 𝜏
4⁄ (𝐴) ∞

𝑛=0

(𝐴)(𝑚)

  

−
𝐵 cosℎ√𝑚+𝛼 𝜒

cosℎ√𝑚+𝛼(𝑚)
+ 

4𝜋𝐵∑ (−1)𝑛(2n + 1)cos(
𝜋

2
)(2n + 1)𝜒𝑒

− 𝜏
4⁄ (𝐴) ∞

𝑛=0

(𝐴)(𝑚)
 

+
4𝜋𝐵∑ (−1)𝑛(2n + 1) cosℎ√

(−𝐴)

4
 sin ℎ√

(−𝐴)

4
 𝜒𝑒

− 𝜏
4⁄ (𝐴) ∞

𝑛=0

(𝐴)(𝑚) sinℎ√
(−𝐴)

4
 

 

+𝐵∑ (−1)𝑛(2𝜋n) sinn𝜋 𝜒𝑒
−((

n𝜋
𝛿
)2+𝐵)𝜏

 ∞
𝑛=0

((𝑛𝜋)2)(𝑚)
− 

𝐵∑ (−1)𝑛(2𝜋n) sinn 𝜋 𝜒𝑒
−((

n𝜋
𝛿
)2+

𝐵
𝑚)𝜏 ∞

𝑛=0

((𝑛𝜋)2)(𝑚) cosℎ√𝑚−((𝑛𝜋)2) 
                    (34) 

𝑉𝑑( 𝜒, 𝜏) =  𝑣𝑑0 − 
4𝜋𝑣𝑑0𝛿

2∑ (−1)𝑛(2n + 1)cos (
𝜋

2(𝛿)
)(2n + 1)(𝜒−1−𝛿)𝑒

− 
𝜏(𝜋2(2𝑛+1)2)

4𝛿2  ∞
𝑛=0

𝜋2(2𝑛+1)2
                  (35) 

𝜓(𝑡) =
𝐵∑ (−1)𝑛(2(𝑛𝜋)2)𝑒

−((
n𝜋
𝛿
)2+𝐵)𝜏

 ∞
𝑛=0

((𝑛𝜋)2)(𝑚)
−
𝐵∑ (−1)𝑛(2(𝑛𝜋)2)𝑒

−((
n𝜋
𝛿
)2+

𝐵
𝑚)𝜏 ∞

𝑛=0

((𝑛𝜋)2)(𝑚) cosℎ√𝑚−((𝑛𝜋)2)
+ 

4𝜋𝐵∑ (−1)𝑛(2n + 1) cos ℎ(√
(−𝐴)

4
) √

(−𝐴)

4
𝑒
− 
𝜏(𝐴)
4  ∞

𝑛=0

(𝐴)(𝑚)sin ℎ√
(−𝐴)

4
 

   (3

6) 

Where 

A= 𝜋2(2𝑛 + 1)2 + 4𝑚 + 4𝛼, B = 𝑚𝑢𝑒0 and 𝑚 = 
𝜑2

2
.                        (37) 

4.3. Case 3: When the Rate of Substrate and 

Product Degradation 𝜶 = 𝜷 = 𝟎 

In this case, when the rate of degradation of substrate and 

product 𝛼 = 𝛽 =  0 and the two-compartment model was 

reduced to the one compartment model when 𝛿 = 0. There-

fore the Eqn. (14) and (15) can be reduced to 

𝜕𝑈𝑒(𝜒,𝜏) 

𝜕𝜏
 =  

𝜕2𝑈𝑒(𝜒,𝜏)

𝜕𝜒2
 –  

𝜑2𝑈𝑒(𝜒,𝜏)

1+𝑈𝑒(𝜒,𝜏)
         (38) 

𝜕𝑉𝑒(𝜒,𝜏) 

𝜕𝜏
 =  

𝜕2𝑉𝑒(𝜒,𝜏)

𝜕𝜒2
 +  

𝜑2𝑈𝑒(𝜒,𝜏)

1+𝑈𝑒(𝜒,𝜏)
 0 < 𝜒 < 1      (3

9) 

The initial and boundary conditions are: 
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𝜏 = 0, 0 < 𝜒 < 1 𝑈𝑒 = 0, 𝑉𝑒 = 0.  

𝜒 = 0 
𝜕𝑈𝑒(𝜒,𝜏) 

𝜕𝜒
= 0, 𝑉𝑒 = 0. 

𝜒 = 1 𝑈𝑒 = 𝑢𝑒0, 𝑉𝑒 = 0. 0 < 𝜒 < 1       (40) 

5. Analytical Expression for the 

Concentration Without Degradation 

Using Akbari-Ganji Method 

The Akbari-Ganji method approach is an excellent analyt-

ical solution technique for nonlinear differential equations. 

First, a polynomial is assumed to be the solution to the equa-

tion. Then, an algebraic system of equations is constructed 

based on the boundary or initial conditions, from which the 

assumed constant coefficients of polynomials are obtained 

upon solving the system of equations. In this case, the above 

equations can be solved the approximate analytical expres-

sions for concentrations and current under the steady state 

condition using the Akbari-Ganji method as follows (Refer 

Appendix IV) [17-26], 

𝑈𝑒(𝜒) =
𝑢𝑒0 

cos ℎ𝐿1 
cos ℎ 𝐿1𝜒            (41) 

𝑉𝑒(𝜒) = 1 − cos ℎ 𝑀1𝜒 +
(cosh𝑀1−1) sin ℎ𝑀1𝜒 

sin ℎ𝑀1
     (42) 

Where  

𝐿1 =𝜑√
1

1+𝑢𝑒0
,  𝑀1= 𝜑√

𝑢𝑒0

1+𝑢𝑒0
          (43) 

The steady-state current becomes using (21). 

𝐼 =  
(cosh𝑀1−1)  

sin ℎ𝑀1 
. 𝑀1              (44) 

Where 𝑀1= 𝜑√
𝑢𝑒0

1+𝑢𝑒0
              (45) 

6. Comparision of Analytical Results and 

Numerical Simulations 

Numerical simulations are used to compare the analytical 

results, which are presented in the following Tables. The 

Numerical simulations are presented in (Refer Appendix V) 

using pdex4 function in MATLAB. Equations (22) to (25) are 

the simple approximate analytical expressions for the 

substrate (𝑈𝑒 , 𝑈𝑑) and product (𝑉𝑒 , 𝑉𝑑) concentrations in two 

layers. 

Table 1. For various values of the parameter 𝜑2 and some certain values of the parameter 𝛼 = 61, 𝜏 = 1, 𝑢𝑒0 = 1 in Eqn. (22). The simi-

larity relation between substrate concentration 𝑈𝑒 and numerical result. 

𝝌  

𝝋𝟐 = 𝟑  𝝋𝟐 = 𝟓  𝝋𝟐 = 𝟐𝟓  

Numerical 
𝑼𝒆 in eqn. 

(22) 

% of devia-

tion 
Numerical 

𝑼𝒆 in 

eqn. (22) 

% of devia-

tion 
Numerical 

𝑼𝒆 in 

eqn. (22) 

% of 

deviation 

0 0 0 0 0 0 0 0 0 0 

0.2 0.002 0.001  0.001 0.001 0.00 0 0 0 

0.4 0.008 0.008 0 0.008 0.008 0.00 0.004 0.004 0 

0.6 0.043 0.043 0 0.044 0.043 0.04 0.027 0.026 3.70 

0.8 0.217 0.218 0.46 0.227 0.217 0.21 0.178 0.171 3.93 

1 1 1 0 1 1 0 1 1 0 

 Average percentage error: 0.07 Average percentage error: 0.041 Average percentage error: 1.272 
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Table 2. For different values of the parameter 𝜑2 and some certain values of the parameter 𝛼 = 50, 𝛽 = 310, 𝜏 = 1, 𝑢𝑒0 = 1 in eqn. (23). 

The similarity relation between product concentration 𝑉𝑒 and numerical result. 

𝝌  

𝝋𝟐 = 𝟑. 𝟓  𝝋𝟐 = 𝟏𝟐. 𝟓  𝝋𝟐 = 𝟏𝟎𝟎  

Numerical 
𝑽𝒆 in eqn. 

(23) 

% of devia-

tion 
Numerical 

𝑽𝒆 in 

eqn. (23) 

% of devia-

tion 
Numerical 

𝑽𝒆 in 

eqn. (23) 

% of devi-

ation 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 3.000 

0.8 0.002 0.001 0.5 0.002 0.003 0.5 0.002 0.008 3.200 

1 1 1 0.000 1 1 0 1 1 0.000 

 Average percentage error: 0.083 Average percentage error: 0.083 Average percentage error: 1.960 

Table 3. For various values of the parameter 𝛼 and some fixed values of the parameter 𝜏 = 1, 𝛿 = 0.1, 𝑢𝑑0 = 1, 𝑢𝑑1=1 in substrate con-

centration 𝑈𝑑 from Eqn. (24) is given to differentiate numerical result. 

𝝌  

𝜶 = 𝟐𝟎  𝜶 = 𝟒𝟎  𝜶 = 𝟔𝟎  

Numerical 
𝑼𝒅 in eqn. 

(24) 

% of devia-

tion 
Numerical 

𝑼𝒅 in 

eqn. (24) 

% of devia-

tion 
Numerical 

𝑼𝒅 in 

eqn. (24) 

% of devi-

ation 

1 1 1 0.00 1 1 0.00 1 1 0 

1.02 0.984 0.984 0.00 0.969 0.969 0.00 0.956 0.958 0.20 

1.04 0.976 0.976 0.00 0.954 0.954 0.00 0.934 0.935 0.10 

1.06 0.976 0.976 0.00 0.954 0.954 0.00 0.934 0.935 0.10 

1.08 0.984 0.984 0.00 0.969 0.969 0.00 0.957 0.958 0.10 

1.1 1 1 0.00 1 1 0.00 1 1 0 

 Average percentage error: 0.00 Average percentage error: 0.00 Average percentage error: 0.08 

Table 4. Comparison of diffusion product concentration 𝑉𝑑 in eqn. (25) with numerical result for several values of the parameter 𝛽 and some 

certain values of the parameter 𝛿 = 0.2, 𝑣𝑑0 = 1, 𝜏 = 1. 

𝝌  

𝜷 = 𝟗𝟎  𝜷 = 𝟏𝟒𝟓  𝜷 = 𝟑𝟎𝟎  

Numerical 

𝑽𝒅 in 

eqn. 

(25) 

% of devia-

tion 
Numerical 

𝑽𝒅 in 

eqn. (25) 

% of devia-

tion 
Numerical 

𝑽𝒅 in 

eqn. 

(25) 

% of devia-

tion 

1 1 1 0 1 1 0 1 1 0 

1.05 0.648 0.641 1.080 0.547 0.548 0.182 0.418 0.418 0 

1.1 0.439 0.432 1.594 0.31 0.313 0.967 0.179 0.179 0 

1.15 0.325 0.325 0 0.195 0.202 3.589 0.084 0.085 1.190 

1.2 0.282 0.293 3.900 0.168 0.171 1.785 0.06 0.062 3.333 
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𝝌  

𝜷 = 𝟗𝟎  𝜷 = 𝟏𝟒𝟓  𝜷 = 𝟑𝟎𝟎  

Numerical 

𝑽𝒅 in 

eqn. 

(25) 

% of devia-

tion 
Numerical 

𝑽𝒅 in 

eqn. (25) 

% of devia-

tion 
Numerical 

𝑽𝒅 in 

eqn. 

(25) 

% of devia-

tion 

 Average percentage error: 1.314 Average percentage error: 1.304 Average percentage error: 0.904 

 

The above Tables 1-4 show that the maximum error 

between numerical and (NHPM) analytical results for enzyme 

layer substrate and product is 0.461% and 0.708%, and for 

diffusion layer substrate and product, it is 0.026% and 1.174% 

for the parameter values. Therefore error percentage is less 

than two is obtained from NHPM. 

7. Results and Discussion 

The similarity relation between the analytical results 

(NHPM) of substrate concentration 𝑈𝑒 , 𝑈𝑑, product concen-

tration 𝑉𝑒, 𝑉𝑑 with numerical simulations using Eqn. (22) to 

(25) and non-dimensional current and all kinetic parameters 

under steady, non-steady state conditions using eqn. (22) and 

(27) are presented in the following Figures 1-6. 

From Figure 2 (a) and (b), when substrate concentration 

decreases with increasing the rate of degradation parame-

ter  𝛼  and thiele modulus 𝜑2 . From Figure 2 (c) plot for 

various values of  𝜏  for some fixed values of 𝛼 = 2, 𝜑 =

3, 𝑢𝑒0 = 1. Thus it is concluded that various values of 𝜏 is 

increases as the substrate (𝑈𝑒) increases. Figure 3 (a) Various 

kinetic parameter values of degradation rate 𝛽  increase as 

substrate concentration decreases. Then Figure 3 (b) and (c), 

the substrate increases with the Thiele modulus 𝜑2and time 

increases. Figure 4 (a) represents various values of 𝛼  in-

creases and concentration decreases. From Figure 4 (b), the 

plot for several values of 𝜏 specific values of of 𝛼 = 20, 𝛿 =

0.1, 𝑢𝑑0 = 1, 𝑢𝑑1=1. Thus, it is concluded that various values 

𝜏 do not change in the substrate (𝑈𝑑). 

 
Figure 2. Substrate concentration 𝑈𝑒 in contrast to Dimensionless distance 𝜒 using in eqn. (22) for several values of non dimensional 

parameter 𝛼, 𝜑 𝑎𝑛𝑑 𝜏 for certain values of the parameters 𝛼,𝜑, 𝜏 𝑎𝑛𝑑 𝑢𝑒0. 
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Figure 5 (a) kinetic parameter  𝛽  for some specific 

parameter values = 0.2, 𝜏 = 1, 𝑣𝑑0 = 1. There is a parameter 

𝛽 increase as the concentration of the product (𝑉𝑑) decreases. 

From Figure 5 (b): plot for several values of 𝜏 some specific 

values 𝛽 = 130, 𝛿 = 0.1, 𝑣𝑑0 = 1. Thus it is concluded that 

various values do not change in the product (𝑉𝑑). 

 
Figure 3. Product concentration 𝑉𝑒 in differentiate to Dimensionless distance 𝜒 using in eqn. (23) for different values of non dimensional 

parameter 𝛽, 𝜑2 𝑎𝑛𝑑 𝜏 for some fixed values of the parameters 𝛼, 𝛽, 𝜑2, 𝜏 𝑎𝑛𝑑 𝑢𝑒0. 

 
Figure 4. Substrate concentration 𝑈𝑑 is compare to Dimensionless distance 𝜒 using in eqn. (24) for several values of non dimensional 

parameter 𝛼, 𝛿 𝑎𝑛𝑑 𝜏 for fixed values of the parameters 𝛼, 𝛿, 𝜏, 𝑢𝑑0𝑎𝑛𝑑 𝑢𝑑1. 
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Figure 5. Product concentration 𝑉𝑑 is differentiate to Dimensionless distance 𝜒 using in eqn. (25) for several values of non dimensional 

parameter 𝛽, 𝛿 𝑎𝑛𝑑 𝜏 for dif ferent values of the parameters 𝛽, 𝛿, 𝜏 𝑎𝑛𝑑 𝑣𝑑0. 

 
Figure 6. Dimensionless non steady state current 𝜓(𝑡) in contrast to non dimensional parameter 𝛼, 𝛽, 𝜏 and 𝑢𝑒0for certain values of the 

parameters 𝛼, 𝛽, 𝜑2, 𝜏 and 𝑢𝑒0  using eqn. (26). 
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Figure 6 (a) and (b) exposes parameter 𝑢𝑒0𝑎𝑛𝑑 𝜏 

increases with the dimensionless current 𝜓(𝑡)  decreases. 

Figure 6 (c) represents various values of 𝛼  some specific 

values 𝑢𝑒0 = 1, 𝜑
2 = 3.5, 𝜏 = 1. Thus it is concluded that 

the parameter 𝛽 increase and the dimensionless current 𝜓(𝑡) 

increase. Figure 6 (d) expresses it is clear that 

non-dimensional parameter 𝛼 increase as the dimensionless 

current decreases. Figure 7 (a) & (b) is clear that there are 

parameter increases as well as dimensionless current 

𝜓(𝑠) increases. Figure 7 (c) expresses the dimensionless 

current 𝜓(𝑠) increasing with the thiele modulus 𝜑2 

increases. Stabilizing the sensor components increases deg-

radation to the concentration of substrate and product, de-

creasing performance in real-world applications. 

 
Figure 7. Dimensionless steady state current 𝜓(𝑠) in contrast to non dimensional parameter 𝛼, 𝛽 and 𝜑2 for certain values of the 

parameters 𝛼, 𝛽, 𝜑2 𝑎𝑛𝑑𝑢𝑒0 . 

Figure 8 (a) and (b) exposes parameter 𝜑2 increases with the dimensionless concentration of substrate and product decreases 

using (41) – (43) in limiting case 3. 
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Figure 8. Dimensionless distance 𝜒 in contrast to concentration for certain values of the parameters 𝜑 and fixed values of 𝑢𝑒0 . 

8. Conclusions 

Multilayer heterogeneous biocatalytic systems of nonlinear 

reaction equations in the diffusion layer and enzymatic mechanism 

have been analytically solved using the new homotopy 

perturbation method. This study proposes an approximate 

analytical expression for the degradation of substrate, product, 

current, and responsiveness to non-steady-state and steady-state 

conditions. These expressions are compared with numerical 

simulations graphically for all values of parameters discussed. It 

shows that degradation rates of substrate and product increase as 

the dimensionless concentration of substrate and product for two 

layers decreases. Stabilizing the sensor components to minimize 

degradation is crucial for preserving dependable long-term 

performance in real-world applications. The new homotopy 

perturbation method is a straightforward and effective method that 

can solve this nonlinear equation. 

Further limiting cases, three situations are created. Three 

scenarios have led to the creation of profiles showing how the 

substrate and product degradation rates do not affect the 

biosensor response. The Akbari-Ganji method (AGM) resolves 

the third scenario by degradation rates that do not affect the 

biosensor's response. This method is discussed and compared 

to numerical simulations, and it is presented graphically. This 

work may be extended to the three-layer model of nonlinear 

equations in chemical reactions with similar boundary 

conditions in steady and non-steady state conditions. 

Nomenclature 

𝑎𝑒  & 𝑎𝑑  concentration of substrate - enzyme and 

diffusion layer (mol 𝑐𝑚−3) 

𝑏𝑒  & 𝑏𝑑  concentration of product - enzyme and 

diffusion layer (mol 𝑐𝑚−3) 

𝛿  Dimensionless Thickness of the membrane  

𝑈  Dimensionless concentration of substrate  

𝑉  Dimensionless concentration of product 

𝑎0 & 𝑏0  Initial concentration of species (mol 𝑐𝑚−3) 

𝑑𝑒  & 𝑑𝑑  Thickness of the membrane (cm) 

𝜑2  Thiele modulus 

𝐷  Diffusion coefficient of substrate (𝑐𝑚2𝑠−1) 

𝛼 & 𝛽  Dimensionless degradation rate 

t Time (s) 

𝜏  Dimensionless time 

𝜒  Normalized electrode distance 

x Distance from electrode (cm) 

Abbreviations 

NHPM New Homotopy Perturbation Method 

AGM Akbari-Ganji Method 
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Appendix 

Appendix I: New Homotopy Perturbation Method 

In section 3, Using equations (A-15) to (A-19) to construct new homotopy as follows, 

(1 − 𝑝) [
𝜕2𝑈𝑒(𝜒,𝜏)

𝜕𝜒2
–𝛼𝑈𝑒(𝜒, 𝜏) −

𝜑2𝑈𝑒(𝜒,𝜏)

(1+𝑈𝑒) ((𝜒=1)
−
𝜕𝑈𝑒( 𝜒,𝜏)

𝜕𝜏
] + 𝑝 [(1 + 𝑈𝑒(𝜒, 𝜏)) (

𝜕2𝑈𝑒(𝜒,𝜏)

𝜕𝜒2
 – 𝛼𝑈𝑒(𝜒 𝜏) −

𝜕𝑈𝑒( 𝜒,𝜏)

𝜕𝜏
) −

𝜑2𝑈𝑒(𝜒, 𝜏)] = 0                    (A-1) 

(1 − 𝑝) [
𝜕2𝑈𝑒(𝜒,𝜏)

𝜕𝜒2
– 𝛼𝑈𝑒(𝜒, 𝜏) −

𝜑2𝑈𝑒(𝜒,𝜏)

(1+𝑢𝑒0) (𝑢𝑒0=1) 

−
𝜕𝑈𝑒( 𝜒,𝜏)

𝜕𝜏
] + 𝑝 [(1 + 𝑈𝑒(𝜒 𝜏)) (

𝜕2𝑈𝑒(𝜒,𝜏)

𝜕𝜒2
 – 𝛼𝑈𝑒(𝜒, 𝜏) −

𝜕𝑈𝑒( 𝜒,𝜏)

𝜕𝜏
) −

𝜑2𝑈𝑒(𝜒, 𝜏)]  = 0       (A-2) 

(1 − 𝑝) [
𝜕2𝑈𝑒(𝜒,𝜏)

𝜕𝜒2
– 𝛼𝑈𝑒(𝜒, 𝜏) −

𝜑2𝑈𝑒(𝜒,𝜏)

2 
−
𝜕𝑈𝑒( 𝜒,𝜏)

𝜕𝜏
] + 𝑝 [(1 + 𝑈𝑒(𝜒 𝜏)) (

𝜕2𝑈𝑒(𝜒,𝜏)

𝜕𝜒2
 – 𝛼𝑈𝑒(𝜒 𝜏) −

𝜕𝑈𝑒( 𝜒,𝜏)

𝜕𝜏
) − 𝜑2𝑈𝑒(𝜒

, 𝜏)]  = 0               (A-3) 

Simillarly, the above process of product as follow, 

(1 − 𝑝) [
𝜕2𝑉𝑒(𝜒,𝜏)

𝜕𝜒2
– 𝛽𝑉𝑒(𝜒, 𝜏) +

𝜑2𝑈𝑒(𝜒,𝜏)

2 
−
𝜕𝑉𝑒( 𝜒,𝜏)

𝜕𝜏
] + 𝑝 [(1 + 𝑈𝑒(𝜒, 𝜏)) (

𝜕2𝑉𝑒(𝜒,𝜏)

𝜕𝜒2
 – 𝛽𝑉𝑒(𝜒, 𝜏) −

𝜕𝑉𝑒( 𝜒,𝜏)

𝜕𝜏
) + 𝜑2𝑈𝑒(𝜒, 𝜏)] = 0 (A-4) 

The approximate solutions of (A-3) and (A-4) are 

𝑈𝑒 = 𝑈𝑒0 +𝑝 𝑈𝑒1 + 𝑝
2𝑈𝑒2  + 𝑝

3𝑈𝑒3 +·….. ·                          (A-5) 

𝑉𝑒 = 𝑉𝑒0 + 𝑝 𝑉𝑒1 + 𝑝
2𝑉𝑒2  + 𝑝

3𝑉𝑒3 +· ·                            (A-6) 

Equating the coefficients of p and substituting Equations (A-5) and (A-6) into Equations (A-3) and (A-4) 

𝑝0 : 
𝜕2𝑈𝑒0 (𝜒,𝜏)

𝜕𝜒2
– 𝛼𝑈𝑒0 −

𝜑2𝑈𝑒0 

2
−
𝜕𝑈𝑒0 ( 𝜒,𝜏)

𝜕𝜏
 = 0                            (A-7) 

𝑝0 : 
𝜕2𝑉𝑒0 (𝜒,𝜏)

𝜕𝜒2
–𝛽 𝑉𝑒0 +

𝜑2𝑈𝑒0 

2
−
𝜕𝑉𝑒0 ( 𝜒,𝜏)

𝜕𝜏
 = 0                             (A-8) 

The boundary conditions are: 

𝜒 = 0 
𝜕𝑈𝑒0 (𝜒,𝜏) 

𝜕𝜒
= 0, 𝑉𝑒0 = 0. 

𝜒 = 1 𝑈𝑒0 = 𝑢𝑒0, 𝑉𝑒0 = 0.                                   (A-9) 

Taking Laplace transform in (A-7) to (A-9), 

𝑝0 : 
𝜕2𝑈𝑒0 
̅̅ ̅̅ ̅̅ ̅

 

𝜕𝜒2
– 𝛼𝑈𝑒0 
̅̅ ̅̅ ̅̅

 
−𝑚𝑈𝑒0 

̅̅ ̅̅ ̅̅
 
− 𝑠𝑈𝑒0 
̅̅ ̅̅ ̅̅

 
= 0                            (A-10) 

𝑝0 : 
𝜕2𝑉𝑒0 
̅̅ ̅̅ ̅̅ ̅

 

𝜕𝜒2
–𝛽𝑉𝑒0 
̅̅ ̅̅ ̅

 
+𝑚𝑈𝑒0 

̅̅ ̅̅ ̅̅
 
− 𝑠𝑉𝑒0 
̅̅ ̅̅ ̅

 
= 0                               (A-11) 
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The boundary conditions become: 

𝜒 = 0 
𝜕𝑈𝑒0 
̅̅ ̅̅ ̅̅ ̅

 
(0) 

𝜕𝜒
= 0, 𝑉𝑒0 

̅̅ ̅̅ ̅(0) = 0. 

𝜒 = 1 𝑈𝑒0 
̅̅ ̅̅ ̅̅

 
=
𝑢𝑒0

𝑠
, 𝑉𝑒0 
̅̅ ̅̅ ̅

 
= 0.                                   (A-12) 

Here 𝑚 =
𝜑

2
, s denotes Laplace variable and over bar – Laplace transform quantity. 

The obtained solution of equation (A-10) and using (A-12) as, 

𝑈𝑒0 
̅̅ ̅̅ ̅̅

 
=
𝑢𝑒0 cosℎ√𝑚+𝛼+𝑠 𝜒

𝑠 cos ℎ√𝑚+𝛼+𝑠
.                                    (A-13) 

So, may utilize the complex inversion formula to invert Equation (A-13), therefore 

y (𝜏) = ∑ 𝑅𝑒𝑠 [exp(𝑠𝜏) 𝑦 ̅̅ ̅(𝑠)] 𝑠=𝑠0𝑛 .                              (A-14) 

We can deduce from the theory of complex variables that R is the formula for the residue of a function G(z) at a simple pole at 

z = a. 

Res [𝐺(𝑧)]𝑧=𝑎 = lim
𝑧→𝑎
(𝑧 − 𝑎)𝐺(𝑧).                              (A-15) 

Hence to find the residue of equation (A-13) 

Res [
𝑢𝑒0 cosℎ√𝑚+𝛼+𝑠 𝜒

𝑠 cosℎ√𝑚+𝛼+𝑠
 ] 

Hence, we get, simple pole at s = 0, there are infinitely many poles at 𝑠𝑛 =−(𝜋2(2𝑛 + 1)2 + 4𝑚 + 4𝛼) where n = 0,1, 2... 

𝑈𝑒0 (𝜒, 𝜏)  = 𝑅𝑒𝑠 [𝑠 cos ℎ√𝑚 + 𝛼 + 𝑠]𝑠=0 + 𝑅𝑒𝑠 [𝑠 cos ℎ√𝑚 + 𝛼 + 𝑠]𝑠=𝑠𝑛                 (A-16) 

The first residue of equation (A-16) 

𝑅𝑒𝑠 [𝑠 cos ℎ√𝑚 + 𝛼 + 𝑠]𝑠=0 = lim
𝑠→0
[
𝑠𝑢𝑒0 cosℎ√𝑚+𝛼+𝑠 𝜒 𝑒𝑥𝑝(𝑠𝜏)

𝑠 cos ℎ√𝑚+𝛼+𝑠
] = 

𝑢𝑒0 cosℎ√𝑚+𝛼 𝜒

cos ℎ√𝑚+𝛼
             (A-17) 

The second residue of equation (A-16) 

𝑅𝑒𝑠 [𝑠 cos ℎ√𝑚 + 𝛼 + 𝑠]𝑠=𝑠𝑛 = lim
𝑠→𝑠𝑛

[
𝑢𝑒0 cos ℎ√𝑚+𝛼+𝑠 𝜒 𝑒𝑥𝑝(𝑠𝜏)

𝑠 cosℎ√𝑚+𝛼+𝑠
] = lim

𝑠→𝑠𝑛
[
𝑢𝑒0 cos ℎ√𝑚+𝛼+𝑠 𝜒 𝑒𝑥𝑝(𝑠𝜏)

𝑠
𝑑

𝑑𝑠
cosℎ√𝑚+𝛼+𝑠

] 

= − 
4𝜋𝑢𝑒0 ∑ (−1)𝑛(2n + 1)cos𝜋 2⁄ (2n + 1)𝜒𝑒

− 𝜏
4⁄ (𝜋

2(2𝑛+1)2+4𝑚+4𝛼)∞
𝑛=0

(𝜋2(2𝑛+1)2+4𝑚+4𝛼)
 (A-18) 

From equation (A-17) and (A-18) substitute in (A-16), we get 

𝑈𝑒(𝜒, 𝜏) = 
𝑢𝑒0 cos ℎ√𝑚+𝛼 𝜒

cos ℎ√𝑚+𝛼
 -
4𝜋𝑢𝑒0∑ (−1)𝑛(2n + 1)cos𝜋 2⁄ (2n + 1)𝜒𝑒

− 𝜏
4⁄ (𝜋

2(2𝑛+1)2+4𝑚+4𝛼)∞
𝑛=0

(𝜋2(2𝑛+1)2+4𝑚+4𝛼)
 

Comparably, the text's (A-24) using Complex Inversion Formula, we can invert Equations (A-11). 

The exact process is repeated in equations (A-18) and (A-19), giving us (A-25) and (A-26) in the text, respectively. 

Appendix II: For the Limiting Case 1, the Degradation Concentration of Substrate 𝜶 =0 

In section 4, For enzyme and diffusion layers as follows,Using equations (A-28) for enzyme layer to construct new homotopy 

as follows, 
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(1 − 𝑝) [
𝜕2𝑈𝑒(𝜒,𝜏)

𝜕𝜒2
−

𝜑2𝑈𝑒(𝜒,𝜏)

(1+𝑈𝑒) ((𝜒=1)
−
𝜕𝑈𝑒( 𝜒,𝜏)

𝜕𝜏
] + 𝑝 [(1 + 𝑈𝑒(𝜒, 𝜏)) (

𝜕2𝑈𝑒(𝜒,𝜏)

𝜕𝜒2
 −

𝜕𝑈𝑒( 𝜒,𝜏)

𝜕𝜏
) − 𝜑2𝑈𝑒(𝜒, 𝜏)] = 0      (A-19) 

(1 − 𝑝) [
𝜕2𝑈𝑒(𝜒,𝜏)

𝜕𝜒2
−
𝜑2𝑈𝑒(𝜒,𝜏)

2 
−
𝜕𝑈𝑒( 𝜒,𝜏)

𝜕𝜏
] + 𝑝 [(1 + 𝑈𝑒(𝜒 𝜏)) (

𝜕2𝑈𝑒(𝜒,𝜏)

𝜕𝜒2
 −

𝜕𝑈𝑒( 𝜒,𝜏)

𝜕𝜏
) − 𝜑2𝑈𝑒(𝜒, 𝜏)] = 0       (A-20) 

Equating the coefficients of p 

𝑝0: 
𝜕2𝑈𝑒0 (𝜒,𝜏)

𝜕𝜒2
−
𝜑2𝑈𝑒0 

2
−
𝜕𝑈𝑒0 ( 𝜒,𝜏)

𝜕𝜏
 = 0                                (A-21) 

The boundary conditions are: 

𝜒 = 0 
𝜕𝑈𝑒0 ( 𝜒,𝜏) 

𝜕𝜒
= 0. 

𝜒 = 1 𝑈𝑒0 = 𝑢𝑒0.                                       (A-22) 

Taking Laplace transform in (A-20) to (A-22), 

𝑝0: 
𝜕2𝑈𝑒0 
̅̅ ̅̅ ̅̅ ̅

 

𝜕𝜒2
−𝑚𝑈𝑒0 

̅̅ ̅̅ ̅̅
 
− 𝑠𝑈𝑒0 
̅̅ ̅̅ ̅̅

 
= 0                                  (A-23) 

The boundary conditions become: 

𝜒 = 0 
𝜕𝑈𝑒0 
̅̅ ̅̅ ̅̅ ̅

 
( 0) 

𝜕𝜒
= 0, 𝜒 = 1 𝑈𝑒0 

̅̅ ̅̅ ̅̅
 
=
𝑢𝑒0

𝑠
.                              (A-24) 

Here m =
𝜑2

2
 , s denotes Laplace variable and over bar – Laplace transform quantity. 

The obtained solution of equation (A-23) using (A-24) as, 

𝑈𝑒0 
̅̅ ̅̅ ̅̅

 
=
𝑢𝑒0 cosℎ√𝑚+𝑠 𝜒

𝑠 cos ℎ√𝑚+𝑠
.                                    (A-25) 

Then, following Appendix A process to get the solution of invert the enzyme substrate 

𝑈𝑒( 𝜒, 𝜏) = 
𝑢𝑒0 cos ℎ√𝑚 𝜒

cosℎ√𝑚
−
4𝜋𝑢𝑒0∑ (−1)𝑛(2n + 1)cos𝜋 2⁄ (2n + 1)𝜒𝑒

− 𝜏
4⁄ (𝜋

2(2𝑛+1)2+4𝑚)∞
𝑛=0

(𝜋2(2𝑛+1)2+4𝑚)
              (A-26) 

Similarly, the same processes of diffusion layer of substrate solution as, 

𝑈𝑑(𝜒, 𝜏) =
𝑢𝑑1𝛿 ∑ (−1)𝑛(2𝜋n) sin ( 𝐶 −𝐶(𝜒))𝑒−((𝐶)

2)𝜏 ∞
𝑛=0

(𝐶)2
− 

𝑢𝑑0𝛿 ∑ (−1)𝑛(2𝜋n) sin ( 𝐶 𝜒−𝐶(1+𝛿))𝑒−((𝐶)
2)𝜏 ∞

𝑛=0

(𝐶)2
  

Where C= 
n𝜋

𝛿
 & 𝑚 =

𝜑2

2
 

Appendix III: For the Limiting Case 2, the Degradation Concentration of Product 𝜷 = 0 

In section 4, For enzyme and diffusion layers as follows, Using equations (A-16) for enzyme layer to construct new homotopy 

as follows, 

(1 − 𝑝) [
𝜕2𝑉𝑒(𝜒,𝜏)

𝜕𝜒2
+
𝜑2𝑈𝑒(𝜒,𝜏)

2 
−
𝜕𝑉𝑒( 𝜒,𝜏)

𝜕𝜏
] + 𝑝 [(1 + 𝑈𝑒(𝜒, 𝜏)) (

𝜕2𝑉𝑒(𝜒,𝜏)

𝜕𝜒2
 −

𝜕𝑉𝑒( 𝜒,𝜏)

𝜕𝜏
) + 𝜑2𝑈𝑒(𝜒, 𝜏)]= 0        (A-27) 

Equating the coefficients of p 

𝑝0: 
𝜕2𝑉𝑒0 (𝜒,𝜏)

𝜕𝜒2
+
𝜑2𝑈𝑒0 

2
−
𝜕𝑉𝑒0 ( 𝜒,𝜏)

𝜕𝜏
 = 0                              (A-28) 
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The boundary conditions: 

𝜒 = 0 𝑉𝑒0 = 0 & 𝜒 = 1 𝑉𝑒0 = 0.                                (A-29) 

Taking Laplace transform in (A-28) to (A-29), 

𝑝0: 
𝜕2𝑉𝑒0 
̅̅ ̅̅ ̅̅

 

𝜕𝜒2
+𝑚𝑈𝑒0 

̅̅ ̅̅ ̅̅
 
− 𝑠𝑉𝑒0 
̅̅ ̅̅ ̅

 
= 0                               (A-30) 

The boundary conditions become: 

𝜒 = 0 𝑉𝑒0 
̅̅ ̅̅ ̅(0) = 0 & 𝜒 = 1 𝑉𝑒0 

̅̅ ̅̅ ̅
 
= 0.                            (A-31) 

Here 𝑚 =
𝜑2

2
, s denotes Laplace variable and over bar – Laplace transform quantity. 

The obtained solution of equation (A-30) and using (A-31) as, 

𝑉𝑒0 
̅̅ ̅̅ ̅

 
=

𝐵 cos ℎ√𝑠 𝜒

cosℎ√𝑚+𝛼+𝑠(𝑚)
+
𝐵 sinℎ√𝑠 𝜒

sin ℎ√𝑠 (𝑚)
 −

𝐵 sin ℎ√𝑠 𝜒 cos ℎ√𝑠

sin ℎ√𝑠 (𝑚) cos ℎ√𝑚+𝛼+𝑠
−
𝐵 cos ℎ√𝑚+𝛼+𝑠 𝜒

cosℎ√𝑚+𝛼+𝑠(𝑚)
              (A-32) 

To convert in to complex inverse method to get the solution of enzyme layer product as, 

𝑉𝑒( 𝜒, 𝜏) = 𝐵

cosℎ√𝑚+𝛼(𝑚)
− 

4𝜋𝐵∑ (−1)𝑛(2n + 1) cosℎ√
(−𝐴)

4
 𝜒𝑒

− 𝜏
4⁄ (𝐴) ∞

𝑛=0

(𝐴)(𝑚)

 

−
𝐵 cosℎ√𝑚+𝛼 𝜒

cos ℎ√𝑚+𝛼(𝑚)
+ 
4𝜋𝐵∑ (−1)𝑛(2n + 1)cos(

𝜋

2
)(2n + 1)𝜒𝑒

− 𝜏
4⁄ (𝐴) ∞

𝑛=0

(𝐴)(𝑚)
+
4𝜋𝐵∑ (−1)𝑛(2n + 1) cosℎ√

(−𝐴)

4
 sinℎ√

(−𝐴)

4
 𝜒𝑒

− 𝜏
4⁄ (𝐴) ∞

𝑛=0

(𝐴)(𝑚) sin ℎ√
(−𝐴)

4
 

 

+𝐵∑ (−1)𝑛(2𝜋n) sinn𝜋 𝜒𝑒
−((

n𝜋
𝛿
)2+𝐵)𝜏

 ∞
𝑛=0

((𝑛𝜋)2)(𝑚)
− 

𝐵∑ (−1)𝑛(2𝜋n) sinn 𝜋 𝜒𝑒
−((

n𝜋
𝛿
)2+

𝐵
𝑚)𝜏 ∞

𝑛=0

((𝑛𝜋)2)(𝑚) cos ℎ√𝑚−((𝑛𝜋)2) 
               (A-33) 

Where  

A= 𝜋2(2𝑛 + 1)2 + 4𝑚 + 4𝛼, B = 𝑚𝑢𝑒0 and = 
𝜑2

2
 .                    (A-34) 

Similarly, the same processes of diffusion layer of product solution as, 

𝑉𝑑( 𝜒, 𝜏) =  𝑣𝑑0 − 
4𝜋𝑣𝑑0𝛿

2∑ (−1)𝑛(2n + 1)cos (
𝜋

2(𝛿)
)(2n + 1)(𝜒−1−𝛿)𝑒

− 
𝜏(𝜋2(2𝑛+1)2)

4𝛿2  ∞
𝑛=0

𝜋2(2𝑛+1)2
 
              (A-35) 

Appendix IV: For the Limiting Case 3, the Degradation Concentration of Substrate and Product 

𝜶 = 𝜷 = 0  

In section 4, For enzyme layer as follows, The equations in section 4 from (A-38) to (A-40) are solved by Akbari-Ganji method 

as follows, 

𝜕𝑈𝑒( 𝜒,𝜏) 

𝜕𝜏
 = 

𝜕2𝑈𝑒(𝜒,𝜏)

𝜕𝜒2
 – 

𝜑2𝑈𝑒(𝜒,𝜏)

1+𝑈𝑒(𝜒,𝜏)
                                   (A-36) 

𝜕𝑉𝑒( 𝜒,𝜏) 

𝜕𝜏
 = 

𝜕2𝑉𝑒(𝜒,𝜏)

𝜕𝜒2
 + 

𝜑2𝑈𝑒(𝜒,𝜏)

1+𝑈𝑒(𝜒,𝜏)
 0 < 𝜒 < 1                               (A-37) 

The initial and boundary conditions are: 

𝜏 = 0, 0 < 𝜒 < 1 𝑈𝑒 = 0, 𝑉𝑒 = 0. 
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𝜒 = 0 
𝜕𝑈𝑒( 𝜒,𝜏) 

𝜕𝜒
= 0, 𝑉𝑒 = 0. 

𝜒 = 1 𝑈𝑒 = 𝑢𝑒0, 𝑉𝑒 = 0. 0 < 𝜒 < 1                                (A-38) 

Assume that solution of the equations (A-36) and (A-37) 

𝑈𝑒(𝜒) = 𝐴1 cos ℎ 𝐿1𝜒 + 𝐵1 sinh 𝐿1 𝜒                              (A-39) 

𝑉𝑒(𝜒) = 1 + 𝐴2 cos ℎ 𝑀1𝜒 + 𝐵2 sinh𝑀1 𝜒                            (A-40) 

Here 𝐴1, 𝐵1, 𝐴2, 𝐵2 , 𝐿1 and 𝑀1 are constants has to be obtained. 

To solve equation (A-39) using equation (A-38) to get 

𝐴1 = 
𝑢𝑒0 

cos ℎ𝐿1 
 , 𝐵1 = 0                                  (A-41) 

From equation (A-41) substitute in equation (A-39) 

𝑈𝑒(𝜒) =
𝑢𝑒0 

cos ℎ𝐿1 
cos ℎ 𝐿1𝜒                                  (A-42) 

Substitute equation (A-42) in to (A-36) we get, 

(1 +
𝑢𝑒0 

cos ℎ𝐿1 
cos ℎ 𝐿1𝜒 ) 𝐿1

2 𝑢𝑒0 

cos ℎ𝐿1 
cos ℎ 𝐿1𝜒 − 𝜑

2  
𝑢𝑒0 

cos ℎ𝐿1 
cos ℎ 𝐿1𝜒 =0              (A-43) 

Put 𝜒 = 1 in equation (A-43), 

𝐿1 = 
𝜑

√1+𝑢𝑒0
 

By repeating the same procedure in equation (A-40) using equation (A-38), we get in the text. 

Appendix V: MATLAB (pdex4) Numerical Solution 

function pdex4 

m = 0; 

x = linspace(0,1); 

t = linspace(0,0.25); 

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 

u1 = sol(:,:,1); 

u2 = sol(:,:,2); 

%------------------------------------------------------------------ 

%figure 

%plot(x,u1(end,:)) 

%title( 'u1(x)') 

%xlabel( 'Dimensionless Distance x') 

%ylabel( 'Dimensionless concentration u') 

%------------------------------------------------------------------ 

figure 

plot(x,u2(end,:)) 

title( 'u2(x)') 

xlabel( 'Dimensionless Distance x') 

ylabel( 'Dimensionless concentration v') 

% ----------------------------------------------------------------- 

function [c,f,s] = pdex4pde(x,t,u,DuDx) 

c = [1; 1]; 
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f = [1; 1].*DuDx; 

m= 3; 

a= 2; 

b= 2; 

F1 =-a*u(1)-(m*u(1))/(1+u(1)); 

F2 =-b*u(2)+(m*u(1))/(1+u(1)); 

s = [F1; F2;]; 

function u0 = pdex4ic(x) %create a initial conditions 

u0 = [0; 0]; 

% ----------------------------------------------------------------- 

function [pl,ql,pr,qr]= pdex4bc(xl,ul,xr,ur,t) %create a boundary conditions 

pl = [0; ul(2)]; 

ql = [1; 0]; 

pr = [ur(1)-1; ur(2)]; 

qr = [0; 0]; 
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