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Abstract: Chemical combustion problems are known to be stiff and therefore difficult to efficiently integrate in time when
numerically simulated. Implicit methods, such as backwards differentiation formula (BDF), are widely considered to be the
state-of-the-art methods owing their capability of taking relatively large time-steps while maintaining accurate combustion
characteristics. Exponential time integration methods have recently demonstrated the ability to accurately and efficiently solve
large scale systems of ordinary differential equations. This study introduces a novel adaptive time stepping exponential
integrator named EPI3V. Its performance is measured on spatially homogeneous isobaric reactive mixtures involving three
hydrocarbon fuel mechanisms. The full combustion process is simulated using gas compositions with sufficient temperature to
obtain auto-ignition. Simulations are run until the steady state is obtained, then a comparison of the computational efficiency
and accuracy between a BDF and EPI3V method is made. The novel EPI3V method exhibits comparable computational
efficiency to a well-established implementation of the variable time-stepping BDF implicit methods for two of the mechanisms
investigated. In certain situations it even demonstrates a slight advantage over the implicit solver. However, in one specific case,
the EPI3V shows relative performance degradation compared to the implicit method, but it still converges for this case. These
results indicate that exponential time integration methods may be applicable to a larger variety of combustion problems.
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1. Introduction
Combustion is relevant to energy production, transportation,

military technology, and most industrial processes.
Furthermore, combustion is central to natural events relevant to
ecological systems and climate, such as forest fires. Because
of combustion’s ubiquity, the ability to model and predict
combustion accurately is critical to many engineering and
scientific applications. Due to the physical complexity of
combustion, numerical simulations have become essential to
its study. For example, simulations are used to design high-
efficiency, high-performance engines and to predict ignition
behavior and pollutant formation [1, 2].

The simulation of chemically reactive systems is

challenging due to their wide range of spatial and temporal
scales. Furthermore, transport of mass, momentum, and
energy are tightly coupled to chemical reactions at the
molecular scale. For many problems in the low Mach number
regime chemical reaction rates are significantly faster than
transport processes. When systems like these are solved
numerically it is a common practice to use temporal integration
methods with Strang splitting, which advance chemistry and
transport separately. However, integration of the chemical
source terms is difficult because it involves a large number
of reactions occurring with widely-ranging reaction rates.
In other words, while Strang splitting addresses the global
stiffness of the problem, integration of the chemistry is still
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stiff. The development of efficient time integrators for the
chemical source terms appearing in the transport equations for
the species concentrations is a critical task in computational
combustion. In this paper, an investigation is carried out
to explore whether exponential time integration, which has
proven efficient in other fields, offers advantages over more
established approaches for chemical kinetics problems in
combustion.

The stiffness of systems of ordinary differential equations
that describe the evolution of reactive species and temperature
in a homogeneous (zero-d) reactor makes explicit time
integration methods impractical since stability constraints on
time-step sizes are too severe. Instead, implicit schemes
are typically used. Commonly employed methods include
backward differentiation formulas (BDF)-based integrators
[3–6]. These algorithms are typically used in conjunction
with a modified Newton solver and Krylov-projection-type
iterative methods to solve its embedded linear systems [4,
5]. Whether the performance of such implicit methods is
satisfactory or not is often predicated on whether an efficient
preconditioner can be constructed to accelerate the linear
solves. Also, the functional form of the chemical source terms
is complex (these source terms and their Jacobians are most
often evaluated by software packages such as TCHEM [7],
Cantera [8], or Chemkin[9]), so it is often quite challenging
to construct an effective preconditioner [3, 10], particularly
one that is general enough to be effective across chemical
mechanisms. Recently, exponential methods emerged as an
efficient alternative to implicit integrators for problems for
which an effective preconditioner is not available [11–13].

In this paper, a new time adaptive exponential integrator
is applied to the simulation of the temporal evolution of
chemically reactive and spatially homogeneous systems, i.e.
chemical reactors that are described by a system of ordinary
differential equations (ODEs). It is found that the novel
exponential time integrator will accurately resolve all three
chosen chemical mechanisms. The paper is organized as
follows. Section 2 contains two subsections. Subsection 2.1
describes the governing differential equations. In subsection
2.2, a discussion of the time integration method is given.
Section 3 presents the results and section 4 includes a
discussion of the comparative performance of legacy implicit
and novel exponential methods. The last Section 5 outlines the
conclusions of this study and future directions.

2. Materials and Methods

2.1. Model

A spatially homogeneous chemically reactive system
consisting of an ideal gaseous mixture undergoing chemical
reactions at constant pressure is considered. The
thermochemical state of the mixture is uniquely identified by
the mass fractions of each chemical species and temperature.

Chemical species react with each other according to several
reactions. For reaction j, the forward reaction rate constant is

given given in Arrhenius form by

fj = AjT
αj exp

(−Ej
RT

)
, (1)

where Aj , and αj are pre-exponential and exponential
constants, R is the universal gas constant, and Ej is the
activation energy. If reaction j is reversible, then the
backwards reaction constant, bj , is not zero and is given
directly in Arrhenius form (1) or leveraging the equilibrium
constant Kj :

bj = fjKj . (2)

The net rate of reaction, representing the number of times
that the reaction occurs in the forward direction per unit time
per unit volume, is the difference of forward and backward rate
constants multiplied by the molar concentration of the species
participating in the reaction raised to their stoichiometric
coefficients, i.e.

Rj = fj

K∏
i=1

χ
v′ji
i − bj

K∏
i=1

χ
v′′ji
i , (3)

where v′ji and v′′ji are the reactant and product stoichiometric
coefficients respectively for species i in reaction j, and K is
the number of chemical species.

Production or loss of a species because of reaction is
equal to the difference between the forward and backward
stoichiometric coefficients times the rate of reaction. The
number of reactions is denoted as N , and the total amount of
species produced is found by summing over all reactions

ω̇i =

N∑
j=1

(v′′ji − v′ji)Rj . (4)

The rate of change in temperature is given by the total
volumetric heat production divided by thermal capacity of
the mixture per unit volume. The negative sign in equation
(5) exists because energy is understood with respect to the
chemical bonds, not the gas; if these bonds lose energy,
the gas’ energy increases. The change in the species mass
fractions with respect to time is the net rate of production
normalized to mass fractions. The resulting system of
ODEs models evolution of the temperature and species mass
fractions:

dT

dt
= − 1

ρcp

N∑
k=1

ω̇kHkWk, (5)

dYi
dt

=
1

ρ
ω̇iWi, i = 1, ...,K. (6)

The above system of equations include the gas density, ρ,
the heat capacity at specific pressure, cp, the molar rate of
production, ω̇k, the specific enthalpy, Hk, and the species’
molar mass, Wk. The system of equations requires a closure
for density ρ according to the equation of state for an ideal gas.

Equations (5-6) is a general model for a spatially
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homogeneous isobaric reactive mixture. To finalize the model
a specific list of species and reaction parameters must be
provided. These are defined through carefully assembled
kinetic mechanisms that describe the species present in the gas
solution, the chemical reactions that occur, and the species’
thermodynamic properties. The resulting model determines
the evolution of the specific gas.

The selected gases consist of hydrocarbon fuels (CxHy) and
oxygen (O2), with additional species such nitrogen (N2) and
argon (Ar) accounting for most of the mass [14–16].

In order to model the complexity of chemical reactions, and
the numerous branching pathways typical of large hydrocarbon
oxidation, a large number of species and reactions are required.
Three hydrocarbon based kinetic mechanisms were chosen:
GRI3.0 [17], n-butane [18], and n-dodecane [19], which
model the combustion of methane, butane, and dodecane,
respectively. Methane, CH4, while the smallest hydrocarbon
studied, is found in a wide variety of fuels and is the main
component of natural gas. The methane mechanism is detailed
and contains 53 species and 325 reactions. The second
mechanism is for butane, C4H10, and contains 154 species
and has 680 reactions. Butane behaves similarly to more
complex practical fuels [18] and is a component of gasolines
[14]. The last mechanism is n-dodecane, which is the largest
hydrocarbon, C12H26 included in this study. It is a component

of kerosene and some jet fuels [20], it contains 105 species and
420 reactions.

2.2. Methods & Implementation

For ease of notation, the thermochemical state variables
are organized in a vector ordered with temperature followed
by species in the same order as they appear in the chemical
mechanism:

y(t) = [T (t), Y1(t), ... , YNs
(t)]T . (7)

Denoting the initial gas state of the mixture y(t0) = y0, one
obtains the initial value problem

dy(t)

dt
= F (y(t)), (8)

y(t0) = y0. (9)

Time is discretized as [t0, t1, . . . , tm], where tn+1 = ti+hi,
and hi is the time step size. Approximations of the state,
right-hand-side function and Jacobian at time tn are denoted
as yn ≈ y(tn), Fn ≈ F (y(tn)), Jn ≈ J(y(tn)), respectively.

Figure 1. Precision diagrams comparing the CPU run time against the 2-norm error of EPI3V versus CVODE. The plots show GRI3.0 (a), n-dodecane (b), and n-butane (c) respectively.
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TCHEM [7] is employed in order to compute the chemical
source terms and Jacobians. Given the mass fractions,
temperature, and gas pressure, TCHEM returns both Fn and
Jn. The Jacobian can be computed either via finite differences,
or analytically. The analytical version is used to avoid the
inaccuracies associated with approximations. Moreover, it
is well known that computation of the Jacobian via finite
differences is inefficient and computationally expensive for
large mechanisms [21].

The simulation of combustion processes requires the
solution of nonlinear and stiff systems of ordinary differential
equations, which can be large in size depending on the
chemical mechanism. Exponential propagation iterative
methods of Runge-Kutta type (EPIRK) have been shown to
perform efficiently for a range of large scale stiff systems
[22], including reaction-diffusion models [11]. Because of
the record of success of EPIRK methods and the requirement
that the time step size be adaptive in order to simulate ignition
problems, the EPIRK framework is extended to a novel time-
adaptive third-order EPIRK method with an embedded second
order scheme for error estimation. The details of the derivation
of order conditions and their solution for constructing a
particular scheme can be found in [11]. The same approach
is used to formulate the following EPIRK integrator, EPI3V:

Y1 = yn + ϕ1

(
3
4hnJn

)
hnFn, (10)

R(z) = f(z)− Fn − Jn(z − yn), (11)

yn+1 = yn + ϕ1(hnJn)hnFn + ϕ3(hnJn)2hnR(Y 1). (12)

The ϕ-functions are

ϕ1(z) =
ez − 1

z
, ϕ3(z) =

ez − 1
2z

2 − z − 1

z3
. (13)

The method above uses matrix arguments for the ϕ-
functions; computing approximations of the product of
exponential-like matrix functions and vectors of type ϕk(A)v
is the largest computational expense of exponential integrators.
Systems of N ordinary differential equations that model
realistic physical processes result in large exponential matrices
of size N × N that make the evaluation of the ϕ-functions
prohibitively expensive with traditional approximations like
Padé [23] or Taylor expansions. The novel EPIRK method
was designed to leverage KIOPS, which is an adaptive Krylov-
projection algorithm designed to estimate ϕ-functions [22]. In
KIOPS, an augmented matrix Ã is used to express the linear
combination of ϕ-functions as:

w(τ) =

p∑
j=0

τ jϕj(τA)bj = eτÃv. (14)

A sub-stepping procedure is then employed to estimate the
successive products of matrix exponentials and vectors by

iteratively letting τ = τ1 + τ2 + ...+ τM :

eτÃv = e(τ0+τ1+...+τM )Ãv = eτ0Ãeτ1Ã...eτM Ãv. (15)

Each product e(τlÃ)vτl is approximated with a Krylov
projection in the KIOPS algorithm. With the length of Krylov
basis being m, V an N ×m matrix with Krylov basis vectors
vτi as its columns, and H an m × m matrix so that Hij =

(Ãvτr,j )T vτr,i , the resulting projection is

eτiÃvτi ≈ V eτiHV T vτi , (16)

where eτlH is approximated using Padé with a squaring and
scaling algorithm [23].

The Exponential Propagation Integrators Collection
(EPIC) C++ package [24] includes both implementations of
EPIRK methods and KIOPS, and together allows for easy
implementation of new methods. EPIC provides a linear
combination of products of ϕ-functions and vectors or a
single product estimated at various scalar multiples of the
ϕ-function’s arguments. In order to obtain linear combination
of ϕ-function vector products, the user provides a matrix A
and vectors bi. EPIC then uses KIOPS to approximate

ϕ0(A)b0 + ϕ1(A)b1 + ...+ ϕp(A)bp. (17)

The user can also provide a single bi and a set of
intermediate time points

[T1, . . . , TM ], Tj+1 > Tj , Tj ∈ (0, 1). (18)

The KIOPS algorithm allows the time integrator to stop at
each Tj and save the values:

ϕi(T1A)bi, ϕi(T2A)bi, ... , ϕi(TMA)bi, ϕi(A)bi. (19)

All ϕ-function approximations are accomplished with two
calls to KIOPS. The first call estimates both

ϕ1

(
3
4hnJn

)
hnFn, and ϕ1(hJn)hnFn. (20)

The second call estimates

ϕ3(hnJn)2hnR(Y 1). (21)

Two separate calls are necessary in order to obtain the
local truncation error in support of the adaptive time step
size selection algorithm. The lower order exponential Euler
method is:

yn+1 = yn + hnϕ1(hJn)Fn. (22)

Thus, by subtracting the right hand side of equation (22)
from the right hand side of equation (12), the following local
trucation error estimate is obtained:

ϕ3(hnJn)2hnR(Y 1). (23)
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This quantity is obtained by the second call to the KIOPS
algorithm (21).

An implementation of a standard adaptive controller from
Wanner et al. [25] is included in order to create a time-adaptive
method. After a step is calculated, the local truncation error
(21) is compared with the controller’s tolerance. If not within
tolerance, and the step is rejected, the time step is adjusted and
the process is repeated. Once the tolerance is achieved, the step
is accepted, the time step is adjusted, and the iteration proceeds
to the next step. Also, slight modifications are implemented
due to the specific features of an ignition process. Step
sizes change dramatically during the chain-branching phase of
ignition and shortly thereafter. The following constraints limit
the change between step sizes: hold, hnew, and the estimated
new step size ĥ{

hnew = 2ĥ, ĥ > 100hold

hnew = 1
100 ĥ, ĥ < 1000hold.

(24)

Implicit methods have shown to be an effective for solving
stiff systems of arising from the modeling of homogeneous
chemically reacting systems for over thirty years [4, 5].
The CVODE package from Lawrence Livermore National
Laboratory is widely used for solving general systems of
ODEs. This C++ package implements a variable-coefficient
ODE (VODE) solver offering adaptivity of the step size [26].
The user can select linear and non-linear solvers from a list
of available options. Because the proposed EPI3V method
uses Krylov projection methods, CVODE is configured to
allow for the most informative comparison possible. The BDF
non-linear solver and the SPGMR (Scaled Preconditioned
Generalized Minimized Residual) linear solver is selected.
Additionally, the Jacobian is set to be evaluated once each time
step and the maximum order is set to 3.

The EPIC package uses NVector data structures from
SUNDIALS for vector operations. The current version of
EPIC is compatible with SUNDIALS v5.7.

3. Results

The novel time integration method is compared to that
implemented in CVODE by simulating the ignition of mixtures
of air and hydrocarbons. Ignition is a fundamental process
in combustion, whereby the gaseous species in the mixture
undergo accelerating exothermic chemical reactions. As
the energy in the chemical bonds of the fuel is converted
into sensible enthalpy, it contributes to an increase in the
mixture temperature, which in turn leads to an acceleration
of the rate of reaction. Thus, ignition is characterized by a
sudden and abrupt exponential increase of temperature and
rate of chemical reactions, which are accompanied by a
corresponding depletion of fuel and oxidizer and the formation
of products of combustion, i.e. water and carbon dioxide.
Once either the fuel or oxidizer are exhausted, the mixture
reaches an elevated equilibrium temperature and composition,
which no longer vary in time.

In this work, the onset of ignition is hastened by setting the
initial temperature at or above 1000 Kelvin, which is sufficient
to induce the thermal decomposition of molecular oxygen into
its O atoms, which commence ignition by attacking the fuel
molecule.

For the numerical experiments parameter values for
simulations, including temperature, pressure and initial mass
fractions, are ensured to be sufficient for auto-ignition and lean
fuel mixtures. The lean mixtures mean that stoichiometrically
there is more oxygen than fuel which will ensure the
combustion terminates when the fuel is consumed, preventing
reactions between products of combustion with the fuel
hydrocarbons. Experiments are run through the initial buildup
phase into the ignition phase until the steady state is achieved.
Table 1 shows the temperature, mass fractions and final
simulation times for each kinetic mechanism.

Table 1. Experiment configurations.

GRI 3.0 Mechanism initial values
Item Value

Kelvin 1000

CH4 0.0548

O2 0.2187

Ar 0.0126

N2 0.7137

n-butane Mechanism initial values
Item Value

Kelvin 1200

O2 0.2173

C4H10 0.0607

Ar 0.0125

N2 0.7092

n-dodecane Mechanism initial values
Item Value

Kelvin 1200

O2 0.2169

C12H26 0.0624

N2 0.7080

Mechanism final times
Mechanism Final time (s)

GRI 3.0 1.2

n-butane 2 · 10−3

n-dodecane 5 · 10−4
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Data sets are generated by executing simulations of ignition
and storing the state vector at the end of the time integration
interval. The same simulations are run repeatedly with
different absolute and relative tolerances in order to obtain

a set of solutions of increasing accuracy for each kinetic
mechanism. The error at the final time is computed with
respect to a reference solution generated using CVODE with
tight relative and absolute tolerances.

Table 2. Absolute and relative tolerances used to generate precision diagrams in figure 1.

GRI3.0
Method (Absolute Tolerance, Relative Tolerance)

EPI3V (10−10, 2 · 10−2), (10−10, 3 · 10−3), (10−10, 5 · 10−4), (10−10, 10−4),

(10−10, 10−5), (10−11, 5 · 10−6), (10−12, 2 · 10−6), (10−13,8 · 10−7).

CVODE (10−7, 10−5), (10−8, 10−6), (10−8, 10−7), (10−9,10−8),

(10−10, 10−10), (10−10, 10−11), (10−11, 10−11), (10−11, 10−12).

n-butane
Method (Absolute Tolerance, Relative Tolerance)

EPI3V (10−7, 4 · 10−4), (4 · 10−8, 2 · 10−4), (2 · 10−8, 10−4),

(10−8, 10−4), (10−10, 10−5), (10−11, 10−6).

CVODE (10−10, 10−5), (10−10, 10−6), (10−10, 10−7),

(10−10,10−9), (10−11, 10−10), (10−12, 10−11).

n-dodecane
Method (Absolute Tolerance, Relative Tolerance)

EPI3V (10−5, 5 · 10−4), (2 · 10−6, 2 · 10−4), (10−7, 5 · 10−5),

(10−8, 10−5), (5 · 10−9, 5 · 10−6), (10−10, 10−6), (10−11, 10−7).

CVODE (10−8, 10−3), (10−8, 10−4), (10−8, 10−5), (10−8,10−6),

(10−8, 10−7), (10−8, 10−9), (10−8, 10−10), (10−8, 10−11).

Table 3. Tolerances used to generate the reference solutions in figure 1.

Reference tolerances

Mechanism name Absolute tolerance Relative tolerance

GRI 3.0 10−13 10−13

NButane 10−12 10−12

NDodecane 10−10 10−10

The performance of the EPI3V method is compared against
that of CVODE by plotting precision diagrams (CPU time
versus a measure of accuracy, here the 2-norm of the error
vector) for both methods in figure 1. Tolerances were chosen
in order to generate similar error values for the two methods.
Table 2 contains the tolerances selected for each numerical
experiment. Table 3 contains the tolerances which generate
each experiment’s CVODE reference solution.

4. Discussion

For the GRI3.0 mechanism, a modest advantage is seen
in performance for CVODE if loose tolerances are used.
However, at tighter tolerances that yield errors below 10−5

the EPI3V method outperforms CVODE. With the butane
mechanism, an observation of a similar relative performance
between the two methods is made. For loose tolerances, the
computational time spent integrating the method is insensitive
to accuracy, although the wall-clock time is larger than with
CVODE until the error is approximately 10−5. For errors
lower than 10−5, the EPI3V method becomes slightly faster
than CVODE. It is important to note that while CVODE
is an established code with decades of optimization, the
EPI3V implementation is rather new; both software and
algorithmic optimizations are ongoing and improvements are
expected. For example, significant computational savings
were obtained for EPIRK methods recently as the exponential
matrix functions evaluations transitioned from straightforward
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Krylov projection to adaptive Krylov method phipm [27] and
later to KIOPS [22]. In fact, in addition to improvements of
the methods’ parameters new algorithms may be beneficial
for approximating exponential matrix functions for select
problems. The third test problem, n-dodecane, illustrates the
importance of research in this direction.

Unlike the other two mechanisms, simulation of ignition

with the n-dodecane mechanism presented a challenge for the
EPI3V method. Like in the other experiments, the EPI3V
method was verified to generate the correct solution. However,
differing for the two previous cases, EPI3V was consistently
slower than CVODE by an order of magnitude. The spectrum
of the Jacobian matrix for all cases was investigated to discover
a potential cause for this behavior.

Figure 2. lots vizualizing Ω, which measures the area of the spectrum, and α, measuring the real spread of the specturm, versus normalized step cost (the time spent integrating a step
divided by the time step used). Plots (a) and (b) plot information for the GRI mechanism. Plots (c) and (d) show the results for n-dodecane, while (e) and (f) demonstrates n-butane
data. Ω and α scales are set on the left axes, while the normalized step costs scales are on the right axes of the plots.

For each experiment, the computation of the eigenvalues of
TCHEM’s exact Jacobian were carried out using MATLAB’s
eig function. The tightest set of tolerances from table 2
were chosen, and the three experiments were carried out
using the EPI3V time integration scheme, storing the Jacobian

calculated by TCHEM at each step. In order to provide a
measure of the size of the spectrum of the Jacobian, Ω, is
defined as the smallest rectangle with sides aligned with the
coordinate axes such that it encloses all the eigenvalues in the
complex plane, i.e. if λj = aj + i bj (j = 1, ..., N ) are the
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eigenvalues, the sides of the rectangle are α = maxj(aj) −
minj(aj) and β = maxj(bj) − minj(bj) so that Ω = αβ.
Figure 2 shows the evolution of α and Ω during ignition, along
with a normalized step cost, defined as the CPU time spent
computing a step divided by the time interval stepped.

It is apparent in figure 2 that the n-dodecane mechanism
has both the largest real spread α and Ω in all cases. The
KIOPS algorithm is based on projections onto the Krylov
subspace and the estimation of exponentials of approximate
eigenvalues. If the problem’s spectrum contains large positive
real eigenvalues with a large Ω, computing exponentials of
these augmented systems is problematic; the adaptive time
stepping procedure in KIOPS will reduce the time step size
significantly to accommodate the user designated tolerance.
However, in the case of the n-dodecane mechanism, this
time step reduction penalizes performance of EPIRK methods
compared to the implicit scheme implemented in CVODE.
This increased cost is also reflected in the normalized CPU
time in figure 2.

5. Conclusion

This work investigated the performance of the novel EPI3V
variable time stepping exponential integrator for the simulation
of chemically reactive and spatially homogeneous systems,
i.e. chemical reactors. The performance of the novel EPI3V
method was compared to that of CVODE, which uses a
modified Newton solver and Krylov-projection-type iterative
method. Numerical expleriments were conducted for three
chemical kinetics mechanisms of increasing complexity. It
was found that the exponential method performed favorably
for certain mechanisms, but not for others. Comparable CPU
time and accuracy were observed for both the GRI3.0 and n-
butane mechanism. However, for the n-dodecane mechanism
the CPU time for the EPI3V method required to obtain similar
errors to the CVODE was an order of magnitude higher than
that for CVODE at the same value of the error norm.

The performance degradation of EPI3V method for n-
dodecane likely stems from a combination of a wide spectrum
of the Jacobian and the presence of very large positive
real eigenvalues. Because KIOPS is based on Krylov-
iteration approximation of matrix exponential, its performance
degrades in the presence of such spectra. This finding points
to a promising research direction to explore alternatives to
Krylov-based algorithms for estimating products of matrix
exponentials with vectors. In the future, plans are laid to
investigate whether contour integration and quadrature-based
methods will yield better performance [28]. Also active
work is being done extending the current study to combustion
problems that include transport, in particular to modeling
flame front propagation.
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