

Internet of Things and Cloud Computing
2018; 6(1): 25-35

http://www.sciencepublishinggroup.com/j/iotcc

doi: 10.11648/j.iotcc.20180601.14

ISSN: 2376-7715 (Print); ISSN: 2376-7731 (Online)

Secure Cloud Auditing Over Encrypted Data

Yesu Ragavi Kannadasan, Rajagopal Devarajan

Department of Master of Computer Applications, Vivekanandha College of Arts and Sciences for Women, Tiruchengode, India

Email address:

To cite this article:
Yesu Ragavi kannadasan, Rajagopal Devarajan. Secure Cloud Auditing Over Encrypted Data. Internet of Things and Cloud Computing.

Vol. 6, No. 1, 2018, pp. 25-35. doi: 10.11648/j.iotcc.20180601.14

Received: February 8, 2018; Accepted: March 8, 2018; Published: April 13, 2018

Abstract: Cloud computing is a popular technology which permits storing and accessing data over Internet instead of storing

it on local machines’ hard drive. Cloud users can enable to store their data on cloud without any anxiety about its accuracy and

reliability. However storing data on cloud imposes certain security challenges. Outsourcing data in cloud result may lose

physical control over their data. Certain Cloud Service Providers (CSPs) may operate dishonestly with the cloud users’ data,

they may sneak the data from cloud and sell it to third parties in order to earn profit. Even though outsourcing data on cloud is

inexpensive and reduces long duration storage and maintenance complexity, there is least assurance of data integrity, privacy,

security and availability on cloud servers. A number of solutions have been recommended to solve the security issues in cloud.

This paper mainly focuses on the integrity verification strategy for outsourced data. The proposed scheme combines the

encrypting mechanism.

Keywords: Cloud Computing, Data Encryption, Security, Cloud Audit, Cloud Service Provider

1. Introduction

Cloud provides handling and maintaining large group of

remote servers to be in a network, which is allowed the

centralized data repository and access to the computer

services or resources whenever required [1]. The user is

concerned about the integrity of data stored in the cloud can

be hacked or modified by outside attackers [2]. Therefore, a

new concept called data auditing is introduced to check the

integrity of data with the help of an entity called Third Party

Auditor (TPA). In a cloud-computing environment, data and

the application are controlled by the CSP. This leads to a

usual concern about data protection from internal and

external threats [3]. In cryptography, encryption is the

process to encode the messages or informations, which will

help the authorized parties, can read it. Encryption itself does

not prevent interception, but denies the message content to

the interceptor. For technical reasons, an encryption scheme

usually uses a pseudo-random encryption key generated by

an algorithm [4]. A third party auditor has some capabilities

to provide more work that is efficient and convince both

cloud service providers and owners. For the third party

auditing in cloud storage systems, there are several important

requirements [5]. The auditing protocol should also be able to

support the batch auditing for multiple owners and multiple

clouds. This paper work focuses on brief descriptions of

various public key cryptography algorithms [6]. As users no

longer physically possess the storage of their data, traditional

cryptographic primitives for the purpose of data security

protection cannot be directly adopted. Thus, how to

efficiently verify the correctness of outsourced cloud data

without the local copy of data files become a big challenge

for data storage security in Cloud Computing [7].

2. Literature Survey

Sarah sheikh and Deepali vora et al. (2017) focus on their

work integrity verification strategy for outsourced data. Their

proposed scheme combines the encrypting mechanism along

with integrity verification strategy. They were concluded

from the work that of eliminates the overhead of performing

auditing task from the client and also lessons the cloud users

concern that their uploaded data may be accessed by an un-

trusted organization or individual.

Kalyani sonaware and Rahil dagade et al. (2017) state that the

cloud service providers (CSP’s) can access users sensitive data

without authorization. They made a wide survey on various

searching techniques towards effective data utilization in cloud

storage. The main goal of their work to prevent the cloud server

26 Yesu Ragavi Kannadasan and Rajagopal Devarajan: Secure Cloud Auditing Over Encrypted Data

from document set, the index file, and the user queries.

Swapnali more and Sangita chaudhari et al. (2016) state

that the TPA (THIRD PARTY AUDITOR) performs the main

role of data integrity check. It can performs activities like

generating hash value for encrypted blocks received from

cloud server, concatenating them and generate signature on

it. It later compares both the signatures to verify whether the

data stored on cloud is tampered or not. It verifies the

integrity of data on demand of the users. The cloud server is

used only to save the encrypted blocks of data. This proposed

auditing scheme is developed by AES algorithm for

encryption in cloud environment.

Nitin Nagar and Ugrasen suman et al. (2017) proposed

Reliable and Enhanced Third Party Auditing system in Cloud

Server Data Storage which provides better scalability, flexibility,

high performance, availability and less storage cost as compared

to other physical storage of data. However, the security of stored

data is the major concerned for organizations and individual user

to adopt cloud based environment. Their proposed approach

uses the functionality such as, public verifiability, metadata

generation, data dynamics, storage access point, encryption and

decryption of data through RSA algorithm and IP range in case

of private cloud.

Mahesh kumar N. B. discuss et al. (2017) detail about

Encrypted Big data Using AES Deduplication in Cloud Storage.

In that he states that users can achieve an effective and

economical approach for data sharing among group members in

the cloud with the characters of low maintenance and little

management cost. Meanwhile, it must provide security

guarantees for the sharing data files since they are outsourced.

Because of the frequent change of the membership, sharing data

while providing privacy preserving are still challenging issues,

especially for an untrusted cloud due to the collusion attack.

which means previous users need not to update their private

keys for the situation either a new user joins in the group or a

user is revoked from the group. The proposed scheme provides a

secure approach to protect and deduplicate the data stored in

cloud by concealing plaintext from both CSP (Cloud Service

Provider) and AP (Authorization Party). The security of the

scheme is ensured by PRE theory, symmetric key encryption,

AES and Elliptic curve Cryptography theory.

Sweta k. Parmer and k. c. Dave et al. (2013)

implementation the concurrency model using verilog HDL,

which is used to concurrent of process found in hardware

elements. It is a gateway design. Verilog HDL is a general –

purpose hardware description language that is easy to learn

and easy to use. It is similar in syntax to the C programming

language. Verilog HDL allows different levels of abstraction

to be mixed in the same model. Verilog came into being as a

proprietary language supported by a simulation environment

that was the first to support mixed–level design

representations comprising switches, gates, RTL, and higher

levels of abstractions of digital circuits.

Pitchaiah. M, Philemon Daniel, and Praveen et al. (2012)

discussed about implementation of advanced encryption

standard algorithm. Cryptography is the study of

mathematical techniques related to the aspects of information

and security such as confidentiality, data integrity, entity

authentication and data origin authentication. In data and

telecommunications, cryptography is necessary when

communicating over any unreliable medium, which includes

any network particularly internet. Cipher and inverse Cipher

are composed special number of rounds. For the AES

algorithm, the number of rounds to be performed during the

execution of the algorithm uses a round function that is

composed of four different byte-oriented transformations.

They are Sub Bytes, Shift Rows, Mix columns, and Add

Round Key. Their implementation and results are different

sub modules for AES algorithm by using Verilog code. This

implementation will be useful in wireless security like

military communication and mobile telephony where there is

a gayer emphasis on the speed of communication. The

encrypted cipher text and the decrypted text are analyzed and

proved correct. The encryption efficiency of the proposed

AES algorithm was satisfactory.

3. Existing Model

When directly applied in large collaborative data outsourcing

in cloud environment, the existing model faced the following

drawbacks. On the other hand, invariably sending back all files

solely based on presence and absence of the keyboard future

incurs large unnecessary network traffic, which is undesirable in

pay-as-you-use cloud paradigm. The importance of data sharing

and the need to ensure privacy and security is discussed in a

number of existing articles.

Drawbacks of Existing Model

(i). Methodology for searchable encryption techniques,

which allows to users without leaking information

about the data itself & users request with security

(ii). Large unnecessary network traffic while transferring

the data.

Figure 1. Cloud Data Storage Architecture.

 Internet of Things and Cloud Computing 2018; 6(1): 25-35 27

4. Related Work

Cloud Audit is a specification for the presentation of

information, which deals about how a cloud computing

service provider addresses the control frameworks. The goal

of Cloud Audit is to provide cloud service providers with a

way to make their performance and security data readily

available for potential customers.

Data auditing is the process of conducting a data audit to

assess how company's data is fit for given purpose. This

involves profiling the data and assessing the impact of poor

quality data on the organization's performance and profits.

Figure 2. Cloud Data Storage Architecture.

TYPES OF DATA AUDITING

a) Compliance audit

b) Construction audit

c) Financial audit

d) Information systems audit

e) Investigative audit

f) Operational audit

g) Tax audit

4.1. Batch Auditing

Third-party auditor (TPA) is used to check the integrity of

outsourced data. Privacy preserving public auditing

mechanism is used to verify the data integrity with privacy.

TPA supports auditing for multiple users simultaneously.

Batch auditing mechanism is used for multi user environment

TYPES OF BATCH AUDITING

1. Public auditing

2. Private auditing

4.2. Third Party Auditor

A new concept called data auditing is introduced to check

the integrity of data with the help of an entity called Third

Party Auditor (TPA).

Figure 3. Third party Auditor.

It later compares both the signatures to verify whether the

data stored on cloud is tampered or not. Why we need TPA?

Third–party prequalification is a rapidly growing business

model providing companies with a convenient way to ensure

contractors meet safety, fiscal, and other requirements before

being hired to work on a jobsite. How the Process Works?

Companies, often called Owner Clients or Owner Operators,

and contractors both pay to secure an account with a third-

party auditor, such as ISN networld, PICS, PEC premier,

BROWZ, Comply works, veriforce, texura and others.

4.3. Data Protection from External and Internal Threats

Virtual machines live their lives as disk images that are

28 Yesu Ragavi Kannadasan and Rajagopal Devarajan: Secure Cloud Auditing Over Encrypted Data

hosted on a hypervisor platform and are easily copied or

transferred to other locations. This mobility is advantageous

because it allows VMs to be transported to other physical

machines via an image file that defines the virtual disk for

that IDENTIFYING CLOUD COMPUTING SECURITY

RISKS 69. Unfortunately, the ability to move and copy VMs

poses a security risk because the entire system, applications,

and data can be stolen without physically stealing the

machine “From a theft standpoint, VMs are easy to copy to a

remote machine, or walk off with on a storage device”.

4.3.1. Threats for Cloud Service Users

a) Loss of Governance

b) Loss of Trust

c) Unsecure Cloud Service User Access

d) Lack of Information/Asset Management

4.3.2. Threats for Cloud Service Providers

a) Evolutional Risks

b) Business Discontinuity

c) License Risks Software

d) Bad Integration

e) Unsecure Administration API

f) Shared Environment

g) Service Unavailability

h) Data Unreliability

4.4. The Process of Cryptography

Cryptography is closely related to the disciplines of

cryptology and cryptanalysis. Cryptography includes

techniques such as microdots, merging words with images,

and other ways to hide information in storage or transit.

However, in today's computer-centric world, cryptography is

most often associated with scrambling plaintext (ordinary

text, sometimes referred to as clear text) into cipher text (a

process called encryption), then back again (known as

decryption). Individuals who practice this field are known as

cryptographers.

The ordinary information (called plaintext) is converted

into unintelligible text (called cipher text). Decryption is the

reverse, in other words, moving from the unintelligible cipher

text back to plaintext.

4.4.1. Components

a) Confidentiality (the information cannot be understood

by anyone for whom it was unintended)

b) Integrity (the information cannot be altered in storage

or transit between sender and intended receiver without

the alteration being detected)

c) Non-repudiation (the creator/sender of the information

cannot deny at a later stage his or her intentions in the

creation or transmission of the information)

d) Authentication (the sender and receiver can confirm

each other’s identity and the origin/destination of the

information)

4.4.2. Architecture

In computing the java cryptography architecture (JCA) is a

framework for working with cryptography using the Java

programming language. It forms the part of the Java security

API, and was first introduced in JDK 1.1 in the java. security

package. The JCA uses a "provider"-based architecture and

contains a set of APIs for various purposes, such as

encryption, key generation and management, secure random-

number generation, certificate validation, etc. These APIs

provide an easy way for developers to integrate security into

application code

4.4.3. Algorithm Approach

a) Asymmetric cryptosystem of Paillier is applied for

encryption of l+1 images, where one is the secret

image to be shared and all the other are individual

secret images used for shared trust and security.

b) Due to additive homomorphic property of Paillier,

addition operation over the plain text will give same

result as multiplication over ciphered text.

c) Extraction of secret image is possible only if the

individual secret images are available.

4.4.4. Differences Between Algorithms

Table 1. Differences between Algorithms.

Algorithm Structure Flexibility and Modification Known Attacks

DES Feistel NO Brute Force Attack

3DES Feistel YES, Extended from 56 to 168 bits Brute Force Attack, Chosen Plaintext, Known Plaintext

CAST-128 Feistel YES, 128 and 256 bits Chosen Plaintext Attack

BLOWFISH Feistel YES, 64-448 key length in multiplies of 32 Dictionary Attack

IDEA Substitution-Permutation NO Differential Timing Attack, Key-Schedule Attack

AES Substitution-Permutation YES, 256 key length in multiples of 64 Side Channel Attack

RC6 Feistel YES, 128-2048 key length in multiples of 32 Brute Force Attack, Analytical Attack

RSA Factorization YES, Multi Prime RSA, Multi power RSA Factoring the Public Key

4.4.5. Difference Between Encryption and Decryption

Encryption is the process of converting readable data into

unreadable characters to prevent unauthorized access. You

treat encrypted data just like any other data. While the

Process of converting encoded/encrypted text into a form that

is readable and understandable by humans or computers is

known as Decryption.

Encryption

Encryption is the process of converting readable data into

unreadable characters to prevent unauthorized access. Users

treat encrypted data just like any other data. That is, the user

 Internet of Things and Cloud Computing 2018; 6(1): 25-35 29

can store it or send it through e-mail message. To read the

data, the recipient must decrypt, or decipher it, into a

readable form.

In the encryption process, the unencrypted readable data is

called plaintext. The encrypted (scrambled) data is called

cipher text. An encryption algorithm is a set of steps that can

convert readable plaintext into unreadable cipher text.

Encryption programs typically use more than one encryption

algorithm, along with an encryption key. An encryption key

is a programmed formula that the originator of the data used

to encrypt the plaintext and the recipient of the data used to

decrypt the cipher text.

Some operating systems and e-mail programs allow you to

encrypt the contents of files and messages that are stored on

the computer. The user can purchase an encryption program,

such as Pretty Good Privacy (PGP). A digital signature is an

encrypted code that a person, Web site, or organization

attaches to an electronic message to verify the identity of the

message sender. Digital signatures often are used to ensure

that an impostor is not participating in an Internet transaction.

That is, digital signatures help to prevent e-mail forgery. A

digital signature also can verify that the content of a message

has not changed.

Many Web browsers and Web sites use encryption. A Web

site that uses encryption techniques to secure its data is

known as a secure site. Secure sites often use digital

certificates. A digital certificate is a notice that guarantees a

user or a Web site is legitimate. A certificate authority (CA)

is an authorized person or a company that issues and verifies

digital certificates. Users apply for a digital certificate from a

CA. The digital certificate typically contains information

such as the user’s name, the issuing CA’s name and signature,

and the serial number of the certificate. The information in a

digital certificate is encrypted.

Decryption

The process is of converting encoded/encrypted text into a

form that is readable and understandable by humans or

computers known as Decryption. Decryption refers to the

method of un-encrypting the text manually or by using codes

and keys. Data is encrypted to secure the information from

stealing, and some major companies encrypt data to keep

their trade secrets secure. While viewing that data the users

need to decrypt the data by using decryption process. If the

user wants to view the data, the user can enter passphrase or

key and if the user does not have the key, the user may need

to decrypt this by using algorithms and cracking it.

Figure 4. Key Generation for Encryption in cloud.

4.5. The Process of Encryption

Encryption is the process of translating plain text data

(plaintext) into something that appears to be random and

meaningless (cipher text). A symmetric key is used during

both the encryption and decryption processes. To decrypt a

particular piece of cipher text, the key is used to encrypt the

data.

4.5.1. Architecture

(i). This section describes the encryption architecture in

MapR.

(ii). MapR uses a mix of approaches to secure the core

work of the cluster and the Hadoop components

installed on the cluster. For example, nodes in a MapR

cluster use different protocols depending on their tasks:

(iii). The FileServer, JobTracker, TaskTracker,

NodeManager, and ResourceManager use MapR

tickets to secure their remote procedure calls (RPCs)

with the native MapR security layer. Clients can use

the maprlogin utility to obtain MapR tickets. Web UI

elements of these components use password security

by default, but can also be configured to use SPNEGO.

(iv). Hive Metastore, Hue, Flume, and Oozie use MapR

tickets by default, but can also be configured to use

Kerberos.

(v). HBase requires Kerberos for secure communications.

(vi). The MCS Web UI is secured with passwords. The

MCS Web UI does not support SPNEGO for users,

but supports both password and SPNEGO security

for REST calls.

(vii). Servers must use matching security approaches.

When an Oozie server, which supports MapR

Tickets and Kerberos, connects to HBase, which

supports only Kerberos, Oozie must use Kerberos

30 Yesu Ragavi Kannadasan and Rajagopal Devarajan: Secure Cloud Auditing Over Encrypted Data

for outbound security. When servers have both

MapR and Kerberos credentials, these credentials

must map to the same User ID to prevent ambiguity

problems.

4.5.2. Types of Encryption

Two types

(i). Shared secret encryption

(ii). Public key encryption

4.6. Encryption Key Generation

The remainder of the conversation uses a (typically faster)

symmetric-key algorithm for encryption. Computer

cryptography uses integers for keys. In some cases keys are

randomly generated using a random number generator

(RNG) or pseudorandom number generator (PRNG).

Pseudorandom encryption key

A pseudorandom number generator (PRNG) is also known

as deterministic random bit generator (DRBG). It is an

algorithm for generating properties sequence of numbers and

the properties sequences of random numbers. The PRNG-

generated sequence is not truly random, because it is

completely determined by an initial value, called the PRNG's

seed (which may include truly random values). Although

sequences that are closer to truly random can be generated

using hardware random number generators, pseudorandom

number generators are important in practice for their speed in

number generation and their reproducibility.

A. RNG Method Encrypted Algorithm:

Step-1. Read the plain text as p and key as k, which is

the state of the random number generator.

Step-2. Convert each text into its ASCII values.

Step-3. Transform each character of text using the

expressions given as: y = p + 2 sin (100) c = y + 10

r k = k + 1. Where p is input text; c is output text; r =

random number generated by the state,

“k” of Matlab random number generator;

Step-4. Plot output of the system.

Step-5. Convert integer values into its character values.

Step-6. Read c as output text as cipher text.

B. LCG Method Encryption Algorithm:

Step-1. Read plaintext as p, key as b and length as n.

Step-2. Change the character values of text into its ASCII

values.

Step-3. Each ASCII values are transformed into five

corresponding values using the following transformations: y

= p + sin (b); c = y + r; y is intermediate variable. r is the

random numbers generated corresponding to the key; b is

state of LCG; c is any variable.

Step-4. Plot „c‟ obtained from above step.

Step-5. The sequences of numbers in c are then converted

into character values.

Step-6. Read the output text (cipher text).

5. Proposed System

Privacy-preserving public auditing for cloud data storage

under the mentioned model our protocol design should

achieve the security and performance guarantees. For

achieving, the objective of the system by using paillier

algorithm is used. Symmetrical key generation techniques

only concentrated the private authentication. But the

asymmetrical key generation techniques is concentrated both

private and public. The proposed paillier algorithm is

covered the asymmetrical key generation techniques.

Therefore, to achieve the objective of the system, paillier

algorithm has been used to generate the efficient result in

cloud. The purpose of the algorithm is used for encryption

the fact that RSA is a (conjunction) trapdoor function.

Symmetric algorithms: (also called “secret key”) use the

same key for both encryption and decryption; asymmetric

algorithms: (also called “public key”) use different keys

for encryption and decryption. The distinguishing

technique used in public key cryptography is the use of

asymmetric key algorithms, where a key used by one party

to perform encryption is not the same as the key used by

another in decryption. Each user has a pair of

cryptographic keys – a public encryption key and a private

decryption key.

The proposed system is implemented on an Intel core i5

processor system running at 2.20 GHz, 3GB RAM using Java

and Ulteo OVD virtual desktop for building cloud

environment. The implemented system consists of 5

modules: User registration, encrypt and upload, file sharing,

decrypt and download and verification auditing.

User Registration

The registration function allows users to create secure

account. Here the user enters his/her information necessary

for signing up like user's name, password, mobile no and

email-address. The validations and required fields are

effectively handled. Each user will be provided his/her own

space on cloud.

Encrypt and Upload

After registering, the user may login into the system.

Every user is provided space on cloud where they may

upload their files. The encrypt function mentioned below

#include <stdint. h>

void encrypt (uint32_t* v, uint32_t* k)

{

uint32_t v0=v [0], v1=v [1], sum=0, i=0; /* set up */

uint32_t delta=0x9e3779b9; /* a key schedule constant

*/

uint32_t k0=k [0], k1=k [1], k2=k [2], k3=k [3]; /*

cache key */

while (i<=32)

{ /* basic cycle start */

sum += delta;

v0 += ((v1<<4) + k0) ^ (v1 + sum) ^ ((v1>>5) +

k1);

v1 += ((v0<<4) + k2) ^ (v0 + sum) ^ ((v0>>5) +

k3); i++

} /* end cycle */

v [0]=v0; v [1]=v1;

}

 Internet of Things and Cloud Computing 2018; 6(1): 25-35 31

Public-key encryption:

This idea omits the need for a “courier" to deliver keys to

the recipients over another secure channel before transmitting

the originally-intended message. In RSA, encryption keys are

public, while the decryption keys are not, so only the person

with the correct decryption key can decipher an encrypted

message. Everyone has their own encryption and decryption

keys. The keys must be made in such a way that the

decryption key may not be easily deduced from the public

encryption key.

Digital signatures:

The receiver may need to verify that a transmitted message

actually originated from the sender (signature), and it didn't

just come from there (authentication). This is done by the

sender's decryption key, and the signature can later be

verified by anyone, using the corresponding public

encryption key. Signatures therefore cannot be forged. Also,

no signer can later deny the message.

This is not only useful for electronic mail, but also for

other electronic transactions and transmissions, such as fund

transfers. The security of the RSA algorithm has so far been

validated, since no known attempts to break it and yet it has

been successful, mostly due to the difficulty of factoring

large numbers

n = pq, where p and q are large prime numbers.

Public-key cryptosystems:

Each user has their own encryption and decryption

procedures, E and D, with the former in the public and the

latter kept secret. These procedures are related to the keys,

which, in RSA specifically, are sets of two special

numbers. Of course start out with the message itself,

symbolized by M, which is to be “encrypted". There are

four procedures that are specific and essential to a public-

key cryptosystem.

a) Deciphering an enciphered message gives you the

original message, specifically

D (E (M))=M (1)

b) Reversing the procedures still returns M:

E (D (M))=M (2)

c) E and D are easy to compute.

d) The publicity of E does not compromise the secrecy of

D, meaning you cannot easily figure out D from E.

With a given E, we are still not given an efficient way of

computing D. If C = E (M) is the cipher text, then trying to

figure out D by trying to satisfy an M in E (M) = C is

unreasonably difficult: the number of messages to test would

be impractically large.

An E that satisfies (a), (c), and (d) is called a “trap-door

one-way function" and is also a “trap-door one-way

permutation". It is a trap door because since it's inverse D is

easy to compute if certain “trap-door" information is

available, but otherwise hard. It is one-way because it is easy

to compute in one direction, but hard in the other. It is a

permutation because it satisfies (b), meaning every cipher

text is a potential message, and every message is a cipher text

of some other message. Statement (b) is in fact just needed to

provide “signatures". Now turn to specific keys, and imagine

users A and B on a two-user public-key cryptosystem, with

their keys: EA, EB, DA, DB.

Figure 5. Intelligent Cryptosystems.

32 Yesu Ragavi Kannadasan and Rajagopal Devarajan: Secure Cloud Auditing Over Encrypted Data

Privacy:

Encryption, which is now a ubiquitous way of assuring a

message is delivered privately, so no intruder can bypass the

cipher text, which is essentially white noise. Without

property (d), however, an encryption process is still not

public-key, such as the NBS standard. It requires keys to be

delivered privately through another secure “courier", which

is an extra process that would deem NBS, for example, as

slow, inefficient, and possibly expensive. Thus, RSA is a

great answer to this problem. The NBS standard could

provide useful only if it was a faster algorithm than RSA,

where RSA would only be used to securely transmit the keys

only. Thus, an efficient computing method of D must be

found, so as to make RSA completely stand-alone and

reliable. For it to be reliable, it would have to use simple

arithmetic, which is easier to compute (a requirement of

property (c)) on a general-purpose computer than are bit

manipulations, where better hardware is used, where perhaps

NBS would be better.

Signatures:

For complete assurance that the message originatede from

a sender, and was not just sent through him by a third party

who may have used the same encryption key (that of the

receiver), need a digital signature to come with the message.

This has obvious implications of importance in real-life

applications.

DB (M)=S (3)

Then encrypt S with encryption key

Ea (S) = Ea (Db (M)) (4)

This way can assure only decrypt the document and gets

the signature by

DA (EA(DB(M)) = S.

Since only decryption key could compute the signature.

The messages need not be sent separately, since deduce it

from the signature itself by using publicly available

encryption key,

Formally

EB(S) = EB (DB(M)) = M.

Since S depends on M, and the encrypted transmission sent

depends on S, the transmission that depends on both the

message and the signature, so both can be deduced from the

transmitted document. This brilliantly assures the message

could not be modified (if needed to be presented to, say, a

judge"), since a modified M in the form of M
0
 would have to

generate a signature

S
0
 = DB (M

0
)

Which is impossible, since does not know DB by property

(d). So not only possess proof that signed the message and

indeed sent it, but she also cannot modify M nor forge a

signature for any other message.

A signature just need to assure it came from the public File

(PF) itself. Every time a user joins a network, everybody gets

a securely sent copy of the most recently updated PF, which

is stored on their system, and they never have to look it up.

Anyone trying to send a message pretending to be in the

public file would not have the appropriate signature, and

would be singled out as an intruder.

Applications, predictions, hardware implementation:

This has applications to electronic fund transmissions as

well. Financial information needs to be secure, and checks

can be electronically signed with RSA. Further measures

have to be taken, such as implementing unique check

numbers that allow a check with this certain number

transmittable cashable only once.

In fact, such a system can be applied to any electronic

system that needs to have a cryptosystem implemented. In

1978 RSA paper, the authors of RSA predicted a secure

email world to evolve and for RSA to be used to encrypt a

live telephone conversation. Now, these things are indeed a

part of more than just daily life because of RSA.

The encryption device must not be the direct buffer

between a terminal and the communications channel. Instead,

it should be a hardware subroutine that can be executed as

needed, since it may need to be encrypted/decrypted with

several sequences of keys, so as to assure more privacy

and/or more signatures.

File sharing:

The data owner may share the outsourced files with other

users in cloud using the share module. The secret key

generated during encryption is also mailed to the shared user

in order to grant them access to the shared file.

Decrypt and download:

The data owner may share the outsourced files with other

users in cloud using the share module. The secret key

generated during encryption is also mailed to the shared user in

order to grant them access to the shared file. The shared user

may download the file, make changes and again upload the file.

In such a case, TPA informs the original data owner of that file

about the latest modifications done by a shared user.

Decryption Algorithm:

void decrypt (uint32_t* v, uint32_t* k)

{

uint32_t v0=v [0], v1=v [1], sum=0xC6EF3720, i=0; /*

set up */

uint32_t delta=0x9e3779b9; /* a key schedule constant

*/

uint32_t k0=k [0], k1=k [1], k2=k [2], k3=k [3]; /*

cache key */

while (i<32)

{ /* basic cycle start */

v1 -= ((v0<<4) + k2) ^ (v0 + sum) ^ ((v0>>5) + k3);

v0 -= ((v1<<4) + k0) ^ (v1 + sum) ^ ((v1>>5) + k1);

sum -= delta; i++;

} /* end cycle */

v [0]=v0; v [1]=v1;

}

 Internet of Things and Cloud Computing 2018; 6(1): 25-35 33

The math of the method:

So far, expect to make E and D easy to compute through

simple arithmetic. Now represent the message numerically,

so that can perform these arithmetic algorithms on it. Now

lets represent M by an integer between 0 and n 1. If the

message is too long, sparse it up and encrypt separately. Let

e; d; n be positive integers, with (e; n) as the encryption key,

(d; n) the decryption key, n = pq.

Now encrypt the message by raising it to the e
th

 power

modulo n to obtain C, the cipher text. We then decrypt C by

raising it to the d
th

 power modulo n to obtain M again.

 Formally obtain these encryption and decryption

algorithms for E and D:

CE (M) Me (mod n) (5)

MD (C) Cd (mod n) (6)

Note that preserving the same information size, since M

and C are integers between 0 and n 1, and because of the

modular congruence. Also note the simplicity of the fact that

the encryption/decryption keys are both just pairs of integers,

(e; n) and (d; n). These are different for every user, and

should generally be subscripted, but we'll consider just the

general case here.

Now comes the question of creating the encryption key

itself. First, choosing two “random" large primes p and q,

multiply and produce n = pq. Although n is public, it will not

reveal p and q since it is essentially impossible to factor them

form n, and therefore will assure that d is practically

impossible to derive from e.

Now we want to obtain the appropriate e and d. We pick d

to be a random large integer, which must be co-prime to (p 1)

(q 1), meaning the following equation has to be

satisfied:”gcd” means greatest common divisor.

gcd (d; (p 1) (q 1)) = 1 (7)

The reason want d to be co-prime to (p 1) (q 1) is peculiar.

It will not show the “direct motivation" behind it; rather, it

will become clear why that statement is important when

show towards the end of this section that it guarantees (1)

and (2). It will want to compute e from d, p, and q, where e is

the multiplicative inverse of d. That means we need to satisfy

e.d = 1 (mod φ (n)) (8)

Here introduce the Euler totient function (n), whose output

is the number of positive integers less than n which are co-

prime to n. For primes p, this clearly becomes (p) = p 1. For

n, obtain by elementary properties of the totient function, that

Φ (n) = Φ (p) Φ (q)

= (p -1) (q -1)

= n Φ (p + q) + 1

From this equation, can substitute (n) into equation (7) and

obtain which is equivalent to for some integer k.

e. d1 (mod Φ (n))

e d = k. Φ (n) + 1 (9)

By the laws of Φ (n) modular arithmetic, the multiplicative

inverse of a modulo m exists if and only if a and m are co-

prime. Indeed, since d and (n) are co-prime, d has a

multiplicative inverse e in the ring of integers modulo Φ (n).

So far, can safely assured the following:

D (E (M)) (E (M))
d
 (M

e
)

d
(mod n) = M

e d
(mod n)

E (D (M)) (D (M))
e
 (M

d
)

e
(mod n) = M

e d
(mod n)

M Φ
(n)

 = 1 (mod n) (10)

Also, since e.d = k. Φ (n) + 1, we can substitute into the

above equations and obtain

Me. d = Mk- Φ (n)+1(mod.n)

Clearly represent that to equal M. To prove this, will need

an important identity due to Euler and Fermat: for any integer

M co-prime to n

Since previously specified that 0 M < n and know that M

would not be co-prime to n if and only if M was either p or q,

of the integers in that interval. Therefore, the chances of M

happening to be or q are on the same order of magnitude as

2=n. This means that M is almost definitely relatively prime

to n, therefore equation (9) holds and, using it, evaluate:

Me. d; Mk- Φ (n)+1; (M Φ (n)) kM; 1kM; (mod n) = M

It turns out this works for all M, and in fact see that (1) and

(2) hold for all M; 0 M < n. Therefore E and D are inverse

permutations.

Algorithms:

(i). Efficient encryption and decryption operations.

(ii). The authors of RSA claim that “computing Me (mod

n) requires at most 2 log2 (e) multiplications and 2

log2 (e) divisions" if use their procedure below. It is

important for us to know the amount of steps it would

take a computer to encrypt the message so can see if a

method is fast and efficient, or not. Now

exponentiation by repeated squaring and

multiplication".

Step 1. Let ekek 1:::e1e0 be the binary representation of e.

Step 2. Set the variable C to 1.

Step 3. Repeat steps 3a and 3b for i = k; k1;:::; 0:

Step 3a. Set C to the remainder of C2 when divided by n.

Step 3b. If ei = 1 then set C to the remainder of C M when

divided by n.

Step 4. Halt. Now C is the encrypted form of M.

(i). There are more efficient procedures out there, but this

one is good too. Also, since decryption follows the

same identical procedure as encryption and can

implement the whole operation on a few integrated

chips.

(ii). According to the authors of RSA, the encryption time

per block increases no faster than the cube of the

number of digits in n.

34 Yesu Ragavi Kannadasan and Rajagopal Devarajan: Secure Cloud Auditing Over Encrypted Data

Verification auditing:

In order to authenticate the integrity of the user’s uploaded

data, the TPA is granted access to the system. The TPA

validates the integrity of the cloud data files on remote server

on behalf of cloud user itself. TPA verifies the legitimacy of

data using secret hash key sent by the cloud user. If the secret

hash key matches with hash key in the cloud server, the

verification proves to be successful, thus implying that the

data files has not been modified. However, if the verification

is unsuccessful, an email is dispatched to the data owner of

the file informing about the last modifications done to his

file.

Paillier Algorithm:

The Paillier cryptosystem is invented and named after

Pascal Paillier in 1999, is a probabilistic asymmetric

algorithm for public key cryptography. The problem of

computing n-th residue classes is believed to be

computationally difficult. The decisional composite

residuosity assumption is the intractability hypothesis upon

which this cryptosystem is based. The scheme is an additive

homomorphic cryptosystem; this means that, given only the

public-key and the encryption of m1 and m2, one can

compute the encryption of m1+m2.

(i). Select two large primes, p and q.

(ii). Calculate the product n=p x q, such that gcd (n, Φ

(n)) = 1, where Φ (n) is Euler Function.

(iii). Choose a random number g, where g has order

multiple of n or gcd (L (gλ mod n2), n) = 1, where L

(t)= (-1) / n and λ (n)=lcm (p-1, q-1).

(iv). The public key is composed of (g, n), while the

private key is composed of (p, q, λ).

(v). The Encryption of a message m < n is given by:

(vi). c=gmrn mod n2

(vii). The Decryption of ciphertext c is given by:

(viii). m=(L (gλ mod n2)/L (gλ mod n2)) mod n.

Finding large prime numbers.

Finding n is the first step to the entire process. The number

n will be revealed in the encryption and decryption keys, but

the numbers p and q, whose product make up n, will not be

explicitly shown. They are essentially impossible to derive

from n, in fact, especially if we pick, say, 100-digit primes p

and q, which would make a 200-digit n. Each user needs to

privately choose his own two large prime numbers p and q.

To do this, need to generate, say, random odd 100-digit

numbers until a prime is found an will have to test each

number, and according to the prime number theorem, there

will be about (ln 10
100

)/2 = 115 number to test.

To test a large b for primality, can use an algorithm due to

Solovay and Strassen. First, pick a random number from a

uniform distribution on 1; b 1 and test whether

gcd (a; b) = 1 and J (a; b) = a
(b

1) 2

 (mod b); (11)

The Jacobi symbol is only defined when a is an integer and

b is a positive odd integer. Also, J (a; b) is 0 if gcd (a; b) 6= 1

and 1 if gcd (a; b) = 1. Equation (10) is always true if b is

prime, otherwise (if b is composite), (10) will have a chance

of being false of over 50%. If (10) is true 100 times for

randomly chosen a's, then b is almost certainly prime, with a

chance of being composite of 1 in 2
100

. If accidentally a

composite were used for p or q in the process, the recipient

would see “junk" and realize the decryption wasn't done

correctly. Now present an efficient program for computing J

(a; b)

J (a;b) = if a=1 then 1 else

if is even then j (a12;b). (1) (b2 l) / 8

else j (b (mod a);a). (1)^(a l) (b 1) /4

To protect against sophisticated factoring algorithms, p and

q should differ in length by a few digits, gcd (p 1; q 1) should

be small, and both (p 1) and (q 1) should contain large prime

factors. To assure the latter, we generate a large random

prime number u and take the first prime in the sequence i u +

1; i = 2; 4; 6;:::. This process would be very fast on a

computer. When the authors of RSA published their article,

on a high-speed computer, testing a 100-digit number for

primality would take several seconds, while finding the next

prime would take around a minute and a half. We could also

find large primes by taking a number whose factorization we

know, add 1 to it, and test for primality. If we get a number

we think is prime, we could potentially prove that it is prime

by using the factorization of (p 1)

How secure is RSA?

The RSA algorithm is indeed among the strongest, but can

it withstand anything? Certainly nothing can withstand the

test of time. In fact, no encryption technique is even perfectly

secure from an attack by a realistic cryptanalyst. Methods

such as brute-force are simple but lengthy and may crack a

message, but not likely an entire encryption scheme. We must

also consider a probabilistic approach, meaning there's

always a chance someone may get the \one key out of a

million". So far, we don't know how to prove whether an

encryption scheme is unbreakable. If we cannot prove it, we

will at least see if someone can break the code. This is how

the NBS standard and RSA were essentially certified.

Despite years of attempts, no one has been known to crack

either algorithm. Such a resistance to attack makes RSA

secure in practice.

Factoring large numbers is not provably hard, but no

algorithms exist today to factor a 200-digit number in a

reasonable amount of time. Fermat and Legendre have both

contributed to this field by developing factoring algorithms,

though factoring is still an age-old math problem. This is

precisely what has partially “certified" RSA as secure.

To show that RSA is secure, will consider how a

cryptanalyst may try to obtain the decryption key from the

public encryption key, and not how an intruder may attempt

to “steal" the decryption key. This should be taken care of as

one would protect their money, through physical security

methods. The authors of RSA provide an example: the

encryption device (which could be, say, a set of integrated

chips within a computer), would be separate from the rest of

the system. It would generate encryption and decryption

keys, but would not print out the decryption key, even for its

owner. It would, in fact, erase the decryption key if it sensed

an attempted intrusion.

 Internet of Things and Cloud Computing 2018; 6(1): 25-35 35

Factoring:

Since knowing the factors of n would give away (n) and

therefore d, a cryptanalyst would break the code if factored n.

However, factoring numbers has practically proven to be far

harder than determining primality or compositeness.

Nonetheless, many factoring algorithms are around. The

following table is the one the authors of RSA presented in

1978. They assume an operation in the Schroeppel factoring

algorithm takes one microsecond to compute, and present the

following data for various lengths of n:

Table 2. RSA factoring algorithm time duration for digits

Digits Number of operations Time

50 1.4 × 1010 3.9 hours

75 9.0 × 1012 104 days

100 2.3 × 1015 74 years

200 1.2 × 1023 3.8 × 109 years

300 1.5 × 1029 4.9 × 1015 years

500 1.3 × 1039 4.2 × 1025 years

6. Conclusion

The main objective and aim of this paper is that to study

about the integrity verification strategy for outsourced data.

For that the proposed scheme developed and which combines

the encrypting, decryption mechanism and its algorithms has

been discussed and it’s implemented to get efficient result. To

achieve the efficient result RSA and paillier algorithms have

been used. For key generation asymmetric method has been

implemented.

References

[1] Sarah sheikh and Deepali vora, “Secure cloud auditing over
encrypted data”, IEEE transactions on information forensics
and security, Vol. 11, No. 6, Mar 2017, PP: 1-5.

[2] Kalyani sonaware and Rahul dagade, “A survey on multi-key
word ranked search over encrypted cloud data with multiple
data owners”, International journal of computer applications,
Vol. 162, No. 11, Mar 2017, PP:9-12.

[3] Swapnali and Snagita chaudhari, “Third party public auditing
scheme for cloud storage”, 7th International conference on
communication, computing and virtualized 2016, PP: 69-76.

[4] Nitin nagar and Ugrasen suman, “Reliable & enhanced third
party auditing in cloud server data storage”, International
journal of security and its applications, Vol. 11, No. 7, 2017,
PP: 59-71.

[5] Mahesh kumar, “Encrypted bigdata using AES deduplication

in cloud storage”, International journal of engineering and
computer science, Vol. 6, No. 7, July2017, PP: 21889-21894.

[6] Sweta k. parmer and K. C. Dave “Implementation of data
encryption & decryption algorithm for information security”,
International journal of advanced in science engineering and
technology, Vol. 1, No. 2, Oct2013, PP: 7-10.

[7] Pitchaiah, Philemon Daniel & Praveen, “Implementation of
advanced encryption standard algorithm”, International
journal of engineering research, Vol. 3, No. 3, 2012, PP: 1-6.

[8] Vaishali Patil & Archana Lomte, “Implementation of privacy
–preserving public auditing and secure searchable data cloud
storage”, Vol. 3, No. 7, 2017, PP: 65-72.

[9] Karthika priya dharshini, Viji & Saravanan, “Seclusion search
over encrypted data in cloud storage services”, Vol. 4, No. 3,
Mar 2015, PP: 27-34.

[10] Evgeny Milanov, “The RSA Algorithm”, 3, June 2007, PP:1-
11.

Biography

Yesu Ragavi Kannadasan is completed her

under graduation course Bachelor of

Computer Applications in Vivekanandha

College of Arts and Sciences for women in

the year 2016. She has attended 15 National

and International level workshops and

attended more than 13 National and

International seminars. She has presented a

paper in International conference and published a paper in

International Journal. Her research area is Cloud Computing and

Computer Networks. Currently she is pursuing her Master of

Computer Applications degree in Vivekanandha College of Arts

and Sciences for women and it is affiliated to Periyar University.

Rajagopal Devarajan, he has completed his

Bachelor of Computer Science degree and

completed his Master of Computer

Applications degree in Periyar University in

the year 2003 and 2006 respectively. He has

completed his Master of Philosophy in PRIST

University in the year of 2012. He has 3 Years

and 10 Months Experience in the field of

Software Developing and 7 Years 6 months Experience in

Teaching. He has published 14 International Journal papers.

Currently he is working as an assistant professor in the department

of MCA, Vivekanandha College of Arts and Sciences for women,

Tiruchengode.

