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Abstract: In this paper we first study the properties of Strongly P-projective modules, and obtain some equivalent conclusions
about Strongly P-projective modules, it is proved that a finitely generated right R-module N is strongly P-projective if and only
if Exti(N,R) = 0 for all i ≥ 1 over left noetherian and right perfect ring, a P-projective right R-module N is strongly P-
projective if and only if the first syzygy ofN is strongly P-projective. Then we extend the notion of P-projective modules to that
of P-projective complexes. We study the relationships between P-projective complexes and P-projective modules, it is proved
that a complex C is P-projective if and only if every Ci is P-projective for every integer i if and only if Ext1(C,P ) = 0 for
every projective complex P if and only if for every exact sequence 0 → A → P → C → 0 with P projective, A → P is a
projective preenvelope of A. Some characterizations of P-projective complexes also obtained.
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1. Introduction
Throughout this paper,R is an associative ring with identity.

By module we mean right R-module. C will be an abelian
category of complexes of right R-modules. This category has
enough projectives and injectives. This can be seen from the
fact that any complex of the form

· · · // 0 // M
id // M // 0 // · · ·

with M projective (injective) is projective (injective). For
objects C and D of C, Hom(C,D) is the abelian group of
morphisms from C to D in C and Exti(C,D) for i ≥ 0 will
denote the groups we get from the right derived functor of
Hom.

In this paper, a complex

· · · // C−1
δ−1

// C0 δ0 // C1 δ1 // · · ·

will be denoted C. We will use subscripts to distinguish
complexes. So if {Ci}i∈I is a family of complexes, Ci will

be

· · · // C−1i
δ−1

// C0
i

δ0 // C1
i

δ1 // · · ·

Given a module M , we will denote by M the complex

· · · // 0 // M
id // M // 0 // · · ·

with the M in the -1 and 0th position. Also we mean by
M the complex with M in the 0th place and 0 in the other
places. Given a complex C and an integer m, C[m] denotes
the complex such that C[m]n = Cm+n and whose boundary
operators are (−1)mδm+n. If C is a complex we let Z(C) and
B(C) be the subcomplex of cycles and boundaries of C and
we let H(C) = Z(C)/B(C).

If f : C → D is a map of complexes, we can form M(f),
the mapping cone of f ,M(f) is a complex such thatM(f)n =
Dn ⊕ Cn+1 is mapped to (δn(x) + f(x),−δn+1(y)). It is
easy to check that there is an exact sequence of complexes
0→ D →M(f)→ C[1]→ 0.
Exti(C,D) is the complex
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· · · // Exti(C,D[n− 1]) // Exti(C,D[n]) // Exti(C,D[n+ 1]) // · · · ,

With boundary operator induced by the boundary operator
of D[9]. let F be a class of objects of abelian category
C. We donote by ⊥F the left orthogonal class of F , where
⊥F = {G : Ext1(G,F ) = 0, for all F ∈ F}, and denote
by F⊥ the right orthogonal class of F , where F⊥ = {G :
Ext1(F,G) = 0, for all F ∈ F}.

LetC be a object of C, Recalled that a morphism f : C → F
with F ∈ F is called an F-preenvelope of C if for any
morphism g : C → F

′
with F

′ ∈ F , there is a morphism
θ : F → F

′
such that θf = g, moreover, when F

′
= F

and g = f the only such θ are automorphisms of F , then
f : C → F is called an F-envelope of C, A monomorphism
f : C → F is said to be a special F-preenvelope of C if
coker(f) ∈⊥ F . Dually, we have the concepts of (special)
F-precover and F-cover. A pair (F ,G) is called a cotorsion
theory, if F⊥ = G and ⊥G = F . A cotorsion theory (F ,G)
is called perfect if every object of C has a F-cover and a G-
envelope. A cotorsion theory (F ,G) is called hereditary if G
is resolving.

Recalled that a complex P is projective if and only if it is
exact and every Kerδi is a projective module for all i ∈ Z , a
complex E is called a #-projective complex if all terms Ei are
projective.

A module M is said to be P-projective if it is a coker of a
projective preenvelope [3]. These modules were discovered
when studying projective (pre)envelopes. We note that the
notion of P -projectivity is dual to that of copure injectiveness
defined by Enochs and Jenda in [4].

A module M is said to be copure flat if it is flat with respect
to the exact sequence 0 → A → B → B/A → 0 with B/A
injective[5]. It is easy to see that M is copure flat if and only
if Tor1(M,E) = 0 for all injective right R-module. We will
say that M is strongly copure flat if Tori(M,E) = 0 for all
injective right R-module and all i ≥ 1.

In section 2, we introduce the strongly P-projective R-
module, some characterizations of strongly P-projective R-
module are given. We also study P-projective dimensions
which is based on a similar idea due to [5].

The main purpose of section 3 is to extend the notions of
P-projective modules to that of copure injective P-projective
complexes . A complex C is said to be P-projective if given
any morphism f : A → B → 0 with kerf projective and
any morphism g : C → B, there exists a homomorphism
h : C → A such that the following diagram commutative

C

h
���
�
�

g

��@@@@@@@@

A
f // B // 0.

(1)

We first obtain a number of characterizations of P-
projectivity of complexes. Then It is natural to consider
the relationships of P-projectivity of a complex C and P-
projectivity of all R-modules Ci for i ∈ Z.

We prove that a complex C is P-projective if and only if
every Ci is P-projective for i ∈ Z. Some characterizations of
P-projective complexes also obtained.

2. Strongly P-projective Modules

In this section we introduce the definitions of strongly
P-projective modules, and give some characterizations of
strongly P-projective modules.

A rightR-moduleN is said to beP-projective if it is a coker
of projective (pre)envelope [3]. A right R-module N is P-
projective if and only if Ext1(N,P ) = 0 for any projective
right R-module P . We shall say a right R-module N is
strongly P-projective if Exti(N,P ) = 0 for any projective
right R-module P and all i ≥ 1.

Remark 2.1 (1)Projective module ⇒ Gorenstein projective
module⇒ (strongly) P-projective module.

(2) The class of (strongly) P-projective modules is closed
under extensions, direct sums and direct summands.

(3) It is easy to see thatN isP-projective if and only if given
any homomorphism f : A→ B → 0 with kerf projective and
any homomorphism g : N → B, there exists a homomorphism
h : N → A such that the following diagram commutative

N

h
���
�
�

g

  @@@@@@@@

A
f // B // 0.

(2)

Proposition 2.2 The following are equivalent for a right R-
module N :

(1)N is projective.
(2)N is P-projective and pd(N) ≤ 1.
(3)N is strongly P-projective and pd(N) ≤ 1.
Proof. (1)⇒ (2) is trivial.
(2)⇒ (1) LetN be a P-projective module and pd(N) ≤ 1.

Then there exists an exact sequence 0→ K → P → N → 0.
Note thatK is projective since pd(N) ≤ 1. SoExt1(N,K) =
0, the above exact sequence splits. Thus N is projective.

(1)⇒ (3) is trivial.
(3)⇒ (1) is similar to (2)⇒ (1).
Proposition 2.3 Let R be a left coherent and right perfect

ring. Then the following results are true:
(1) Every (strongly) P-projective right R-module is

(strongly) copure flat.
(2)Every finitely presented (strongly) copure flat right R-

module is (strongly) P-projective.
Proof. (1) Let E be an injective left R-module, then E+ is

flat since R is left coherent ring, and so E+ is projective since
R is right perfect ring. Thus (1) follows from the standard
isomorphism Ext1(N,M+) ∼= Tor1(N,M)+, where N is
any left R-module and M is any right R-module.
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(2) Let N be a finitely presented (strongly) copure flat
right R-module. Then there exists a standard isomorphism
Exti(N,P )+ ∼= Tori(M,P+). Note that any projective right
R-module P is flat since R is a right perfect ring, and so P+

is injective. Thus the result holds.
Proposition 2.4 Let R be a left noetherian and right perfect

ring. Then a finitely generated right R-module N is strongly
P-projective if and only if Exti(N,R) = 0 for all i ≥ 1 .

Proof. If N is strongly P-projective, then Exti(N,R) = 0
for all i ≥ 1 since R is projective as a right R-module.
Conversely, Let P be a projective right R-module, P is flat
sinceR is a right perfect ring. By Theorem 4.34 of [11], P is a
direct limit of finitely generated free modules, Exti(N,P ) =
0 by Lemma 3.1.16 of [6] since R is left noetherian and N is
finitely generated.

Corollary 2.5 Let R be a left noetherian and right perfect
ring. Then a finitely generated right R-module N is P-
projective if and only if Ext1(N,R) = 0.

Let PP (resp., SPP ) denote the class of P-projective (resp.,
strongly P-projective ) right R-modules. Proposition 2.6 Let
R be a left coherent and right perfect ring, then:

(1) (PP ,PP⊥) is a perfect cotorsion theory.
(2) (SPP ,SPP⊥) is a perfect hereditary cotorsion theory.
Proof. Since every projective right R-module P is pure

injective over a left coherent and right perfect ring, (PP ,PP⊥)
is a perfect cotorsion theory by Theorem 2.8 of [14], and
(SPP ,SPP⊥) is a perfect cotorsion theory by Corollary
3.2.12 of [10].

Let P denote the class of projective right R-module. We
have the following : Proposition 2.7 The following are
equivalent:

(1) R is a QF ring.
(2) Every module is P-projective.
(3) Every quotient of a P-projective module is P-projective.
(4) (PP ,P) is a cotorsion theory.
Proof. (1) ⇔ (2) follows from the fact that R is a QF ring

if and only if every projective module is injective (we also can
see Remark 2. 3 of [3]) .

(2)⇒ (3) is trivial.
(3) ⇒ (2) We simply note that every module is a quotient

of a P-projective module since every projective module is P-
projective.

(1)⇒ (4) is clear.
(4) ⇒ (1) R is a QF ring since every injective module is

projective by (4).
An exact sequence · · · → A2 → A1 → A0 → N → 0

where A0 → N , A1 → ker(A0 → N), An+1 → ker(An →
An−1) are strongly P-projective precovers is called a P-
projective resolution of N . If there exists a P-projective
resolution 0 → An → · · · → A2 → A1 → A0 → N → 0,
we say that N has P-projective dimension (Ppd) ≤ n. Let
Ppd(R) = sup{Ppd(N) | N is a right R-module}, we call
Ppd(R) the P-projective dimension of R.

Proposition 2.8 Let R be a left coherent and right perfect
ring. Then the following are equivalent for a right R-module:

(1) Ppd(N) ≤ n.

(2) Extn+i(N,P ) = 0 for all projective right R-module P
and all i ≥ 1.

(3) Every nth syzygy of N is strongly P-projective.
Proof. (1) ⇔ (2) Let 0 → K → An−1 → · · · → A2 →

A1 → A0 → N → 0 be an exact sequence with A0, A1,
A2, · · · , An−1 strongly P-projective. Then Exti(K,P ) ∼=
Extn+i(N,P ). Thus the result follows.

(2)⇔ (3) is similar to (1)⇔ (2).
Remark 2.9 We note that the P-projective dimension of a

right R-module N can be considered as the largest positive
integer n such that Extn(N,P ) 6= 0 for some projective
module P . Taking this as a definition of P-projective
dimension, we may drop the left coherent and right perfect
conditions in Proposition above.

Corollary 2.10 LetR be a ring. Then aP-projective rightR-
moduleN is strongly P-projective if and only if the first syzygy
of N is strongly P-projective. Corollary 2.11 if pd(N) < ∞,
then Ppd(N) = pd(N).

Proof. Ppd(N) ≤ pd(N) follows from Proposition
2.8 since projective modules are P-projective. Suppose
pd(N) = n, then there exists a right R-module A such that
Extn(N,A) 6= 0. For right R-module A, there is an exact
sequence 0 → K → P → A → 0 with P projective.
Applying Hom(N,−) to this exct sequence, we get a long
exact sequence · · · → Extn(N,P ) → Extn(N,A) →
Extn+1(N,K) → · · · , then Extn+1(N,K) = 0 since
pd(N) = n. But Extn(N,A) 6= 0, so Extn(N,P ) 6= 0.
Thus Ppd(N) ≥ n = pd(N) by Remark 2.9. 2

Proposition 2.12 Let R be a left noetherian and right
perfect ring, N a finitely generated right R-module and n
a nonnegative integer. Then Ppd(N) ≤ n if and only if
Extn+i(N,R) = 0 for all i ≥ 1 .

Proof. Similar to the proof of Proposition 2.4.
The following proposition is Dual to the equivalences (1)-

(3) of [5].
Proposition 2.13 The following are equivalent for a left and

right noetherian ring R:
(1) R is n-Gorenstein.
(2) Ppd(N) ≤ n for all R-modules (left and right) N .
(3) Every nth syzygy of N is strongly P-projective.
Corollary 2.14 The following are equivalent for a two-sided

noetherian and perfect ring R:
(1) R is 1-Gorenstein.
(2) Ppd(N) ≤ 1 for all R-module (left and right) N .
(3) Every P-projective R-module (left and right) is strongly

P-projective.
(4) Every submodule of a strongly P-projective R-module

(left and right) is strongly P-projective.
Proof. (1)⇔ (2) follows from the Proposition above.
(2) ⇒ (3) Let N be a P-projective R-module. Then the

first syzygy of N is strongly P-projective by Proposition 2.8,
and so N is strongly P-projective by Corollary 2.10.

(3) ⇒ (2) Let N be an R-module. Then there exists an
exact sequence 0 → K → P → N → 0 with P projective.
Let K → P

′
be a projective preenvelope which is monic since

K is a submodule of projective. Note that L = coker(K →
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P
′
) is P-projective by the definition of P-projective modules,

and so L is strongly P-projective by (3). Hence K is strongly
P-projective, as desired.

(2)⇒ (4) LetM be a submodule of a strongly P-projective
R-module N . Applying the functor Hom(−, P ) to the exact
sequence 0 → M → N → N/M → 0 , we obtain an exact
sequence 0 = Exti(N,P ) → Exti(M,P ) → Ext1+i for all
i ≥ 1. But the last term is zero by (2), so Exti(M,P ) = 0 for
all i ≥ 1, as desired.

(4)⇒ (2) is obvious.

3. P-projective Complexes
Definition 3.1 A complex C is said to be P-projective if

given any morphism f : A→ B → 0 with kerf projective and
any morphism g : C → B, there exists a morphism h : C → A
such that the following diagram commutative

C

h
���
�
�

g

��@@@@@@@@

A
f // B // 0.

(3)

Proposition 3.2 The following are equivalent for a complex
C:

(1) C is P-projective.
(2) Ext1(C,P ) = 0 for every projective complex.
(3) For every exact sequence 0 → A → P → C → 0 with

P projective, A→ P is a projective preenvelope of A.
(4) C is a coker of a projective preenvelope.
(5) For any short exact sequence 0 → A → B → C → 0

and any projective P , the sequence Hom(B,P ) →
Hom(A,P )→ 0 is exact.

(6) Hom(C,−) exact any short exact sequence 0 → P →
A→ B → 0 with P projective.

Proof. (1) ⇒ (2) Let 0 → P → E → N → 0 be a short
injective resolution of projective complex P . Then we have
a long exact sequence 0 → Hom(C,P ) → Hom(C,E) →
Hom(C,N) → Ext1(C,P ) → Ext1(C,E) = 0. But 0 →
Hom(C,P )→ Hom(C,E)→ Hom(C,N)→ 0 is exact by
definition of P-projective modules. So Ext1(C,P ) = 0.

(2)⇒ (1) is straightforward.
(2) ⇒ (3) Let P

′
be projective, then there is an

exact sequence 0 → Hom(P, P
′
) → Hom(A,P

′
) →

Ext(C,P
′
) = 0 by (2), soA→ P is a projective preenvelope.

(3)⇒ (4) is obvious.
(4) ⇒ (2) Let C be a coker of a projective preenvelope

f : A→ P with P projective. then there is an exact sequence
0→ K → P → C → 0 withK = im(f). For each projective
module P

′
we have a long exact sequence Hom(P, P

′
) →

Hom(K,P
′
) → Ext1(C,P

′
) → Ext1(P, P

′
) = 0. But

Hom(P, P
′
) → Hom(K,P

′
) → 0 is exact by (4). Hence

Ext1(C,P
′
) = 0.

(2)⇒ (5) is obvious.

(5) ⇒ (2) There exists an exact sequence 0 → K → P →
C → 0 with P projective. Then for any projective P

′
, we

have the exact sequence Hom(P, P
′
) → Hom(K,P

′
) →

Ext1(C,P
′
) → Ext1(P, P

′
) = 0. But Hom(P, P

′
) →

Hom(K,P
′
)→ 0 is exact, so Ext1(C,P

′
) = 0.

(2)⇒ (6) is obvious.
(6) ⇒ (2) Let P be a projective. Then there is an exact

sequence 0 → P → E → L → 0, and we have a long
exact 0 → Hom(C,P ) → Hom(C,E) → Hom(C,L) →
Ext1(C,P ) → Ext1(C,E) = 0. But 0 → Hom(C,P ) →
Hom(C,E) → Hom(C,L) → 0 is exact by (6), so
Ext1(C,P ) = 0. 2 Remark 3.3 (1)Projective complex⇒
Gorenstein projective complex⇒P-projective complex.

(2) The class of P-projective complexes is closed under
extensions, direct sums and direct summands.

(3) If C is a P-projective complex, then C[i] is also a P-
projective complex for all i ∈ Z.

It is natural to consider the relationships of P-projectivity of
a complex C and P-projectivity of all modules Ci for i ∈ Z.
Next we give the following results.

Theorem 3.4 The following are equivalent for a complex C:
(1) C is P-projective.
(2) Ext1(C,P [n]) = 0 for any projective module P .
(3) Every Ci is P-projective for i ∈ Z and Hom.(C,P ) is

exact for each projective complex P .
(4) Every Ci is P-projective for i ∈ Z.
Proof. (1) ⇒ (2) For any projective module P , P [n] is

projective, so Ext1(C,P [n]) = 0 by Proposition 3.2.
(2) ⇒ (1) Note that any projective complex is the direct

product of complexes

Pi[i] = · · · // 0 // Pi
id // Pi // 0 // · · ·

with Pi projective. It is easy to check that Ext1(C,P ) = 0
for any projective complex P . So C is P-projective.

(1) ⇒ (3) Let 0 → P → A → Ci → 0 be any exact
sequence of modules with P projective. Then we get the
following pullback diagram:

...

��

...

��

...

��
0 // 0 //

��

Ci−2
id //

��

Ci−2 //

��

0

0 // P //

id

��

B //

��

Ci−1 //

��

0

0 // P //

��

A //

��

Ci //

��

0

0 // 0 //

��

Ci+1 id //

��

Ci+1 //

��

0

...
...

...

(4)
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Then Ext1(C,P [−i]) = 0 since P [−i] is projective. So
the above exact sequence of complexes is split. Thus the exact
sequence 0 → P → A → Ci → 0 is split, Ext1(Ci, P ) = 0,
so Ci is P-projective. For any projective complex P , the short
exact sequence of complexes 0 → P [n] → M(f) → C[1] →
0 is split for any n ∈ Z and any map f : C → p[n] by (1).
So f is homotopic to zero by lemma 2.3.2 of [9]. It is easy to
check that Hom.(C,P ) is exact.

(3)⇒ (4) is obvious.
(4)⇒ (2) Let

0 // P [n]
f // A

g // C // 0

be any exact sequence of complexes, and we consider the
following commutative diagram:

...

��

...

��

...

��
0 // 0 //

��

A−n−2
g−n−2

//

δ−n−2
A
��

C−n−2 //

δ−n−2
C
��

0

0 // P
f−n−1

//

id

��

A−n−1
g−n−1

//

δ−n−1
A
��

C−n−1 //

δ−n−1
C
��

0

0 // P
f−n

//

��

A−n
g−n

//

δ−n
A
��

C−n //

δ−n
C
��

0

0 // 0 //

��

A−n+1 g−n+1

//

δ−n+1
A��

C−n+1 //

δ−n+1
C��

0

...
...

...

(5)

Note that Ext1(C−n, P ) = 0 since C−n is P-projective.
So f−n : P → A−n splits, there exists a morphism h−n :
A−n → P such that h−nf−n = idP . We define h−n−1 :
A−n−1 → P as h−n−1 = h−nδ−n−1A and hi = 0 for i 6= −n,
−n − 1. Then h = {hi}i∈Z is the morphism from A to P [n]
such that hf = idP [n]. So the sequence

0 // P [n]
f // A

g // C // 0

splits, and so Ext1(C,P [n]) = 0.
Corollary 3.5 The following are equivalent for a moduleM :
(1) M is P-projective.
(2) M [n] is P-projective for all n ∈ Z.
(3) M [n] is P-projective for all n ∈ Z.
Corollary 3.6 The following are equivalent for a complexC:
(1) C is P-projective.
(2) Every exact sequence 0 → P → A → C → 0 with P

projective splits.
(3) Ext(C,P ) = 0 for any projective complex P .
Recalled that a complex C is said to be #-projective if

every Ci is projective for all i ∈ Z. We have the following
Proposition.

Proposition 3.7 The following are equivalent for a complex
C:

(1) C is P-projective.
(2) Ext1(C,P ) = 0 for every Hom(Q,−) exact bounded

#-projective complex P whenever Q is a P-projective module.
(3) Ext1(C,P ) = 0 for every Hom(Q,−) exact bounded

above #-projective complex P whenever Q is a P-projective
module.

Proof.(1) ⇒ (3) Let P be a Hom(Q,−) exact bounded
above #-projective complex whenever Q is a P-projective
module, without loss of generality, we may assume that P i =
0 for i > 0. Let

0 // P
f // A

g //// C // 0

be any exact sequence of complexes. Then we consider the
following commutative diagram:

...

��

...

��

...

��
0 // P−2

f−2

//

δ−2
P
��

A−2
g−2

//

δ−2
A
��

C−2 //

δ−2
C
��

0

0 // P−1
f−1

//

δ−1
P
��

A−1
g−1

//

δ−1
A
��

C−1 //

δ−1
C
��

0

0 // P 0 f0

//

��

A0 g0 //

δ0A
��

C0 //

δ0C
��

0

0 // 0 //

��

A1 g1 //

��

C1 //

��

0

...
...

...

(6)

We see that every exact sequence

0 // P i
fi

// Ai
gi //// Ci // 0

is split since Ci is P-projective by Theorem 3.4. So there
exists hi : Ai → P i such that hif i = idP i for all i ≤ 0.
Now Let α0 = h0.

Since cokerf−1∼= C−1, it follows that

Hom(cokerf−1, P−1)→ Hom(cokerf−1, P 0)→ 0

is exact. Note that (δ−1P h−1 − α0δ−1A )f−1 = δ−1P h−1f−1 −
α0δ−1A f−1 = δ−1P − α0f0δ−1P = δ−1P − δ−1P = 0, so
δ−1P h−1 − α0δ−1A ∈ Hom(cokerf−1, P 0). Thus there exists
γ−1 ∈ Hom(cokerf−1, P−1) such that δ−1P h−1 − α0δ−1A =

δ−1P γ−1, where γ−1 ∈ Hom(A−1, P−1) and γ−1(P−1) = 0.
let α−1 = h−1 − γ−1, then δ−1P α−1 = δ−1P h−1 − δ−1P γ−1 =
α0δ−1A , and α−1f−1 = h−1f−1 − γ−1f−1 = h−1f−1 =
idP−1 since γ−1f−1 = 0.
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It follows that

Hom(cokerf−2, P−2)→

Hom(cokerf−2, P−1)→ Hom(cokerf−2, P 0)

is exact since cokerf−2∼= C−2. Note that (δ−2P h−2 −
α−1δ−2A )f−2 = δ−2P h−2f−2 − α−1δ−2A f−2 = δ−2P −
α−1f−1δ−2P = δ−2P − δ

−2
P = 0, then (δ−2P h−2 − α−1δ−2A ) ∈

Hom(cokerf−2, P−1), but δ−1P (δ−2P h−2 − α−1δ−2A ) =

0, so there exists γ−2 ∈ Hom(cokerf−2, P−2) such
that δ−2P γ−2 = (δ−2P h−2 − α−1δ−2A ), where γ−2 ∈
Hom(A−2, P−2) and γ−2(P−2) = 0. Now let α−2 =
h−2 − γ−2, then δ−2P α−2 = δ−2P h−2 − δ−2P γ−2 = α−1δ−2A ,
and α−2f−2 = h−2f−2−γ−2f−2 = h−2f−2 = idP−2 since
γ−2f−2 = 0.

Similarly, we can obtain α−i : A−i → P−i such that
δ−iP α−i = α−i+1δ−iA and α−if−i = idP−i for i ≥ 3.
Finally, let αn = 0 for n ≥ 1. Then we obtain a morphism
α = {αi}i∈Z : A→ P such that αf = idP . This implies that
the exact sequence

0 // P
f // A

g //// C // 0

splits. Thus Ext1(C,P ) = 0.
(3)⇒ (2) is obvious.
(2) ⇒ (1) Let P be a projective module, Ext1(C,P [n]) =

0 by (2), so C is P-projective by Theorem 3.4.
Proposition 3.8 The following are equivalent:
(1) R is a QF ring.
(2) Every complex is P-projective.
(3) Every quotient of a P-projective complex is P-

projective.
Proof. (1) ⇒ (2) Let C be a complex, then Ci is P-

projective by Proposition 2.7. So C is a P-projective complex
by Theorem 3.4.

(2)⇒ (3) is obvious.
(3) ⇒ (1) Let M be a quotient of a P-projective module

N . Then M is a quotient of a P-projective complex N , so M
is P-projective, thus M is P-projective by Theorem 3.4. So R
is a QF ring by Proposition 2.7.

We conclude the paper with the following Remark. Remark
3.9 (1) let R be a left coherent and right perfect ring.
Then every right R-module has a P-projective cover by
Proposition 2.6. So every bounded above complex has a
P-projective precover by Proposition 5.3 of [12] since P-
projective complexes coincide with #-P-projective complexes
by Theorem 3.4.

(2) If every complex has a projective envelope and
we replace ”P-projective modules” with ”P-projective
complexes” in [3], the results still hold by similar proofs.

4. Conclusion
The relationship between module and complex is an

important research content in homological algebra. We find a

new complex called P-projective complex from P-projective
module, and reveal the relationship between them. Then we
study the properties and homology dimension of P-projective
complex in different rings. This kind of work is very
meaningful.
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