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Abstract: Linear model (LM) provide the advance in regression analysis, where it was considered an important statistical 
development of the last fifty years, following general linear model (GLM), principal component analysis (PCA) and constrained 
principal component analysis (CPCA) in the last thirty years. This paper introduce a series of papers prepared within the 
framework of an international workshop. Firstly, the LM and GLM has been discussed. Next, an overview of PCA has been 
presented. Then constrained principal component has been shown. Some of its special cases such as PCA, Canonical correlation 
analysis (CANO), Redundancy analysis (RA), Correspondence analysis (CA), Growth curve models (GCM), Extended growth 
curve models (ExGCM), Canonical discriminant analysis (CDA), Constrained correspondence analysis, non-symmetric 
correspondence analysis, Multiple Set CANO, Multiple Correspondence Analysis, Vector Preference Models, Seemingly 
unrelated regression (SUR), Weighted low rank approximations, Two-Way canonical decomposition with linear constraints, and 
Multilevel RA has been noted in this paper. Related methods and ordinary least squares (OLS) estimator as a special case form 
CPCA has been introduced. Finally, an example has been introduced to indicate the importance of CPCA and the different 
between PCA and CPCA. Where CPCA is a method for structural analysis of multivariate data that combine features of 
regression analysis and principal component analysis. In this method, the original data first decomposed into several components 
according to external information. The components then subjected to principal component analysis to explore structures within 
the components. 
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1. Introduction 

LM play a central part in modern statistical methods these 
models are able to approximate a large amount of metric data 
structures in their entire range of definition or at least 
piecewise. On the other hand, approaches such as the analysis 
of variance, which model effects such as linear deviations 
from a total mean, have proved their flexibility, and error 
structures of most ecological data.  

According to Gauss Markov theorem, which is based on 
the linear regression model (LM), 

��.� � ��.���.� 	 
�.�                (1) 

where � is an n × 1 vector of responses, � is an n × p 
observed matrix of the variables, assumed to have full rank, 

i.e., rank (� ) = 	� , �  is a �  × 1 vector of unknown 
parameters, and 
 is an n × 1 vector of error terms assumed 
to be multivariate normally distributed with mean 0 and 
variance covariance 
���. It is known that the ordinary least 
squares (OLS) estimator of � 

����� � ����������,               (2) 

which distributed normal ���, 
���������. The standard 
regression model assumes that the column vectors in � are 
linearly independent. The restricted model for ����� can be 
written as � � �� where � is an � x � matrix��	 � ��, 
and 	�  is �  x 1  vector of restrictions, the restricted 
parameter ����

�  using Lagrange function is given by 

 � �� ! ���/�� ! ��� 	 #�� ! ������ 
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GLM is mathematical extension of linear models that do not 
force data into unnatural scales allow for non-linearity and 
non-constant variance structures in the data. They are based on 
an assumed relationship (called a link function) between the 
mean of the response variable and the linear combination of 
the explanatory variables. Data may be assumed to be from 
several families of probability distributions, including the 
normal, binomial, Poisson, negative binomial, or gamma 
distribution, many of which better fit the non-normal Thus, 
GLM are more flexible and better suited for analyzing 
ecological relationships, which can be poorly represented by 
classical Gaussian distributions [2]. 

The next sections indicate the principal component analysis 
PCA and the constrained principal component analysis CPCA 
has been shown in the third section, where some special and 
related cases has been introduced in the fourth section, the 
fifth section proves that the constrained OLS estimator is a 
special case from CPCA, where example on PCA and CPCA 
has been introduced in the sixth section, but the seventh 
section shows another way to analyze the data, the last section 
uses bootstrap to study different sample size n. 

2. Principal Component Analysis 

PCA was introduced in 1901 [12], it is a multivariate 
technique that analyzes a data in which observations are 
described by several inter correlated quantitative dependent 
variables. Its goal is to get the important information from the 
data, to represent it as a set of new orthogonal (independent) 
variables called principal components. Mathematically, PCA 
depends on the eigen decomposition of positive semi definite 
matrices and on the singular value decomposition SVD of 
rectangular matrices [7] and In case of multicollinearity 
problem, the researchers used another forms to estimate the 
parameters like principal component regression PCR [1]. 
Where this problem occurs when the predictors included in 
the linear model are highly correlated with each other. When 
this is the case, the matrix �� 	� tends to be singular and hence 
identifying the least squares estimates will face numerical 
problems. Researchers used the orthogonal matrix '	in the 
GLM to get the PCR estimator for � [3, 9, 10]: 

��.� = ��.�'(.(	'�(.(	 	��.� + 
�.�            (4) 

They made spectral decomposition of the matrix ��X 
given as 

��� = *'+ , '��+	, -.+ 0
0 .��+/ -

'+
'��+/         (5) 

Where Λ1 = T1	� �� XT1  is diagonal matrix such that the 
main diagonal elements are the r largest eigenvalues of ��X, 
while the main diagonal elements of the Λ3�1 matrix are the 
remaining p − r eigenvalues. 

The PCR estimator for � can be written as 

��(� = '+	(T1	� �� 	�'+)��	T1	� �� 	�           (6) 

Expectation and variance: 

6(��(�) = '+T1	� � = �+�	(789:;<)	 
=9�(��(�) = 
�	'+ 	(Λ1)��T1	�   

3. Constrained Principal Component 

Analysis 

It is a method for structural analysis of multivariate data that 
combines features of regression analysis and principal 
component analysis. In this method, the original data are first 
decomposed into several components according to external 
information. The components are then subjected to principal 
component analysis to explore structures within the 
components [17]. 

The constrained principal component model is: 

>?.� = @?.�A�.BCB.�	� + D?.BCB.�	� + @?.�E�.� + F?.� (7) 

where > is an N × n matrix of responses, @	9G<	C are 
observed matrices of the variables, assumed to have full rank, 
A,D, 9G<	E are matrices of unknown parameters, and F is 
an N × n matrix of error terms assumed to be multivariate 
normally distributed with mean 0 and variance covariance 

��	. Statistical researchers estimated the unknown matrices 
of parameter as [14]: 

AH = (	@� I@)�@�I> C(C� 	 C)�            (8) 

DJ = I�IKL/M> C(C�  C)�             (9)	
E� = (@� 	I@)�@� 	I>KN/�	�   �           (10)	

FJ = OL/M>O�N/�	 − I�IKL/M>O�N/�	 − OL/M>KN/�	�   �		
Where: 

KL/M = � − OL/M , OL/M = @(@� 	I@)�@� 	I 

KN/� = � − ON/�, ON/� = C(C�  C)�C�  , 

I, a symmetric nnd (nonnegative definite) matrix of order 
N denote the cases Metric matrix, and  , a symmetric nnd 
(nonnegative definite) matrix of order n, to denote the 
variables metric matrix. If 	I  and/or   are psd 
(positive-semidefinite) but not pd (positive definite), the 
conditions: rank (I G) = rank (G), and rank (  H) = rank (H) 
has been required, These conditions are essential for 
projectors [14], When I	 = 	�  and  	 = 	� . Putting the 
estimates of A,D, E, 9G<	F above in model (7) yields the 
following decomposition of the data matrix: 
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> = OL/M>O�N/�	 	 I�IKL/M>O�N/�
	 	 OL/M>K�N/�

	   � 	 �> !

OL/M>O�N/�
	 ! I�IKL/M>O�N/�

	 ! OL/M>K�N/�
	   ��    (11) 

3.1. Kinds of External Information 

There are two kinds of matrices of external information, one 
on the cases and the other on the variables side of the data 
matrix. The former by an N	x	p matrix G, and the latter by an 
n	x	q matrix H has been denoted. When there is no special 
case and/or variable information, @	 � 	 �? 	and/or	C	 � 	 �� 
may be set, When the rows of a data matrix represent cases, 
cases demographic information, such as IQ, age, and level of 
education, etc., may be used in @. For example, a matrix of 
dummy variables for @ indicating cases’ group membership 
may be taking, then analyze the differences among the groups, 
When the columns of a data matrix represent stimuli, a matrix 
of descriptor variables of the stimuli as C  may be taking. 
When the columns correspond to different within subject 
experimental conditions, C could be a matrix of contrasts, or 
when the variables represent repeated observations, C could 

be a matrix of trend coefficients. There are several potential 
advantages of incorporating external information [16]. The 
empirical validity of hypotheses incorporated as external 
constraints by evaluating the goodness of fit of the hypotheses 
may be investigated, missing values via external constraints 
which serve as predictor variables may be predicted. In some 
cases incidental parameters by reparameterizing them as linear 
combinations of a small number of external constraints may 
be eliminated [13]. 

3.2. Internal Analysis 

In the internal analysis, the decomposed matrices in (11) are 
subject to PCA either separately or some of the terms 
combined. Decisions as to which term or terms are subjected 
to PCA, and which terms are to be combined, are dictated by 
researchers’ own empirical interests. For example, PCA of the 
first term in (11) reveals the most prevailing tendency in the 
data that can be explained by both @ and C, while that of the 
fourth term is meaningful as a residual analysis [13]. 

4. Some Special Cases and Related Methods of CPCA 

 

Figure 1. Some Special cases and related methods of CPCA. 

Statistical researchers introduced about 20 special cases and 
related techniques for CPCA as PCA [14], CANO, and 
Redundancy analysis (RA) the next part indicates some of them 
and illustrate the assumptions that lead each case to CPCA. 

1. CPCA reduces to unconstrained PCA when there is no 
additional case or variable information to be 
incorporated in the analysis. In this case @ � 	 �Y and 
C � 	 �� can be set, researcher also usually assume that 

I	 � 	 �Y and  	 � �� [15]. 
2. Canonical correlation analysis CANO analyzes 

relationships between two sets of variables. CANO can be 
derived from CPCA in two different ways. One is by 
setting > � �, I � �, 9G<	 � �. The other is by setting 
> � �G� 	@��G� 	C�H� 	C��, I	 � 	G� 	@, L	 � 	H� 	H, G	 �

	I, and	H	 � 	I [5].	
3. RA is a useful technique for multivariate predictions. It 

extracts a series of orthogonal components from predictor 
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variables that successively account for the maximum 
variability in criterion variables. It maximizes the 
proportion of the total sum of squares in the criterion 
variables that can be accounted for by each successive 
component. The set of components thus obtained defines, 
in the space of the predictor variables, a subspace best 
predictive of the criterion variables. This is in contrast 
with canonical correlation analysis CANO between two 
sets of variables, in which components are extracted from 
each set that are maximally correlated with each other. A 
large canonical correlation, however, does not imply that 
the two sets of variables are highly correlated as a whole 
[8]. RA follows from CPCA by setting C	 = 	�, I	 =
	�	9G<	 	 = 	�.	

4. Correspondence Analysis (CA) When both @ and C 
consist of dummy coded categorical variables, CANO 
specializes in correspondence analysis CA of a 
probability table \	 = 	G� 	C. 

5. Multidimensional Scaling MDS, In MDS we represent 
both rows (cases) and columns (variables) of a data 
matrix in a multidimensional Euclidean space in such a 
way that those variables chosen by particular cases are 
located close to the subjects, while those variables not 
chosen by those cases are located far from them [14]. 

6. Growth Curve Models GCM also known as 
GMANOVA (generalized multivariate analysis of 
variance), provide useful methods for analyzing 
patterns of change in repeated measurements, and 
investigating how such patterns are related to various 
characteristics of cases. 

7. Extended Growth Curve Models ExGCM, it is a 
generalization of GCM which has more than one 
structural term like @AH� 	(the first term in the CPCA). 

8. Canonical Discriminant Analysis CDA, when one of 
two sets of variables in CANO consists of dummy 
coded categorical variables, CANO reduces to 
canonical discriminant analysis CDA. 

9. Constrained correspondence analysis, Nonsymmetric 
correspondence analysis, Multiple Set CANO, Multiple 
Correspondence Analysis, Vector Preference Models, 
Seemingly Unrelated Regression (SUR), Weighted Low 
Rank Approximations, Two-Way canonical 
decomposition with linear constraints, and Multilevel 
RA are also special cases of CPCA [14]. Researchers 
said that the constrained principal component model is 
a general model for any constrained estimator; the 
following section show that the constrained ordinary 
least square is a special case from CPCA [14]. 

5. The OLS Estimator Is a Special Case Form CPCA 

ZJY.^ = GY.3MH 3.`H`.^	� + BHY.`H`.^	� + GY.3CJ3.^  

= G	(G		� KG)�G		� KZLH(H		� LH)�H		� + K�KQe/fZLH(H		� LH)�H		� 	+ G	(G		� KG)�G		� KZQg/h	 � LL�  

= G	(G		� KG)�G		� KZLH(H		� LH)�H		� + K�K(I − G(G		� KG)�G		� K)ZLH(H		� LH)�H		� + G	(G		� KG)�G		� KZ(I − L		� H(H		� LH)�H		� )LL�  
Let: The matrices (G		� KG)	, and	(H		� LH)	 are non-singular, Z = GY.iSi.^ , G = X , KY.Y = IY , L	^.^ = L		� = (G� G)��  This is 

means that n = p, H = R		� , RS		� = r, and R Full column rank [11] 
Where S is a p x n matrix and: S = (M3.`H`.^	� + C3.^) 
ZJY.^ = G	(G		� G)�G		� Z[LH(H		� LH)�H		� + I − L		� H(H		� LH)�H		� ] + ZLH(H/LH)�H		� − G	(G		� G)�G� ZLH(H		� LH)�H		�   
ZJY.^ = 	G(G		� G)��G		� Z + GS(G		� G)��H(H		� (G		� G)��H)��H		� − G(G		� G)��G		� Z	H(H		� (G		� G)��H)��H		� (G		� G)��  
ZJY.^ = 	G(G		� G)��G		� Z + GS(G		� G)��R		� (R(G		� G)��R� )��R − G(G		� G)��G		� Z	R		� (R(G		� G)��R		� )��R		(G		� G)��  
ZJY.^ = G	(G		� G)��G		� Z + G(G		� G)��R		� (R(G		� G)��R		� )��RS		� − G(G		� G)��R		� (R(G		� G)��R		� )��R		(G		� G)��G		� Z  
Where: (G		� G)��R		� (R(G		� G)��R		� )��R = I^	(USING	RIGHT	AND	LEFT	INVERSE)  

Where: R��tuvw = (R		� R)��R		�  and R		� ��1xyzw = R(R		� R)�� 

5.1. Two Sided Inverse 

A two sided inverse of a matrix { is a matrix {�� for which 
{{�� = I = {��	{. This is the inverse of {. When r = n = m; the 
matrix { has Full rank where n and m are the order of matrix {. 
5.2. Left Inverse 

Recall that {  has full column rank if its columns are 
independent; i.e. if r = n. In this case the null space of { 
contains just the zero vector. The equation {|	 = 	7 either 
has exactly one solution | or is not solvable. 

The matrix A		� { is an invertible n by n symmetric matrix, so 
(A		� {)��	A		� {  =  I, {�� left = (A		� {)��A		�  is a left inverse of { [4]. 

Note that: {{�� left is an m by m matrix which only equals 

the identity if m	 = 	n. A rectangular matrix can’t have a two 
sided inverse because either that matrix or its transpose has a 
nonzero null space. 

5.3. Right Inverse 

If { has full row rank, then	r	 = 	m. The null space of A		�  
contains only the zero vector; the rows of { are independent. 
The equation {|	 = 	7 always has at least one solution; the 
null space of {  has dimension n	 − 	m , so there will be 
n	 − 	m free variables and (if n > m) infinitely many solutions. 
Matrices with full row rank have right inverses {�� right with 
{{�� right = I. The nicest one of these is A		�  ({	A		� 	)��. When 
times { to A		�  ({	A		� 	)�� is [4] 

∵ ZJY.^ = 	GβJ�h� + G(G		� G)��R		� (R(G		� G)��R		� )��r − G(G		� G)��R		� (R(G		� G)��R		� )��R		βJ�h�  

= 	GβJ�h� + G(G		� G)��R		� (R(G		� G)��R		� )��(r − R		βJ�h�) 
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ZJY.^ = 	XβJ�h� + X(X		� X)��R		� (R(X		� X)��R		� )��(r − R		βJ�h�) = Xβ�h��                        (12) 

The equation (12) indicate that: 

β�h�� =	βJ�h� + (X		� X)��R		� (R(X		� X)��R		� )��(r − R		βJ�h�)                              (13) 

(This is the same result as (3)) 

6. Example of Unconstrained PCA and CPCA with Real Data 

The data represent 1058 units of air condition that sold from July 2007 to March 2013 in an Egyptian company called Pure 
technology, we decomposed these units as The ISM frequency data on traditional vs. modern views is used [6], the data are as 
follows: 

Table 1. The count of sales units of air condition at different cases. 

No. Sex Cordon Season 1.5 HP/b 2.25 HP/b Hp/b 1.5 Hp/c 2.25 HP/c 3HP/c TOTAL 

1 M Y summer 17 6 13 52 32 26 146 
2 M Y winter 3 0 0 3 1 2 9 
3 M Y autumn 0 0 1 12 6 3 22 
4 M Y spring 30 15 7 47 21 21 141 
5 F Y summer 6 1 5 6 6 1 25 
6 F Y autumn 0 0 0 0 3 1 4 
7 F Y spring 1 0 1 4 0 3 9 
8 C Y summer 0 0 0 0 2 6 8 
9 C Y winter 0 0 0 2 0 1 3 
10 C Y autumn 4 0 0 1 4 6 15 
11 C Y spring 5 0 1 2 4 16 28 
12 M N summer 20 15 11 29 26 29 130 
13 M N winter 1 2 2 3 0 1 9 
14 M N autumn 14 9 5 17 9 10 64 
15 M N spring 45 13 11 37 29 21 156 
16 F N summer 2 0 1 2 3 3 11 
17 F N winter 0 0 1 4 3 1 9 
18 F N autumn 1 1 1 5 1 3 12 
19 F N spring 0 1 0 2 3 3 9 
20 C N summer 2 1 2 1 8 28 42 
21 C N winter 3 1 8 2 5 16 35 
22 C N autumn 21 2 2 7 11 8 51 
23 C N spring 9 5 4 12 28 62 120 
        184 72 76 250 205 271 1058 

(Collected from an Egyptian air condition Company called Pure Technology) 

Where we make the cases constrained (@) is: 
1. Sex of the client (M=Male, F=Female and 

C=company) 
2. Cordon (place that the client live near from company or 

not) of the client (Y=Yes and N=No) 
3. Season of the sale (summer, winter, autumn and 

spring). 
And the variables constrained (C) is: 
1. 1.5 HP/b represent the air condition with power 1.5 

horse and it is hot and cold 
2. 2.25 HP/b represent the air condition with power 2.25 

horse and it is hot and cold 
3. 3HP/b represent the air condition with power 3 horse 

and it is hot and cold 
4. 1.5 HP/c represent the air condition with power 1.5 

horse and it is cold 
5. 2.25 HP/c represent the air condition with power 2.25 

horse and it is cold 
6. 3 HP/c represent the air condition with power 3 horse 

and it is cold 
And the matrix @ was as follows: 

Table 2. The cases constrained matrix @. 

M F C Y N summer winter autumn spring 

G1 G2 G3 G4 G5 G6 G7 G8 G9 

1 0 0 1 0 1 0 0 0 
1 0 0 1 0 0 1 0 0 
1 0 0 1 0 0 0 1 0 
1 0 0 1 0 0 0 0 1 
0 1 0 1 0 1 0 0 0 
0 1 0 1 0 0 0 1 0 
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M F C Y N summer winter autumn spring 

G1 G2 G3 G4 G5 G6 G7 G8 G9 

0 1 0 1 0 0 0 0 1 
0 0 1 1 0 1 0 0 0 
0 0 1 1 0 0 1 0 0 
0 0 1 1 0 0 0 1 0 
0 0 1 1 0 0 0 0 1 
1 0 0 0 1 1 0 0 0 
1 0 0 0 1 0 1 0 0 
1 0 0 0 1 0 0 1 0 
1 0 0 0 1 0 0 0 1 
0 1 0 0 1 1 0 0 0 
0 1 0 0 1 0 1 0 0 
0 1 0 0 1 0 0 1 0 
0 1 0 0 1 0 0 0 1 
0 0 1 0 1 1 0 0 0 
0 0 1 0 1 0 1 0 0 
0 0 1 0 1 0 0 1 0 
0 0 1 0 1 0 0 0 1 

(The data represent the constrained that found in cases, we get it from Table 1) 

And the column constrained was constructed by combining between the power of the unit measuring by HP and the kind of 
this unit (cold only or cold and hot) and the matrix H was as follows: 

Table 3. The variables constrained matrix C. 

 

1.5 HP 2.25 Hp 3 Hp b c 

H1 H2 H3 H4 H5 

1.5 HP/b 1 0 0 1 0 
2.25 HP/b 0 1 0 1 0 
3Hp/b 0 0 1 1 0 
1.5 Hp/c 1 0 0 0 1 
2.25 HP/c 0 1 0 0 1 
3HP/c 0 0 1 0 1 

(The data represent the constrained that found in variables, we get it from Table 1) 

We also use the profit of the unit as dependent variable to compare between OLS, PCA and CPCA the data is as follows: 

Table 4. The profit of the sales units of air condition at different cases. 

No. Sex cordon season 1.5 HP/b 2.25 HP/b 3Hp/b 1.5 Hp/c 2.25 HP/c 3HP/c TOTAL 

1 M Y summer 6223 2474 5440 16947 11767 9918 52769 
2 M Y winter 1050 0 0 335 210 849 2444 
3 M Y autumn 0 0 440 4149 2055 1230 7874 
4 M Y spring 11120 6040 2739 16161 7222 8461 51743 
5 F Y summer 2124 449 2260 2000 1760 352 8945 
6 F Y autumn 0 0 0 0 1150 410 1560 
7 F Y spring 400 0 440 1399 0 1215 3454 
8 C Y summer 0 0 0 0 188.31 2430 2618.31 
9 C Y winter 0 0 0 -45 0 -123 -168 
10 C Y autumn -325 0 0 -75 4080 2176.68 5856.68 
11 C Y spring 1265 0 440 350 1025 6560 9640 
12 M N summer 7449 6094 3819 9323 9704 10608 46997 
13 M N winter 450 898 849 1050 0 410 3657 
14 M N autumn 5025 3252 2010 6025 2960 3461 22733 
15 M N spring 9314 4390 4555 13214 10460 8516 50449 
16 F N summer 1450 0 455 435 895 1230 4465 
17 F N winter 0 0 440 1132 1199 449 3220 
18 F N autumn 375 405 440 2150 210 1302 4882 
19 F N spring 0 405 0 625 655 1315 3000 
20 C N summer 1175 405 880 350 3105 10767 16682 
21 C N winter 1050 455 3060 330 2195 6560 13650 
22 C N autumn 2689 834 153.2 1987 2813 3228 11704.2 
23 C N spring 889 1637 255 4116 5825 9510 22232 
    51723 27738 28675 81958 69478.3 90834.7 350407.19 

(Collected from an Egyptian air condition Company called Pure Technology) 



 International Journal of Theoretical and Applied Mathematics 2019; 5(2): 21-30 27 
 

 
The R programme version 2.4.1 is used to get the results, 

we found that there was found high correlation between 
variables, and the correlation matrix appear as follows: 

Table 5. Correlation matrix between the different types of the sold air 

condition. 

 1.5 HP/b 2.25 HP/b 3HP/b 1.5 Hp/c 2.25 HP/c 3HP/c 

1.5 HP/b 1.00  0.85 0.73 0.80 0.78 0.41 
2.25 HP/b 

 
1.00 0.77 0.83 0.79 0.50 

3 HP/b 
  

1.00 0.84 0.84 0.52 
1.5 Hp/c 

   
1.00 0.85 0.44 

2.25 HP/c 
    

1.00 0.78 
3HP/c 

     
1.00 

Unconstrained PCA done and the results shown that, the 
first two components explain 89.56% of the total information, 
i.e. when choosing two only component in case of reducing 
variables or removing multicolleinearity 10.44% of the total 
information will be lost.  

Then the data matrix order become 23 x 2 and it consists 
from E����G;G�	1	9G<	E����G;G�	2 where: 

Component	1	 � 	!0.409	z� ! 0.423z� ! 0.419z� !

0.426z� ! 0.445z� ! 0.313	z�. 

Component	2	 � 	0.328	z� 	 0.221z� 	 0.254	z� !

0.243z� ! 0.844z�. 

The scree plot indicate that the first component contribute 
more than 75% of the variation of the variables, where the 
second component approximately contribute with 10% as we 
shown in Figure 2 as follows: 

 

Figure 2. Scree plot for the explained variance by each component in PCA 

method. 

CPCA shows that the first two components explain 98.45% of 
the total information, i.e. when choosing two only component in 
case of reducing variables or removing multicollinearity only 
1.55% of the total information in the data will be lost. Then the 
data matrix order become 23 x 2 where and it consists from 
E����G;G�	1	9G<	E����G;G�	2 where: 

Component	1	 � 	!0.391z� ! 0.418z� ! 0.369z� !

0.429z� ! 0.439	z� 	! 0.399z�. 

E����G;G�	2	 � 	0.52	z� 	 0.295z� ! 0.602	z� 	 0.237	z�
! 0.471z� 

The scree plot indicate that the first component contribute 
more than 80% of the variation of the variables, where the 
second component approximately contribute with 18% as we 
shown in Figure 3 as follows: 

 

Figure 3. Scree plot for the explained variance by each component in CPCA 

method. 

From the previous example, CPCA is better than PCA can 
be found, because the first have larger explaining of variation 
of the data where it used prior information �@	9G<	C� about 
the data that contribute in explaining the total variation  

7. Handling Data Differently 

This section indicates the interpretation of the data as the 
ordinary least square, principal component analysis and the 
constrained principal component analysis when we applied 
multiple regression for the three cases and the estimation of 
the parameters for the OLS were as follows: 

Table 6. The estimation of the parameters for each air condition type. 

1.5 HP/b 2.25 HP/b 3Hp/b 1.5 Hp/c 2.25 HP/c 3HP/c 

232.44  537.26  1,137.64  582.56   (221.59) 275.99  

where 232.44 means that the profit will approximately arise to 
230 pound when we sell one unit of 1.5HP/b, but -221.59 
means that we will lose 220 pound when we sale one unit of 
2.25HP/c i.e. we should to stop sell of this product. The 
confidence interval for these parameters were: 

Table 7. Confidence intervals for the estimation of the parameters for each air 

condition type. 

 
2.50% 97.50% 

1.5 HP/b (7.54) 472.42 
2.25 HP/b (26.33) 1,100.86 
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2.50% 97.50% 

3Hp/b 525.74 1,749.54 
1.5 Hp/c 350.64 814.48 
2.25 HP/c (756.89) 313.70 
3HP/c 75.51 476.47 

These intervals indicate that the profit of the 2.25HP/c 
product falls between -765 and 313 pound, and this with 
confidence level 95%, and the products 3HP/b, 1.5HP/c 3HP/c 
always achieve profit and did not make loss at any case. The 
values of the predicted value was as follows: 

Table 8. The predicted value of the regression. 

1 2 3 4 5 6 7 8 
52,342.5 2,775.4 7,626.8 51,518.5 10,061.9 (388.8) 4,528.3 1,212.8 
9 10 11 12 13 14 15 16 
1,441.1 2,281.9 6,994.5 44,358.5 5,605.9 24,446.9 50,882.8 2,930.8 
17 18 19 20 21 22 23 

 
3,079.1 5,426.5 1,865.6 9,815.0 14,808.8 12,079.4 27,226.5 

 
 

The sample number six means that the Females that live 
inside the cordon do not achieve profit in autumn season; this 
might need more advertisement for females in the cordon at 
autumn season. ANOVA table indicate that the all product are 
highly significant as follows: 

Table 9. ANOVA table for OLS. 

 
Df Sum sq Mean sq F value Pr(>F) 

1.5 HP/b 1 9.97E+09 9.97E+09 1.3849E+03 <0.0001*** 

2.25 HP/b 1 8.31E+08 8.31E+08 1.1549E+02 0.00001*** 

3 HP/b 1 8.64E+08 8.64E+08 1.2003E+02 0.00001*** 

1.5 Hp/c 1 2.59E+08 2.59E+08 3.5994E+01 0.0001** 

2.25 HP/c 1 9.47E+07 9.47E+07 1.3160E+01 0.00208** 

3HP/c 1 6.07E+07 6.07E+07 8.4358E+00 0.0099 

Residuals 17 1.22E+08 7.20E+06 
 

  

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

the estimation of the parameters for the PCA were as follows: 

Table 10. The estimation of the parameters for each linear combination of air 

condition type using PCA. 

z1.pc z2.pc z3.pc z4.pc z5.pc z6.pc 

(7,884.98) 1,420.00  (2,233.42)  54.57  (2,944.00) (6,600.26) 

The second combination ��  is the better one because it 
achieves the most profit (1420 pound). The confidence 
interval for these parameters were: 

Table 11. Confidence intervals for the estimation of the parameters for each 

air condition type. 

 
2.50% 97.50% 

z1.pc (11,548.38) (4,221.58) 
z2.pc (7,707.42) 10,547.42 
z3.pc (16,846.42) 12,379.58 
z4.pc (20,008.45) 20,117.58 
z5.pc (23,146.88) 17,258.88 
z6.pc (52,965.28) 39,764.75 

The interval also indicates that the first combination is the 
worst one, it always make loss. The second combination �� is 
the better one because it achieves less lost (7707 pound), but at 
the same time, it did not achieve highly profit as the last 
combination. The ANOVA table indicates that only the first 
combination is significant at the same time it did not make any 
profit and it was as follows: 

Table 12. ANOVA table for PC. 

 
Df Sum sq Mean sq F value Pr(>F) 

z1.pc 1 6.62E+09 6.62E+08 20.6215 0.0003*** 
z2.pc 1 3.46E+07 3.46E+07 0.1077 0.7467 
z3.pc 1 3.34E+07 3.34E+07 0.1040 0.7510 
z4.pc 1 1.06E+04 1.06E+04 0.0000 0.9955 
z5.pc 1 3.03E+07 3.03E+07 0.0945 0.7622 
z6.pc 1 2.90E+07 2.90E+07 0.0902 0.7676 
Residuals 17 5.46E+09 3.21E+08 

  

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

the estimation of the parameters for the CPCA were as 
follows: 

Table 13. The estimation of the parameters for each linear combination of air 

condition type using CPCA. 

z1.cpc z2.cpc z3.cpc z4.cpc z5.cpc z6.cpc 

-5.87E+03 4.48E+03 -2.43E+04 1.24E+05 4.13E+17 -1.72E+19 

We also note that the second combination achieves profit 
4483 while the fourth and the fifth combinations achieve more 
profits. The confidence interval for these parameters were: 

Table 14. Confidence intervals for the estimation of the parameters for each 

air condition type. 

 
2.50% 97.50% 

z1.cpc -1.03E+04 -1.39E+03 
z2.cpc -1.04E+04 1.94E+04 
z3.cpc -3.39E+05 2.90E+05 
z4.cpc -4.23E+05 6.70E+05 
z5.cpc -6.91E+19 6.99E+19 
z6.cpc -6.87E+19 3.43E+19 

The interval also indicate that the first combination is the 
worst one, it always make loss. The second combination �� is 
the better one because it achieve the less lost (1.044731e+04 
pound), but at the same time it did not achieve highly profit as 
the fifth combination. ANOVA table indicate that only the first 
combination is significant at the same time it did not make any 
profit and it was as follows:  

Table 15. ANOVA table for CPC. 

  Df Sum sq Mean sq F value Pr(>F) 

z1.cpc 1 4.49E+09 4.49E+09 10.39 .005*** 
z2.cpc 1 1.02E+08 1.02E+08 0.24 0.633 
z3.cpc 1 3.35E+07 3.35E+07 0.08 0.784 
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  Df Sum sq Mean sq F value Pr(>F) 

z4.cpc 1 2.46E+07 2.46E+07 0.06 0.814 
z5.cpc 1 1.27E+06 1.27E+06 0.00 0.957 
z6.cpc 1 2.15E+08 2.15E+08 0.50 0.490 
Residuals 17 7.34E+09 4.32E+08 

  

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

8. Numerical Example Using Bootstrap 

To detect previous results of OLS, PC, and CPC using 
bootstrap with different sample size n, a numerical example 
has been made, The bootstrap method were applied to the 
original data at different sample size (20, 50, 100, 200, 500, 
1000) with 1000 replications for each sample size, The results 
indicated the standard deviation sd, and the standard error se 
for the coefficients b of all types of air condition parameters at 
the three cases ordinary least square OLS, principal 
component PC, and constrained principal component CPC. 

The results don’t different in coefficients from the original 
data, where the OLS method indicate that all types of air 
conditions are made profit except 2.25Hp/c, but the PC and 
CPC methods indicate that all types don’t made profit and 
these parameters don’t have any effect with increasing the 
sample size, the results show also the standard error and the 
standard deviation of the variables decrease with the 
increasing of the sample size n, we note that sd and se for OLS 
< PC< CPC for all variables and this will make the confidence 
interval of CPC become more wide and that is mean that the 
decision making will be more accuracy, but the bootstrap 
method don’t different from the original data in the proportion 
of the interpreting variance but it indicates that this proportion 
don't change with different of sample size. 

9. Conclusion 

From the results of the previous example we can conclude 
that Because of the high correlation between the variables, 
The OLS analysis refers only to the loss made by the fifth 
production ��, while the PCA indicate that the significant first 
combination that contribute with 77 % in interpreting the total 
variation in the variables refers to a large loss falls between 
11548.376 and 4221.576 where all six products made loss, 
that is the same information that indicated by the CPCA with 
85% of interpreting the variation of the total information 
where it falls between 1.034412e+04 and 1.394876e+03. The 
previous results indicate that the company is not achieve any 
profit, it makes large loss, we should advice the owner to 
change his trade or deal with professional persons in the 
market to take advices from them and change his technique of 
management. 

The previous example indicated that LM is an important 
statistical development in the last fifty years following GLM, 
PCA and CPCA in the last thirty years. This paper introduced 
a series of papers prepared within the framework of an 
international workshop. First, the LM and GLM has been 
discussed. Next, an overview of PCA has been presented as a 
tool for dealing with multicollinearity problem. then 
constrained principal component CPC has been shown. it was 

found that CPCA is better than PCA in solving the 
multicollinearity problem. then some of its special cases, 
related methods and example has been introduced to indicate 
the importance of CPCA and the different between PCA and 
CPCA. A real data of an air condition company has been used. 
The results show that CPC is more efficient than PC where it 
contribute more variation of the total variance that found in the 
data. then a bootstrap method has been done for the same data 
to indicate the behavior of the contributed variance with PCA 
and CPC with different sample sizes n. the results indicate that 
the sd and se of the combination variables decrease with 
increasing n and the proportion of the explained variance 
hasn't effected by n. finally ordinary least squares OLS 
estimator as a special case form CPCA has been shown. 
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