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Abstract: Rivest, Shamir, Adleman, RSA algorithm is a popular public key cryptosystem and is known to be secure, however, 

this fact relies on the difficulty of factoring large numbers. No algorithm has been published that can factor all integers in 

polynomial time. This paper proposes a new function that can be used to improve the process of factoring integer numbers. It gets 

the factor faster than known methods. By making use of such proposed function, corresponding two algorithms are proposed and 

pseudocoded. The utilization of these algorithms along with the basics of the theory of numbers led to three other new factoring 

algorithms. The five algorithms are implemented and verified using Python Language. The tabulated results that represent the 

time of factorization versus the number of digits of the large number have indicated the applicability of the last three algorithms. 
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1. Introduction 

Integer factorization is a classical problem in computer 

science and number theory [2], [3]. When the numbers are 

very large, no efficient, integer factorization algorithm is 

known. Several cryptographic systems are based on the 

hardness of factorization problems have been proposed. 

Among them, the RSA system is the most famous and widely 

used [2]. Actually, not all numbers of a given length are 

equally hard to factor. This fact is obvious from Table 2 (Sec. 

4). The hardest instances of that problem occur when the 

corresponding to prime numbers are both large, randomly 

chosen and about the same size (but not too close). 

Zaki and Hussein [1], proposed a function that has been 

used as fitness function in genetic algorithms to improve the 

heuristic search for factoring integer numbers. The fastest 

general-purpose factorization algorithm is the Number Field 

Sieve (NFS), [4]-[7]. This paper is organized as follows. In 

section 2, related works are discussed and a mathematical 

background is given in section 3. The proposed function in [1] 

is extended in section 4. Additional new algorithms for 

factoring integers will be discussed in section 5. Finally, the 

paper is concluded in section 6. 

2. Related Work 

Many references, [4]-[7] have explained methods of 

factoring integers, to attack the public key [3], such as Elliptic 

Curves, Continued Fraction, Quadratic Sieve and Number 

Field Sieve (NFS). Implementation of any of these methods, 

takes impractical factoring time. 

Abd El-Mageed and Hussein [1] have proposed function 

that used as fitness function to improve the heuristic search 

and gave genetic algorithms in order to factor the integer 

number. However, the time complexity of a genetic algorithm 

is O (a
3
) where a is the number of the constituents prime 

factors of the underlying integers. Here, the proposed 

algorithms, depend on a new function that can optimize 

memory and time of implementation for factoring integers.  

It can be noticed that, on the research level several quantum 

systems have solved the quantum factorization problem [9] 

[10] and achieved noticeable success [11]. However, in 

practice, RSA is still popular and widely spread. 
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3. Mathematical Background 

Suppose we want to factor the composite number N. We 

choose a bound, and identify the factor base, P, the set of all 

primes less than or equal to the chosen bound. Next, we search 

for positive integers z such that both z and (z+N) have all of 

their prime factors in P. We can therefore write, 

{\displaystyle z=\prod_{p_{i}\in P}p_{i}^{a_{i}}} 

� = �� 	��
��                      (1) 

	�� 	 ∈ P and 
 = 1, 2,…, number of primes in P 

and similarly: 

� + � = �� 	��

�                    (2) 

{\displaystyle z+n=\prod _{p_{i}\in P}p_{i}^{b_{i}}} 

But z and (z+N) are congruent modulo N, and each integer 

z yields a multiplicative relation (mod N) among the elements 

of P, i. e. 

�� 	��
�� = �� 	��


� 	����	��             (3) 

{\displaystyle \prod _{p_{i}\in P}p_{i}^{a_{i}}\equiv 

\prod _{p_{i}\in P}p_{i}^{b_{i}}{\pmod {n}}} 

Where a and b are nonnegative integers. When we have 

generated enough of these relations one can use the methods 

of linear algebra to multiply together these various relations in 

such a way that the exponents of the primes are all even [8]. 

This will give us a congruence of squares of the form a
2
≡b

2
 

(mod N), which can be turned into a factorization of N. 

N=gcd (a-b, N)×gcd (a+b, N).  

4. The Proposed Extended Function  

The new proposed function gf (x, N) is defined as follows: 

}{ }{( ) : : 0(mod ) 1
NN

x a a Ngf Z → ≡ ∪  

i.e. 
1

( ) ( m o d ){
N a

x Ng f ≡ , where a is factor of N. 

Proposition 1. 

Let p be a factor of N, then, by repeating k*p (mod N), k>0, 

the result is p. 

Because k*p is congruence of p. 

The basic procedure of implementing gf (x, N), as such, is 

given algorithm that can be pointed out as follows:  Algorithm 1 gf (x, N) (implementation of the function, 

given factor)  

Input: the number N to be factored and an element x in the 

interval [2, N-1]   

Output: the factor p of N or 1. 

1- Set )(mod Nxx ≡  

2- If x = 0 or x = N, then return 1 

3- While x>1, 

Set b ← x, and )(mod Nbx ≡ . 

4- If x = 0, then return b 

5. else, return 1 

Note that this algorithm is repeated subtraction of x from N.  

Theorem 1. 

Let 1< x <N. If gf (x, N) > 1, then gf (N-x, N) = gf (x, N) > 

1. 

Proof 

Let gf (x, N) produces a factor of N,.  

xNy −≡ , x = y, xNy −≡  and repeat until y = 0. 

i. e. N-x = 0 means N mod x = 0.. 

Then, last x is factor of N. 

Examples 

1-N = 17*37 = 629, 

x = 18, 35, 36, 47, 54. 66, 97, or 99, give gf (x, N) =17 

2-N = 7*11 = 77. 

x = 10, or 67 give gf (x, N) = 7 

3-N = 5*7 = 35. 

x==6, or 29 give gf (x, N) = 5 

Corollary  

Let N = p*q. then # {1<x<N: gf (x, N)>1} ≥ (p+q) 

Conjecture: 

Let N = p*q, 1<p<q<n. if q-1 is multiple of prime number 

(not equal p). Then |gf (i, N)>1|>>|gcd (i, N)>1|, for i in [1, 

N-1]. 

If q-1 is multiple of p, then |gf (i, N)>1| = |gcd (i, N)>1|, for 

i in [1, N-1]. 

and vice versa with respect to p, q 

Also, this function egf (x, N) can be used to get algorithm 

that extends the co-domain of the gf function. 

Algorithm 2 egf (x, N) (implementation of the function, has 

factor)  

Input: the number N that factoring and an element x in the 

interval [2, N-1] 

Output: the factor p of N or 1. 

1- Set p ←gf (x, N). 

2- If N>p>1, then return p  

3- Else  

3.1. Set b ←(a* (a
2
-1)) (mod N) 

3.2. Return gf (b, N).  

Example 

N = 5*7 = 35 

Table 1. Values of egf(x,N). 

x 2 4 6 8 9 11 13 16 19 22 24 26 27 29 

egf (x, N) 5 5 5 7 5 5 7 5 5 7 5 5 7 5 

 

This clearly shows that egf (x, N) exceeds the co-domain of 

gf (x, N) which exceeds the co-domain of gcd (x, N), Table 1. 

Actually, any heuristic can use one of these algorithms, gf (x, 

n), or egf (x, n) as a fitness function to get the target factor 

5. Other Three New Algorithms 

Here, three proposed new factoring algorithms are 
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presented. The following algorithm uses the base of the 

integer n. 

Algorithm 3 basefact (n): 

Input: the integer n which equal p*q 

Output: p, q 

1- set   1+← nr  and   13 +← nm  

2- make r odd integer. 

3- set 1*2 +← rq . and 0←i  

4- while r>m: 

4.1- if q divides n, then return (n/q, q). 

4.2- exceed i by 1, and decrease r and q by 2. 

4.3- calculate e as a base of n with respect to r. 

4.4- if number of digits of e equal 3 and its last digit is 0, 

i. e. e2 = 0, then return (r, r*e0 + e1) 

4.5- if number of digits of e greater than 3, then return (1, 

n) 

The following algorithm for factoring, uses the iteration 

method to solve equation of degree 3 that equals to the integer 

n = p * q. 

The equation: a*x
2
 + b*x – n = 0         (4) 

take a = -1. 

Algorithm 4 iterfact (n): 

Input: the integer n which equal p*q 

Output: p, q 

1- set   1+← nr  and 1←p  and nq ← . 

2- for b = 1 to b = r with step 2 make the following: 

2.1- set nbbA *4* +←  

2.2- if A is integer number, then p equal (A-b) / 2 and q 

equal (A+b)/2 

3- return (p, q)  

This algorithm assume the equation –r
2
 +b*r +N = 0, to 

make the square root A positive. 

Algorithm 5 propfact (n): 

Input: the integer n which equal p*q 

Output: p, q 

1- set  3 nm ← ’ j = number of digits of m 

3- set v← 1, c← 0, p← 1and q ← 1. 

4- for a =-m/j, to a =m/j: 

4.1- for b = 1 to b = m/j: 

4.1.1- if gcd (a, b) = 1:{greatest common divisor} 

4.1.1.1- set t← v and c← c+1. 

4.1.1.2- calculate x = (a+b*m), and v = (v*x)%n 

4.1.1.3- if v = 0, then set p ← egf (x, n), q ←e gf (t, 

n), and v ← t. 

5- if p = q = 1, then set p = e gf (v, n) and q = n/p 

6- return p, q 

Table 2, shows the relation between the number of decimal 

digits of N and time of implementation of basefact, iterfact, 

and propfact algorithms. 

Table 2. Relation between implementation time and number of digits. 

No. of digits of N N Time of propfact Time of Iterfact Time of basefact 

2 21 0.000 0.000 0.000 

3 407 0.000 0.000 0.000 

4 2279 0.003 0.008 0.057 

5 10807 0.006 0.005 0.043 

6 782303 0.010 0.005 0.026 

7 1104143 0.011 0.015 0.025 

8 42757439 0.035 0.005 0.025 

9 105951673 0.049 0.013 0.031 

10 1459321343, 0.261 0.031 0.052 

11 15262008803 0.380 0.048 0.169 

12 391604285407 1.243 0.184 0.512 

13 1125754310689 3.003 0.154 0.314 

14 24366140091809 21.627 0.048 0.16 

15 106565228726479 66.141 1.923 5.059 

16 3156627667094141 109.374 21.894 45.141 

 

6. Conclusion 

Integer factorization is an important computational problem, 

and it is the foundation of the RSA cryptosystem. Since the 

invention of the general number field sieve in 1993, there is no 

substantial progress on this problem. 

The method that has been proposed here is actually new and it 

depends on the large co-domain of gf an egf functions. By 

extending these functions co-domain three algorithms are given. 

These algorithms have been programmed in Python and 

implemented on a PC. This result puts a doubt on the 

conclusion of Rivest which states that factoring a 200 digit 

number requires four billion years on a computer that forms 

one instruction per micro second 

The promising results of the presented algorithms 

encourage us to enhance their implementation by making use 

of long integer architecture packages that can use gf or egf to 

decrease time of factorization. In the previous tables, time of 

implementation depends on the difference of two factors of 

factored number. In conclusion, it is clear that the proposed 

method is relatively simple, fast and scalable when compared 

to existing methods. 
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