

International Journal of Theoretical and Applied Mathematics
2017; 3(6): 199-202

http://www.sciencepublishinggroup.com/j/ijtam

doi: 10.11648/j.ijtam.20170306.14

ISSN: 2575-5072 (Print); ISSN: 2575-5080 (Online)

 Methodology Article

New Pragmatic Algorithms to Improve Factoring of Large
Numbers

Mohamed Zaki Abd El-Mageed
1
, Hassan Hussein

2

1Department of Computer Since, Faculty of Engineering, Al-Zahra University, Cairo Egypt
2Research Development Center, National Defense Council, Cairo, Egypt

Email address:
mzaki.azhar@gmail.com (M. Z. A. El-Mageed), hassan.m.hussein@gmail.com (H. Hussein)

To cite this article:
Mohamed Zaki Abd El-Mageed, Hassan Hussein. New Pragmatic Algorithms to Improve Factoring of Large Numbers. International Journal

of Theoretical and Applied Mathematics. Vol. 3, No. 6, 2017, pp. 199-202. doi: 10.11648/j.ijtam.20170306.14

Received: September 28, 2017; Accepted: November 13, 2017; Published: December 5, 2017

Abstract: Rivest, Shamir, Adleman, RSA algorithm is a popular public key cryptosystem and is known to be secure, however,

this fact relies on the difficulty of factoring large numbers. No algorithm has been published that can factor all integers in

polynomial time. This paper proposes a new function that can be used to improve the process of factoring integer numbers. It gets

the factor faster than known methods. By making use of such proposed function, corresponding two algorithms are proposed and

pseudocoded. The utilization of these algorithms along with the basics of the theory of numbers led to three other new factoring

algorithms. The five algorithms are implemented and verified using Python Language. The tabulated results that represent the

time of factorization versus the number of digits of the large number have indicated the applicability of the last three algorithms.

Keywords: RSA, Large Number Factorization, Number Field Sieve, Greatest Common Divisor (GCD)

1. Introduction

Integer factorization is a classical problem in computer

science and number theory [2], [3]. When the numbers are

very large, no efficient, integer factorization algorithm is

known. Several cryptographic systems are based on the

hardness of factorization problems have been proposed.

Among them, the RSA system is the most famous and widely

used [2]. Actually, not all numbers of a given length are

equally hard to factor. This fact is obvious from Table 2 (Sec.

4). The hardest instances of that problem occur when the

corresponding to prime numbers are both large, randomly

chosen and about the same size (but not too close).

Zaki and Hussein [1], proposed a function that has been

used as fitness function in genetic algorithms to improve the

heuristic search for factoring integer numbers. The fastest

general-purpose factorization algorithm is the Number Field

Sieve (NFS), [4]-[7]. This paper is organized as follows. In

section 2, related works are discussed and a mathematical

background is given in section 3. The proposed function in [1]

is extended in section 4. Additional new algorithms for

factoring integers will be discussed in section 5. Finally, the

paper is concluded in section 6.

2. Related Work

Many references, [4]-[7] have explained methods of

factoring integers, to attack the public key [3], such as Elliptic

Curves, Continued Fraction, Quadratic Sieve and Number

Field Sieve (NFS). Implementation of any of these methods,

takes impractical factoring time.

Abd El-Mageed and Hussein [1] have proposed function

that used as fitness function to improve the heuristic search

and gave genetic algorithms in order to factor the integer

number. However, the time complexity of a genetic algorithm

is O (a
3
) where a is the number of the constituents prime

factors of the underlying integers. Here, the proposed

algorithms, depend on a new function that can optimize

memory and time of implementation for factoring integers.

It can be noticed that, on the research level several quantum

systems have solved the quantum factorization problem [9]

[10] and achieved noticeable success [11]. However, in

practice, RSA is still popular and widely spread.

 International Journal of Theoretical and Applied Mathematics 2017; 3(6): 199-202 200

3. Mathematical Background

Suppose we want to factor the composite number N. We

choose a bound, and identify the factor base, P, the set of all

primes less than or equal to the chosen bound. Next, we search

for positive integers z such that both z and (z+N) have all of

their prime factors in P. We can therefore write,

{\displaystyle z=\prod_{p_{i}\in P}p_{i}^{a_{i}}}

� = �� 	��
�� (1)

	�� 	 ∈ P and
 = 1, 2,…, number of primes in P

and similarly:

� + � = �� 	��

� (2)

{\displaystyle z+n=\prod _{p_{i}\in P}p_{i}^{b_{i}}}

But z and (z+N) are congruent modulo N, and each integer

z yields a multiplicative relation (mod N) among the elements

of P, i. e.

�� 	��
�� = �� 	��

� 	����	�� (3)

{\displaystyle \prod _{p_{i}\in P}p_{i}^{a_{i}}\equiv

\prod _{p_{i}\in P}p_{i}^{b_{i}}{\pmod {n}}}

Where a and b are nonnegative integers. When we have

generated enough of these relations one can use the methods

of linear algebra to multiply together these various relations in

such a way that the exponents of the primes are all even [8].

This will give us a congruence of squares of the form a
2
≡b

2

(mod N), which can be turned into a factorization of N.

N=gcd (a-b, N)×gcd (a+b, N).

4. The Proposed Extended Function

The new proposed function gf (x, N) is defined as follows:

}{ }{() : : 0(mod) 1
NN

x a a Ngf Z → ≡ ∪

i.e.
1

() (m o d){
N a

x Ng f ≡ , where a is factor of N.

Proposition 1.

Let p be a factor of N, then, by repeating k*p (mod N), k>0,

the result is p.

Because k*p is congruence of p.

The basic procedure of implementing gf (x, N), as such, is

given algorithm that can be pointed out as follows: Algorithm 1 gf (x, N) (implementation of the function,

given factor)

Input: the number N to be factored and an element x in the

interval [2, N-1]

Output: the factor p of N or 1.

1- Set)(mod Nxx ≡

2- If x = 0 or x = N, then return 1

3- While x>1,

Set b ← x, and)(mod Nbx ≡ .

4- If x = 0, then return b

5. else, return 1

Note that this algorithm is repeated subtraction of x from N.

Theorem 1.

Let 1< x <N. If gf (x, N) > 1, then gf (N-x, N) = gf (x, N) >

1.

Proof

Let gf (x, N) produces a factor of N,.

xNy −≡ , x = y, xNy −≡ and repeat until y = 0.

i. e. N-x = 0 means N mod x = 0..

Then, last x is factor of N.

Examples

1-N = 17*37 = 629,

x = 18, 35, 36, 47, 54. 66, 97, or 99, give gf (x, N) =17

2-N = 7*11 = 77.

x = 10, or 67 give gf (x, N) = 7

3-N = 5*7 = 35.

x==6, or 29 give gf (x, N) = 5

Corollary

Let N = p*q. then # {1<x<N: gf (x, N)>1} ≥ (p+q)

Conjecture:

Let N = p*q, 1<p<q<n. if q-1 is multiple of prime number

(not equal p). Then |gf (i, N)>1|>>|gcd (i, N)>1|, for i in [1,

N-1].

If q-1 is multiple of p, then |gf (i, N)>1| = |gcd (i, N)>1|, for

i in [1, N-1].

and vice versa with respect to p, q

Also, this function egf (x, N) can be used to get algorithm

that extends the co-domain of the gf function.

Algorithm 2 egf (x, N) (implementation of the function, has

factor)

Input: the number N that factoring and an element x in the

interval [2, N-1]

Output: the factor p of N or 1.

1- Set p ←gf (x, N).

2- If N>p>1, then return p

3- Else

3.1. Set b ←(a* (a
2
-1)) (mod N)

3.2. Return gf (b, N).

Example

N = 5*7 = 35

Table 1. Values of egf(x,N).

x 2 4 6 8 9 11 13 16 19 22 24 26 27 29

egf (x, N) 5 5 5 7 5 5 7 5 5 7 5 5 7 5

This clearly shows that egf (x, N) exceeds the co-domain of

gf (x, N) which exceeds the co-domain of gcd (x, N), Table 1.

Actually, any heuristic can use one of these algorithms, gf (x,

n), or egf (x, n) as a fitness function to get the target factor

5. Other Three New Algorithms

Here, three proposed new factoring algorithms are

201 Mohamed Zaki Abd El-Mageed and Hassan Hussein: New Pragmatic Algorithms to Improve Factoring of Large Numbers

presented. The following algorithm uses the base of the

integer n.

Algorithm 3 basefact (n):

Input: the integer n which equal p*q

Output: p, q

1- set   1+← nr and   13 +← nm

2- make r odd integer.

3- set 1*2 +← rq . and 0←i

4- while r>m:

4.1- if q divides n, then return (n/q, q).

4.2- exceed i by 1, and decrease r and q by 2.

4.3- calculate e as a base of n with respect to r.

4.4- if number of digits of e equal 3 and its last digit is 0,

i. e. e2 = 0, then return (r, r*e0 + e1)

4.5- if number of digits of e greater than 3, then return (1,

n)

The following algorithm for factoring, uses the iteration

method to solve equation of degree 3 that equals to the integer

n = p * q.

The equation: a*x
2
 + b*x – n = 0 (4)

take a = -1.

Algorithm 4 iterfact (n):

Input: the integer n which equal p*q

Output: p, q

1- set   1+← nr and 1←p and nq ← .

2- for b = 1 to b = r with step 2 make the following:

2.1- set nbbA *4* +←

2.2- if A is integer number, then p equal (A-b) / 2 and q

equal (A+b)/2

3- return (p, q)

This algorithm assume the equation –r
2
 +b*r +N = 0, to

make the square root A positive.

Algorithm 5 propfact (n):

Input: the integer n which equal p*q

Output: p, q

1- set  3 nm ← ’ j = number of digits of m

3- set v← 1, c← 0, p← 1and q ← 1.

4- for a =-m/j, to a =m/j:

4.1- for b = 1 to b = m/j:

4.1.1- if gcd (a, b) = 1:{greatest common divisor}

4.1.1.1- set t← v and c← c+1.

4.1.1.2- calculate x = (a+b*m), and v = (v*x)%n

4.1.1.3- if v = 0, then set p ← egf (x, n), q ←e gf (t,

n), and v ← t.

5- if p = q = 1, then set p = e gf (v, n) and q = n/p

6- return p, q

Table 2, shows the relation between the number of decimal

digits of N and time of implementation of basefact, iterfact,

and propfact algorithms.

Table 2. Relation between implementation time and number of digits.

No. of digits of N N Time of propfact Time of Iterfact Time of basefact

2 21 0.000 0.000 0.000

3 407 0.000 0.000 0.000

4 2279 0.003 0.008 0.057

5 10807 0.006 0.005 0.043

6 782303 0.010 0.005 0.026

7 1104143 0.011 0.015 0.025

8 42757439 0.035 0.005 0.025

9 105951673 0.049 0.013 0.031

10 1459321343, 0.261 0.031 0.052

11 15262008803 0.380 0.048 0.169

12 391604285407 1.243 0.184 0.512

13 1125754310689 3.003 0.154 0.314

14 24366140091809 21.627 0.048 0.16

15 106565228726479 66.141 1.923 5.059

16 3156627667094141 109.374 21.894 45.141

6. Conclusion

Integer factorization is an important computational problem,

and it is the foundation of the RSA cryptosystem. Since the

invention of the general number field sieve in 1993, there is no

substantial progress on this problem.

The method that has been proposed here is actually new and it

depends on the large co-domain of gf an egf functions. By

extending these functions co-domain three algorithms are given.

These algorithms have been programmed in Python and

implemented on a PC. This result puts a doubt on the

conclusion of Rivest which states that factoring a 200 digit

number requires four billion years on a computer that forms

one instruction per micro second

The promising results of the presented algorithms

encourage us to enhance their implementation by making use

of long integer architecture packages that can use gf or egf to

decrease time of factorization. In the previous tables, time of

implementation depends on the difference of two factors of

factored number. In conclusion, it is clear that the proposed

method is relatively simple, fast and scalable when compared

to existing methods.

References

[1] Mohammed Z. Abd El-Mageed and Hassan M. H. Hussein, An
Effective GA Fitness Function To Guide Heuristic Search
Integer Factorization, Paper Accepted for GJTAMS Paper
Code: 5183.

 International Journal of Theoretical and Applied Mathematics 2017; 3(6): 199-202 202

[2] Song Y. Yan, Computational Number Theory, Higher
Education Press, WILY, 2013.

[3] R. L. Rivest, A. Shamir, L. Adleman: A method for obtaining
digital signatures and public-key cryptosystems.
Communications of the Association for Computing Machinery,
21 (1978).

[4] H. Cohen, A Course in Computational Algebraic Number
Theory, Springer-Verlag, Berlin, Heidelberg, New-York, 1996.

[5] A. K. Lenstra and H. W. Lenstra, Algorithms in Number
Ttheory, Handbook of theoretical computer science, J. Van
Leeuwen, A. Mayer, M. Nivat, M. Patterson and D. Perrin
(eds.), Elsevier, 1990.

[6] Song Y. Yan, Cryptanalytic Attacks on RSA, Springer
Science+Business Media, 2008.

[7] Song Y. Yan, computational number theory, Higher Education
Press, WILY, 2013.

[8] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M.
Pollard, The Factorization of the Ninth Fermat Number, Math.
Comp. 61 (1993), 319-349.

[9] J. Chu, The beginning of the end for encryption schemes, MIT
News, March, 2016.

[10] L. Zyga, Quantum physics offers new way to factor numbers,
Phys.org, November, 2016.

[11] R. Dridia and H. Alghassib, Prime factorization using quantum
annealing and computational algebraic geometry, NCBI, 2017.

