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Abstract: By using the properties of cone and the fixed point theorem for mixed monotone operators in ordered Banach 

spaces, we investigate the mixed monotone operators of a new type with perturbation. We establish some sufficient conditions for 

such operators to have a new existence and uniqueness fixed point and provide monotone iterative techniques which give 

sequences convergent to the fixed point. Finally, as applications, we apple the results obtained in this paper to study the existence 

and uniqueness of positive solutions for nonlinear fractional differential equation boundary value problems. 
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1. Introduction and Preliminaries 

The study of mixed monotone operators has been a lot of 

discussion since they were introduced by Guo and 

Lakshmikantham (see [1]) in 1987, because they have not only 

important theoretical meaning but also wide applications in 

microeconomics, the nuclear industry, and so on (see [1, 2]). 

In the past several decades, many authors investigated these 

kinds of operators in ordered Banach spaces and obtained a lot 

of interesting and important fixed point theorems for mixed 

monotone operators, see [3-5] and the references therein. 

Recently, some new results about these kinds of operators 

have emerged, and they are extensively used in nonlinear 

differential and integral equations, see [6-9, 26, 27] and the 

references therein. In this paper, without demanding the 

assumptions of the existence of coupled upper-lower solutions 

or compactness or continuity, we study mixed monotone 

operators with perturbation and give several of new fixed 

point theorems. In other words, we consider the existence and 

uniqueness of positive solutions to the following operator 

equation in ordered Banach spaces: 

( , )A x x Bx x+ =                              (1) 

where A  is a mixed monotone operator, B is an increasing 

sub-homogeneous operator or general α -concave operator. 

The results in essence extend and generalize recent related 

results, see [10-12] and the references therein. As an 

application, we apply our main fixed point theorem to study a 

class of nonlinear fractional differential equation boundary 

value problems. 

Suppose ( ,|| ||)E ⋅ is a real Banach space which is partially 

ordered by a cone P E⊂ , i.e. x y≤
 
if and only if y x P− ∈ . 

If x y≤
 
and x y≠ , then we denote x y< . We denote the 

zero element of E  by θ . Recall that a non-empty closed 

convex set P E⊂ is a cone if it satisfies 

(i) , 0x P x Pλ λ∈ ≥ ⇒ ∈ ; ( ii) ,x P x P x θ∈ − ∈ ⇒ = . 

Putting 0 { | is an interior point of }P x P x P= ∈ , a cone P is 

said to be solid if 0P  is non-empty. Moreover, P is called 

normal if there exists a constant 0N >  such that, for all 

, ,x y E x yθ∈ ≤ ≤  
implies || || || ||x N y≤ ; in this case N is called 

the normality constant of P . 

We say that an operator :A E E→  is increasing if x y≤
implies Ax Ay≤ . Element x P∈  is called a fixed point of A  if

Ax x= . 

For all ,x y E∈ , the notation ~x y  means that there exist

0λ >  and 0µ >  such that x y xλ µ≤ ≤ . Clearly ~ is an 

equivalence relation. Given w θ>  (i.e. w θ≥  and w θ≠ ), 

we denote the set { | ~ }wP x E x w= ∈  by wP . It is easy to see 

that wP P⊂  for w P∈ . 
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All the concepts discussed above can be found in [2, 12-15]. 

For more results about mixed monotone operators and other 

related concepts, the reader is referred to [10-12] and some of 

the references therein. 

Definition 1.1 (see [1]) An operator A : P P→  is said to be 

a mixed monotone operator if ( , )A x y  is increasing in x  and 

decreasing in y . Element x P∈  is called a fixed point of A  

if ( , )A x x x= . 

Definition 1.2 (see [12]) An operator A : P P→  is said to be 

a sub-homogeneous operator if it satisfies: 

( ) , (0,1),A tx tAx t x P≥ ∀ ∈ ∈ .                    (2) 

Definition 1.3 (see [16]) An operator A : P P→ is said to be 

a general α -concave operator if it satisfies: for all x P∈ and

(0,1)t ∈ , there exists 0 ( ) 1tα< < such that ( )( ) tA tx t Axα≥ . 

Definition 1.4 (see [17]) An operator A : P P P× →  is said 

to be a ( )t tα−  mixed monotone model operator if it satisfies: 

for all ,x y P∈  and (0,1)t ∈ , there exists 0 ( ) 1tα< <  such 

that 
( )1

( , ) ( , )
t

A tx y t A x y
t

α≥ . 

Lemma 1.5 (see [9]) Let P be a normal cone in E . Assume 

that :T P P P× → is a mixed monotone operator and satisfies: 

(A1) there exists w P∈  with w θ≠ such that 

( , ) wT w w P∈ ; 

(A2) for any ,u v P∈  and (0,1)t ∈ , there exists ( ) ( ,1]t tφ ∈

such that 
1

( , ) ( ) ( , )T tu v t T u v
t

φ≥ . 

Then 

(T1) : w w wT P P P× → ; 

(T2) there exist 0 0, wu v P∈  and (0,1)r ∈  such that 

0 0 0 0 0 0 0 0 0, ( , ) ( , )rv u v u T u v T v u v≤ < ≤ ≤ ≤ ; 

(T3) T has a unique fixed point *x  in wP ; 

(T4) for any initial values 0 0, wx y P∈ , constructing 

successively the sequences 

1 1 1 1( , ), ( , ), 1, 2,...n n n n n nx T x y y T y x n− − − −= = = , 

we have *nx x→  and *ny x→  as n → ∞ . 

2. Main Results 

In this section, we present our main results. We always 

assume that E is a real Banach space with a partial order 

introduced by a normal cone P of E . Take ,w E w θ∈ > , wP

is given as in the first part. 

Theorem 2.1 :A P P P× →  is a mixed monotone operator 

and satisfies 

( )1
( , ) ( , ), (0,1), ,

t
A tx y t A x y t x y P

t

α≥ ∈ ∈ ,            (3) 

where the function ( )tα  is differentiated in the interval (0,1)

and 0 ( ) 1tα< < . 

:B P P→  is an increasing sub-homogeneous operator. 

Assume that 

(i) there is 0 ww P∈  such that 0 0( , ) wA w w P∈  and 0 wBw P∈ ; 

(ii) there exists a constant 0 0δ >  such that

0( , ) , ,A x y Bx x y Pδ≥ ∀ ∈ . 

Then  

(T1) : , : ;w w w w wA P P P B P P× → →  

(T2) there exist 0 0, wu v P∈
 
and (0,1)r ∈

 
such that 

0 0 0 0 0 0 0 0 0 0 0, ( , ) ( , )rv u v u A u v Bu A v u Bv v≤ < ≤ + ≤ + ≤ ; 

(T3) the operator equation (1) has a unique solution *x  
in wP ; 

(T4) for any initial values 0 0, wx y P∈ , constructing 

successively the sequences we have *nx x→  and 

*ny x→  as n → ∞ . 

Proof: Firstly, for (0,1), ,t x y P∈ ∈ , from (2) and (3), we 

have 

( )1 1 1
( , ) ( , ) ( , ),tA x y A t x ty t A x ty

t t t

α= ⋅ ⋅ ≥ 1 1 1 1 1 1( , ) , ( , ) , 1, 2,...n n n n n n n nx A x y Bx y A y x By n− − − − − −= + = + =

1 1
( ) ( ),Bx B t x tB x

t t
= ⋅ ≥  

Hence 

( )

1 1
( , ) ( , )

t
A x ty A x y

t t
α≤  and 

1 1
( )B x Bx
t t

≤  for (0,1), ,t x y P∈ ∈ .                                         (4) 

Since there is 0 ww P∈ such that 0 0( , ) wA w w P∈ and 0 wBw P∈ , 

there exist constants 1 2 1 2, , , 0λ λ ν ν >  such that 

1 0 0 2 1 0 2( , ) ,w A w w w w Bw wλ λ ν ν≤ ≤ ≤ ≤ . 

Also from 0 ww P∈ , there exists a constant 0 (0,1)t ∈  such 

that 

0 0
0

1
t w w w

t
≤ ≤ . 

Then from (3) and (4) and the mixed monotone properties 

of operator A , we have 
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0 0

0 0

2
0 0 0 0 0( ) ( )

0 0 0

( ) ( )
0 0 0 0 0 0 1 0

0

1 1
( , ) ( , ) ( , ) ,

1
( , ) ( , ) ( , ) .

t t

t t

A w w A w t w A w w w
t t t

A w w A t w w t A w w t w
t

α α

α α

λ

λ

≤ ≤ ≤

≥ ≥ ≥
 

Noting that 0

0

( )2
1 0( )

0

, 0
t

t
t

t

α
α
λ λ > , we can get ( , ) wA w w P∈ . An 

application of Lemma 1.5 implies that : w w wA P P P× → . And 

from (2), (4) and the monotone property of operator B , we 

have 

2
0 0 0 0 0 0 1 0

0 0 0

1 1
( ) , ( )Bw B w Bw w Bw B t w t Bw t w
t t t

ν ν≤ ≤ ≤ ≥ ≥ ≥ . 

Next we show : w wB P P→ . For any wx P∈ ; we can choose 

a sufficiently small number (0,1)µ ∈  such that 

1
w x wµ

µ
≤ ≤ . 

Since
1 1

( ) ( )B w B w
µ µ

≤ and
2

0 0
0 0 0

1 1
( )Bw B w Bw w
t t t

ν
≤ ≤ ≤ , 

then  

2
0 1

0

1 1
( ) , ( )Bx B w w Bx B w t w

t

ν µ µ ν
µ µ

≤ ≤ ⋅ ≥ ≥ . 

Evidently, 
2

0 1
0

, 0w t
t

ν µ ν
µ

> . Thus wBx P∈ ; that is, 

: w wB P P→ . So the conclusion (1) holds. 

Now we define an operator T A B= +  by

( , ) ( , )T x y A x y Bx= + . Then :T P P P× →  is a mixed 

monotone operator and ( , ) wT w w P∈ . In the following, we 

show that there exists ( ) ( ,1]t tφ ∈  with respect to (0,1)t ∈ such 

that 
1

( , ) ( ) ( , ), ,T tx y t T x y x y P
t

φ≥ ∀ ∈ . 

Let -1
t 10 1

sup ( ), lim ( )
t

t tα α α α
→< <

= = . Consider the following 

function: 

( )
( ) , (0,1)

t

t t
f t t

t t

β

α β
−= ∀ ∈
−

, where ( ,1)β α∈ . 

It is easy to prove that f
 
is increasing in (0,1) and 

0 1 1

1
lim ( ) 0, lim ( ) 0

t t
f t f t

β
α β+ −→ →

−= = >
−

. 

Further, fixing (0,1)t ∈ , we have 

( )
1 1

lim ( ) lim 0
t

t t
f t

t t

β

α ββ β− −→ →

−= =
−

. 

So there exists 0 ( ) ( ,1)tβ α∈
 
with respect to t such that 

0

0

( )

0( )( )
, (0,1)

t

tt

t t
t

t t

β

βα δ− ≤ ∈
−

. 

Hence we have 

0

0

( )

0 ( )( )
( , ) , (0,1), ,

t

tt

t t
A x y Bx Bx t x y P

t t

β

βαδ −≥ ≥ ∀ ∈ ∈
−

. 

Then we obtain 

0 ( )( ) ( , ) [ ( , ) ], (0,1), , ]
ttt A x y tBx t A x y Bx t x y P

βα + ≥ + ∀ ∈ ∈ . 

Consequently, for any (0,1)t ∈ and ,x y P∈ , 

0 0( ) ( )( )1 1
( , ) ( , ) ( ) ( , ) ( ) [ ( , ) ] ( , )

t tt
T tx y A tx y B tx t A x y tB x t A x y Bx t T x y

t t

β βα= + ≥ + ≥ + = . 

Let 0 ( )
( ) , (0,1)

t
t t t

βφ = ∈ . Then ( ) ( ,1]t tφ ∈ and

1
( , ) ( ) ( , )T tx y t T x y

t
φ≥  for any (0,1)t ∈  and ,x y P∈ . Hence 

the condition (A2) in Lemma 1.5 is satisfied. An application of 

Lemma 1.5 implies: 

(c1) there exist 0 0, wu v P∈ and (0,1)r ∈ such that

0 0 0 0 0 0 0 0 0, ( , ) ( , )rv u v u T u v T v u v≤ < ≤ ≤ ≤ ; 

(c2) T has a unique fixed point *x in wP ; 

(c3) for any initial values 0 0, wx y P∈ , constructing 

successively the sequences 

1 1 1 1( , ), ( , ), 1, 2,...n n n n n nx T x y y T y x n− − − −= = = , 

we have *nx x→ and *ny x→ as n → ∞ . That is, the 

conclusions (T2) –(T4) hold. 

From the proof of Theorem 2.1, we can easily prove the 

following corollary. 

Corollary 2.2 Let the function ( )tα
 
be differentiated in the 

interval (0,1) and 0 ( ) 1tα< < . 
:A P P P× →  is a mixed monotone operator. Assume that 

(3) holds and there is 0w θ>  such that 0 0( , ) wA w w P∈ . 

Then  

(T1) : ;w w wA P P P× →  

(T2) there exist 0 0, wu v P∈ and (0,1)r ∈ such that

0 0 0 0 0 0 0 0 0, ( , ) ( , )rv u v u A u v A v u v≤ < ≤ ≤ ≤ ;  

(T3) the operator equation ( , )A x x x=  has a unique 

solution *x in wP ;  

(T4) for any initial values 0 0, wx y P∈ , constructing 

successively the sequences 

1 1 1 1( , ), ( , ), 1, 2,...n n n n n nx A x y y A y x n− − − −= = = , 

we have *nx x→ and *ny x→ as n → ∞ . 

Corollary 2.3 Let the function ( )tα be differentiated in the 
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interval (0,1) and 0 ( ) 1tα< < . 

:A P P P× → is a mixed monotone operator and :B P P→ is 

an increasing sub-homogeneous operator. Assume that (3) 

holds and 

(i) there is 0w θ> such that 0 0( , ) wA w w P∈ and wPBw ∈0 ; 

(ii) there exists a constant 00 >δ such that

PyxBxyxA ∈∀≥ ,,),( 0δ . 

Then the operator equation xBxxxA λ=+),( has a unique 

solution *
λx  in wP  for any given 0>λ . 

Moreover, for any initial values wPyx ∈00, , constructing 

successively the sequences 

,...2,1],),([
1

],),([
1

111111 =+=+= −−−−−− nByxyAyBxyxAx nnnnnnnn λλ
, 

we have *
λxxn → and *

λxyn → as ∞→n . 

Theorem 2.4 PPPA →×: is a mixed monotone operator 

and satisfies 

PyxtyxtAy
t

txA ∈∈≥ ,),1,0(),,()
1

,( .             (5) 

PPB →: is an increasing general α -concave operator 

and satisfies 

PyxtBxttxB t ∈∈≥ ,),1,0(,)( )(α ,            (6) 

where the function )(tα be differentiated in the interval )1,0(

and 1)(0 << tα . 

Assume that 

(i) there is wPw ∈0 such that wPwwA ∈),( 00 and wPBw ∈0 ; 

(ii) there exists a constant 00 >δ such that

PyxBxyxA ∈∀≤ ,,),( 0δ . 

Then  

(T1) : , : ;w w w w wA P P P B P P× → →  

(T2) there exist wPvu ∈00 , and )1,0(∈r such that 

00000000000 ),(),(, vBvuvABuvuAuvurv ≤+≤+≤<≤ ; 

(T3) the operator equation (1) has a unique solution *x in

wP ; 

(T4) for any initial values wPyx ∈00, , constructing 

successively the sequences 

,...2,1,),(,),( 111111 =+=+= −−−−−− nByxyAyBxyxAx nnnnnnnn , 

we have *xxn → and *xyn → as ∞→n . 

Proof: Firstly, from (5) and (6), we have 

),(
1

),
1

( yxA
t

tyx
t

A ≤  and Bx
t

x
t

B
t)(

1
)

1
( α≤  for Pyxt ∈∈ ,),1,0( .                             (7) 

Next, we define an operator BAT += by
BxyxAyxT += ),(),( . Similarly to the proof of Theorem 2.1, 

we have wwwww PPBPPPA →→× :,: . Further, we can easily 

prove that PPPT →×: is a mixed monotone operator and

wPwwT ∈),( . 

In the following, we show that there exists ]1,()( tt ∈ϕ  with 

respect to )1,0(∈t  such that 

PyxyxTty
t

txT ∈∀≥ ,),,()()
1

,( ϕ . 

Let )(lim),(sup
-1t

1
10

tt
t

αααα
→<<

== . Consider the following 

function: 

)1,0(,)(
)(

∈∀
−
−= t

tt

tt
tf

t

β

βα
, where )1,(αβ ∈ . 

It is easy to prove that f is decreasing in )1,0( and 

0
1

)(lim,)(lim 1

10
>

−
−=+∞=

−+ →→ β
βα

tftf
tt

. 

Further, fixing )1,0(∈t , we have 

+∞=
−
−=

−− →→ tt

tt
tf

t

β

βα

ββ

)(

11
lim)(lim . 

So there exists )1,()(0 αβ ∈t with respect to t such that 

)1,0(,0)(

)()(

0

0

∈≥
−

−
t

tt

tt
t

tt

δβ

βα
. 

Hence we have 

PyxtBx
tt

tt
BxyxA

t

tt

∈∈∀
−

−≤≤ ,),1,0(,),(
)(

)()(

0
0

0

β

βα
δ . 

Then we obtain 

PyxtBxyxAtBxtyxtA
tt ∈∈∀+≥+ ,),1,0(],),([),(
)()( 0βα

. 

Consequently, for any )1,0(∈t and Pyx ∈, , 
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),(]),([)(),()()
1

,()
1

,(
)()()( 00 yxTtBxyxAtxBtyxtAtxBy

t
txAy

t
txT

ttt ββα =+≥+≥+= . 

Let )1,0(,)(
)(0 ∈= ttt

tβϕ . Then ]1,()( tt ∈ϕ and

),()()
1

,( yxTty
t

txT ϕ≥ for any )1,0(∈t  and Pyx ∈, . Hence 

the condition (A2) in Lemma 1.5 is satisfied. An application of 

Lemma 1.5 implies: 

(c1) there exist wPvu ∈00 , and )1,0(∈r such that

000000000 ),(),(, vuvTvuTuvurv ≤≤≤<≤ ; 

(c2) T has a unique fixed point *x in wP ; 

(c3) for any initial values wPyx ∈00, , constructing 

successively the sequences 

1 1 1 1( , ), ( , ), 1,2,...n n n n n nx T x y y T y x n− − − −= = = , 

we have *xxn → and *xyn → as ∞→n . That is, the 

conclusions (T2) –(T4)  hold. 

From the proof of Theorem 2.4, we can easily prove the 

following conclusion. 

Corollary 2.5 PPPA →×: is a mixed monotone operator 

and PPB →: is an increasing generalα -concave operator. 

Assume that (5), (6) hold and 

(i) there is θ>0w such that wPwwA ∈),( 00 and wPBw ∈0 ; 

(ii) there exists a constant 00 >δ such that

PyxBxyxA ∈∀≤ ,,),( 0δ . 

Then the operator equation xBxxxA λ=+),( has a unique 

solution *
λx in wP for any given 0>λ . 

Moreover, for any initial values wPyx ∈00, , constructing 

successively the sequences 

,...2,1],),([
1

],),([
1

111111 =+=+= −−−−−− nByxyAyBxyxAx nnnnnnnn λλ
, 

we have *
λxxn → and *

λxyn → as ∞→n . 

Remark 2.6 Take 0Pw ∈ . If we suppose that operator

www PPPA →×: or  

000: PPPA →× with P is a solid cone, then

wPwwA ∈),( 00 for any wPw ∈0 (or 0P ) is automatically 

satisfied.  

Let wPD = or 0P . Then we have 

Corollary 2.7 DDDA →×: is a mixed monotone operator 

and DDB →: is an increasing sub-homogeneous operator. 

Assume that (3) holds and there exists a constant 

00 >δ such that DyxBxyxA ∈∀≥ ,,),( 0δ . Then 

(T1) there exist wPvu ∈00 , and )1,0(∈r such that 

00000000000 ),(),(, vBvuvABuvuAuvurv ≤+≤+≤<≤ ; 

(T2) the operator equation (1) has a unique solution *x in

D ; 

(T3) for any initial values Dyx ∈00 , , constructing 

successively the sequences 

,...2,1,),(,),( 111111 =+=+= −−−−−− nByxyAyBxyxAx nnnnnnnn , 

we have *xxn → and *xyn → as ∞→n . 

Corollary 2.8 DDDA →×: is a mixed monotone operator 

and DDB →: is an increasing generalα -concave operator. 

Assume that (5), (6) hold and there exists a constant 00 >δ
such that DyxBxyxA ∈∀≤ ,,),( 0δ . Then 

(T1) there exist wPvu ∈00 ,
 
and )1,0(∈r

 
such that 

00000000000 ),(),(, vBvuvABuvuAuvurv ≤+≤+≤<≤ ; 

(T2) the operator equation (1) has a unique solution *x in

D ; 

(T3) for any initial values Dyx ∈00 , , constructing 

successively the sequences 

,...2,1,),(,),( 111111 =+=+= −−−−−− nByxyAyBxyxAx nnnnnnnn , 

we have *xxn → and *xyn → as ∞→n . 

3. Applications 

Fractional differential equations have been of great interest 

recently. It is caused both by the intensive development of the 

theory of fractional calculus itself and by the applications of 

such constructions in various sciences such as physics, 

mechanics, chemistry, engineering, etc. For details, see 

[17,18] and references therein. In this section, we use the 

results in section 2 to study the existence of a unique positive 

solution for nonlinear fractional differential equation 

boundary value problem: 







==
<<+=− +

0)1()0(

,10)),(,())(),(,()(0

uu

ttutgtututftuDα
    (8) 

where 21 ≤< α is a real number and α
+aD is the Riemann–

Liouville fractional derivative of order 0>α , defined by  
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0 10

1 d ( )
( ) ( ) d

( ) d ( )

t
n

n

u
D u t

n t t

α
α

τ τ
α τ+ − +=

Γ − −∫ , 

where 1][ += αn , ][α denotes the integer part of numberα , 

see [19, 20]. 

In recent years, there are many papers discuss the existence 

and multiplicity of positive solutions for nonlinear fractional 

differential equation boundary value problem by the use of 

Leray–Shauder theory, fixed-point theorems, etc., see [21-25]. 

However, there are few papers consider the existence of a 

unique positive solution for nonlinear fractional differential 

equation boundary value problem. In this section, we apply 

the results in section 2 to study the nonlinear fractional 

differential equation boundary value problem (8). 

Let ]1,0[CE = be a Banach space of continuous functions 

on ]1,0[ with the maximum norm 

]}1,0[|:)(max{|||| ∈= ttuu .

]}1,0[,0)(|{ ∈∀≥∈= ttuEuP , then P is a normal solid cone 

of which the normality constant is 1 in Banach space E . The 

partial ordering defined by P is given by )()( tvtuvu ≤⇔≤
for all ]1,0[∈t . 

Lemma 3.1 (see [21]) Given ]1,0[Cy ∈ and 21 ≤< α , the 

unique solution of 







==
<<=− +

0)1()0(

10),()(0

uu

ttytuDα
,                      (9) 

is 

ssystGtu d)(),()(
1

0∫= , 

where 













≤≤≤
Γ
−

≤≤≤
Γ

−−−

= −

−−

.10,
)(

)]1([

,10,
)(

)()]1([

),(
1

11

st
st

ts
stst

stG

α

α
α

αα

  (10) 

Moreover, 0),( ≥stG for )1,0(, ∈∀ st . 

Lemma 3.2 (see [22]) The Green function ),( stG in Lemma 

3.1 has the following property: 

2111 )1)(1(
)(

1
),()1)(1(

)(

1 −−−− −−
Γ

≤≤−−
Γ

− αααα

αα
α

sttstGsstt for )1,0(, ∈st .               (11) 

Theorem 3.3 Assume that 

(H1) ),0[),0[),0[]1,0[:),,( +∞→+∞×+∞×vutf is 

continuous and ),0[),0[]1,0[:),( +∞→+∞×utg is continuous 

with 0)0,( ≡/tg ; 

(H2) ),,( vutf is increasing in ),0[ +∞∈u for fixed ]1,0[∈t

and ),0[ +∞∈v , decreasing in ),0[ +∞∈v for fixed ]1,0[∈t  

and ),0[ +∞∈u , and ),( utg is increasing in ),0[ +∞∈u for fixed

]1,0[∈t ; 

(H3) there exists a function )(tα which is differentiated in 

the interval )1,0( and 1)(0 << tα  

such that 

),0[,),1,0(],1,0[),,,()
1

,,( )( +∞∈∈∈∀≥ vutvutfvutf λλ
λ

λ λα  

and 

),0[],1,0[),1,0(),,(),( +∞∈∈∈≥ ututgutg µµµ ; 

(H4) there exists a constant 00 >δ  such that

0,],1,0[),,(),,( 0 ≥∈≥ vututgvutf δ . 

Then the problem (8) has a unique positive solution *u in 

wP , where )1()( 1 tttw −= −α , ]1,0[∈t . Moreover, for any 

initial value wPyx ∈00, , constructing successively the 

iterative scheme 

,,2,1,d))(,(),(d))(),(,(),()(

,,2,1,d))(,(),(d))(),(,(),()(

1

1

0
11

1

0

1

1

0
11

1

0

⋯

⋯

=+=

=+=

−−−

−−−

∫∫

∫∫
nssysgstGssxsysfstGty

nssxsgstGssysxsfstGtx

nnnn

nnnn

we have *uxn → and *uyn → as ∞→n , where ),( stG is 

given as (10). 

Proof. To begin with, from Lemma 3.1, the problem (8) has 

an integral formulation given by 

ssusgsususfstGtu ]d))(,())(),(,([),()(
1

0
+=∫ , 

where ),( stG  is given as in Lemma 3.1. 

Define two operators EPPA →×: and EPB →: by 

.d))(,(),()(,d))(),(,(),())(,(
1

0

1

0
ssusgstGtBussvsusfstGtvuA ∫∫ ==  

It is easy to prove that u is the solution of the problem (8) if and only if BuuuAu += ),( . 

By assumption (H1) and Lemma 3.2, we know that PPPA →×:  and PPB →: . Further, it follows from (H2) that A is 
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mixed monotone and B is increasing. For any )1,0(∈λ and Pvu ∈, , from (H3) we know that 

))(,(d))(),(,(),(d))(
1

),(,(),())(
1

,( )(
1

0

)(
1

0
tvuAssvsusfstGssvsusfstGtvuA λαλα λλ

λ
λ

λ
λ =≥= ∫∫ . 

That is, ),()
1

,( )( vuAvuA λαλ
λ

λ ≥ for Pvu ∈∈ ,),1,0(λ . So the operator satisfies (3). Also, for any )1,0(∈µ  and Pu ∈ , by 

(H3) we obtain 

)(d))(,(),(d))(,(),())((
1

0

1

0
tBussusgstGssusgstGtuB µµµµ =≥= ∫∫ , 

That is, BuuB µµ ≥)( for Pu ∈∈ ),1,0(µ . So the operator B is a sub-homogeneous operator. 

Next we show that wPwwA ∈),( and wPBw∈ , where )1()( 1 tttw −= −α .  

By (H1) and Lemma 3.2, 

∫∫ −−
Γ

≤=
1

0
max

2
1

0
d)0,,()1()(

)(

1
d))(),(,(),())(,( swsfstwsswswsfstGtwwA α

α
, 

∫∫ −−
Γ

−≥=
1

0
max

1
1

0
d),0,()1()(

)(

1
d))(),(,(),())(,( swsfsstwsswswsfstGtwwA α

α
α

, 

where ]}1,0[:)(max{max ∈= ttww . 

From (H2) and (H4), we have 

0)0,(),0,()0,,( 0maxmax ≥≥≥ sgwsfwsf δ . 

Since 0)0,( ≡/tg , we can get 

0d)0,(d),0,(d)0,,(
1

0
0

1

0
max

1

0
max >≥≥ ∫∫∫ ssgswsfswsf δ , 

and in consequence, 

0d),0,()1(
)(

1
:

1

0
max

1
1 >−

Γ
−= ∫

− swsfssl α

α
α

, 0d)0,,()1(
)(

1
:

1

0
max

2
2 >−

Γ
= ∫

− swsfsl α

α
. 

So ]1,0[),()()( 21 ∈≤≤ ttwltAwtwl , and hence we have wPwwA ∈),( . Similarly, 

∫∫
−− −

Γ
≤≤−

Γ
− 1

0
max

2
1

0

1 d),()1()(
)(

1
)(d)0,()1()(

)(

1
shsgstwtBwssgsstw αα

αα
α

, 

from 0)0,( ≡/tg , we easily prove wPBw∈ . Hence the condition (i) of Theorem 2.1 is satisfied. 

In the following we show that the condition (ii) of Theorem 2.1 is satisfied.  

For Pvu ∈, , by (H4), 

)(d))(,(),(d))(),(,(),())(,( 0

1

0
0

1

0
tBussusgstGssvsusfstGtvuA δδ =≥= ∫∫ . 

Then we get PvuBuvuA ∈≥ ,,),( 0δ . So the conclusion of 

Theorem 3.3 follows from Theorem 2.1. 

Remark 3.4 There exist many functions which satisfy the 

conditions of Theorem 3.3. For example
||)(||3||)(||||)(||3 ),(,),,( uvu ututgvutvutf ααα +=++= − , where

)1,0(),0(: →+∞α is non-decreasing. 

Example 3.5 We give an example to illustrate Theorem 3.3. 

Consider the following nonlinear fractional differential 

equation boundary value problem: 







==
≤<<<++=− −

+

,0)1()0(

21,10,22)( ||)(||||)(||3
0

uu

tvuttuD vu αββα
 (12) 

where )1,0(),0(: →+∞β is non-decreasing. In this example, 

we have 
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||)(||3||)(||||)(||3 ),(,),,( uvu ututgvutvutf βββ +=++= − . 

It is easy to show that the nonlinear fractional differential 

equation boundary value problem satisfy the conditions of 

Theorem 3.3. So the equation (12) has a unique positive 

solution wPu ∈* , where )1()( 1 tttw −= −α . 

From Theorem 3.3 and using Corollary 2.2, we can easily 

obtain the following result. 

Theorem 3.4 Assume that 

(P1) ),0[),0[),0[]1,0[:),,( +∞→+∞×+∞×vutf is 

continuous with 0),0,( max ≡/wtf ; 

(P2) ),,( vutf is increasing in ),0[ +∞∈u for fixed ]1,0[∈t

and ),0[ +∞∈v , decreasing in ),0[ +∞∈v for fixed ]1,0[∈t  

and ),0[ +∞∈u ; 

(P3) there exists a function )(tα which is differentiated in the 

interval )1,0( and 1)(0 << tα  

such that 

),0[,),1,0(],1,0[),,,()
1

,,( )( +∞∈∈∈∀≥ vutvutfvutf λλ
λ

λ λα . 

Then the problem  







==
<<=− +

0)1()0(

,10)),(),(,()(0

uu

ttututftuDα
 

has a unique positive solution *u in wP , where

)1()( 1 tttw −= −α , 

]1,0[∈t . Moreover, for any initial value hPyx ∈00 , , 

constructing successively the iterative scheme 

,,2,1,d))(),(,(),()(
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0

⋯

⋯
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∫
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we have *uxn → and *uyn → as ∞→n , where ),( stG is 

given as (10). 

From Theorem 2.4, we can easily obtain the following 

result. 

Theorem 3.5 Assume that (H1), (H2) hold and (H5) there 

exists the function )(tα which is differentiated in the interval

(0,1)
 
and 1)(0 << tα such that 

),0[],1,0[),1,0(),,(),( )( +∞∈∈∈≥ ututgutg µµµ µα  

and 

),0[,),1,0(],1,0[),,,()
1

,,( +∞∈∈∈∀≥ vutvutfvutf λλ
λ

λ ; 

(H6) there exists a constant 00 >δ  such that

0,],1,0[),,(),,( 0 ≥∈≤ vututgvutf δ . 

Then the problem (8) has a unique positive solution *u in

wP , where )1()( 1 tttw −= −α , ]1,0[∈t . Moreover, for any 

initial value wPyx ∈00, , constructing successively the 

iterative scheme 

,,2,1,d))(,(),(d))(),(,(),()(

,,2,1,d))(,(),(d))(),(,(),()(

1

1

0
11

1

0

1

1

0
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0

⋯

⋯

=+=

=+=

−−−

−−−

∫∫

∫∫
nssysgstGssxsysfstGty

nssxsgstGssysxsfstGtx

nnnn

nnnn

we have *uxn → and *uyn → as ∞→n , where ),( stG is 

given as (10). 
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