International Journal of Theoretical and Applied Mathematics

2017; 3(6): 182-190
http://www.sciencepublishinggroup.com/j/ijtam

doi: 10.11648/j.ijtam.20170306.12

ISSN: 2575-5072 (Print); ISSN: 2575-5080 (Online)

(Y J' v r
otlencePr

Science Publishing Group

New Fixed Point Theorems for Mixed Monotone Operators
with Perturbation and Applications

Fengxia Zheng

Department of Mathematics, Sichuan University of Arts and Science, Dazhou, P. R. China

Email address:
zhengfengxiade@163.com

To cite this article:

Fengxia Zheng. New Fixed Point Theorems for Mixed Monotone Operators with Perturbation and Applications. International Journal of
Theoretical and Applied Mathematics. Vol. 3, No. 6, 2017, pp. 182-190. doi: 10.11648/j.ijtam.20170306.12

Received: September 29, 2017; Accepted: October 23, 2017; Published: November 15, 2017

Abstract: By using the properties of cone and the fixed point theorem for mixed monotone operators in ordered Banach
spaces, we investigate the mixed monotone operators of a new type with perturbation. We establish some sufficient conditions for
such operators to have a new existence and uniqueness fixed point and provide monotone iterative techniques which give
sequences convergent to the fixed point. Finally, as applications, we apple the results obtained in this paper to study the existence
and uniqueness of positive solutions for nonlinear fractional differential equation boundary value problems.
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1. Introduction and Preliminaries

The study of mixed monotone operators has been a lot of
discussion since they were introduced by Guo and
Lakshmikantham (see [1]) in 1987, because they have not only
important theoretical meaning but also wide applications in
microeconomics, the nuclear industry, and so on (see [1, 2]).
In the past several decades, many authors investigated these
kinds of operators in ordered Banach spaces and obtained a lot
of interesting and important fixed point theorems for mixed
monotone operators, see [3-5] and the references therein.
Recently, some new results about these kinds of operators
have emerged, and they are extensively used in nonlinear
differential and integral equations, see [6-9, 26, 27] and the
references therein. In this paper, without demanding the
assumptions of the existence of coupled upper-lower solutions
or compactness or continuity, we study mixed monotone
operators with perturbation and give several of new fixed
point theorems. In other words, we consider the existence and
uniqueness of positive solutions to the following operator
equation in ordered Banach spaces:

A(x,x)+Bx =x (1

where A is a mixed monotone operator, B is an increasing
sub-homogeneous operator or general & -concave operator.

The results in essence extend and generalize recent related
results, see [10-12] and the references therein. As an
application, we apply our main fixed point theorem to study a
class of nonlinear fractional differential equation boundary
value problems.

Suppose (E,||])is a real Banach space which is partially
ordered byacone POFE ,ie. x<y ifandonlyif y—x0OP.
If x<y and x#y, then we denote x <y . We denote the
zero element of £ by &. Recall that a non-empty closed
convex set P [J E is a cone if it satisfies

(1) xOP,A20=Ax0OP; (i) xOP,~xOP=x=6.

Putting P’ = {x[JP|xis an interior point of P}, a cone P is
said to be solid if P’ is non-empty. Moreover, P is called
normal if there exists a constant N >0 such that, for all
x,y0E,6<x<y implies | x||< N| y|; in this case N is called
the normality constant of P .

We say that an operator 4:E - E is increasing if x<y
implies 4x < Ay Element xOP is called a fixed point of 4 if
Ax =x.

For all x,y OF | the notation X ~ ¥ means that there exist
A>0 and #>0 such that Ax<y<ux . Clearly ~ is an
equivalence relation. Given w>6 (i.e. w26 and w#8),
we denote the set P, ={xUE|x~w} by B,.lItis easy to see

that P, O P for wOP.
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All the concepts discussed above can be found in [2, 12-15].
For more results about mixed monotone operators and other
related concepts, the reader is referred to [10-12] and some of
the references therein.

Definition 1.1 (see [1]) An operator 4: P - P is said to be
a mixed monotone operator if A(x,y) is increasing in X and
decreasing in V . Element x P is called a fixed point of 4
if A(x,x)=x.

Definition 1.2 (see [12]) An operator 4: P — P issaid to be
a sub-homogeneous operator if it satisfies:

A(x) = tdx, 0r0(0,1), xOP. )

Definition 1.3 (see [16]) An operator 4. P — P is said to be
a general O -concave operator if it satisfies: for all xO P and

t0(0,1), there exists 0 <a(r) <Isuch that A(zx) =" Ax .
Definition 1.4 (see [17]) An operator 4: PXP - P is said
to be a # —a(t) mixed monotone model operator if it satisfies:

for all x,yOP and ¢0(0,1), there exists 0<a(s) <1 such
that A(zx,% 2270 A(x, y).

Lemma 1.5 (see [9]) Let P be a normal cone in £ . Assume
that7: PxP - P is a mixed monotone operator and satisfies:

(Al) there exists wOP with w#@ such that
T(w,w)OP,;

(A2) for any u,vOP and ¢0(0,1), there exists @) 0(z1]
such that 7(u.v)2 @O ()

Then

(THyT:P,xP, - PB,;

(T2) there exist uy,vy 0P, and »[(0,1) such that

vy Sty <vgtg < T(ug,vp) < T(vg, 1) < vy;

(T3) T has a unique fixed point x* in B, ;
(T4) for any initial values X5,y P, , constructing
successively the sequences

A(x,y) = At d-x,l @) = z"(f)A(l x,ty), X, = A(x,_,¥,-1) + Bx,_|,
t t t

X, =T(X 1, Vye1)s Vo =T(Vyg5%,), n=12,..,

we have x, - x* and y, - x* as n —» @,

2. Main Results

In this section, we present our main results. We always
assume that E is a real Banach space with a partial order
introduced by a normal cone P of £ . Take wOE, w>8, B,
is given as in the first part.

Theorem 2.1 A: PXP — P is a mixed monotone operator
and satisfies

A(rx,%y)zr"“’A(x,y), (00,1, xyOP, ()

where the function a(¢) is differentiated in the interval (0,1)
and 0<a(?)<l.
B:P - P isan increasing sub-homogeneous operator.

Assume that
(i) there is wy U P, such that A(wy,wy)0P, and Bw, U P, ;

(ii) there exists a constant & >0 such that
A(x,y)2 oyBx, Ox,yOP .
Then

(T1) A:P,xP, - P,, B:P, - P,;
(T2) there exist u,,v, 0P, and »(0,1) such that

vy Sty <V, Uy < A(uy,vy) + Buy < A(vy,uy) +Bvy < vy ;

(T3) the operator equation (1) has a unique solution x *
inP,;
(T4) for any initial values Xo,y, 0P, , constructing
successively the sequences we have x, — x* and
Y, - X*asn -0,

Proof: Firstly, for ¢+ J(0,1), x,yOP, from (2) and (3), we

have

n = A(yn—lﬂxn—l)+Byn—l7 n :1’2""

Bx=B(t E}x) > tB(%x),

Hence

1
()

A(% X,ty) <

Since there is wy O P, such that 4(w,,w,) 0P, and Bw, O P, ,
there exist constants A;,4,,V;,V, >0 such that

Aw < A(wy, wy) € 4w,

Viws Bwy SV,w.

Also from w, O B, there exists a constant £, [1(0,1) such
that

A(x,y) and B(%x)S;Bx fort (0,1), x, y O P. 6))

1
owswy <s—w.
Iy

Then from (3) and (4) and the mixed monotone properties
of operator A, we have
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1 1
A(w,w) < A(t_ Wy»tgWp) S IHTO)A(WO,WO) <
0 0

—— W,
toa(lo)

1
A(w,w) = A(tywy,— W) 2 toa(’O)A(wo, wy) 2 Altoa(’O)w.
)
A
Noting that t,,if,o)a/‘ﬂoa(t“) >0, we can get A(w,w)UP,. An
0

application of Lemma 1.5 implies that 4: B, *xP, - P,. And

from (2), (4) and the monotone property of operator B, we
have

1 1 v
Bw< B(t_ wy) < t_BWO < t—zw, Bw = B(tywy) = tyBw, 2V fyw .
0 0 0

Next we show B:P, — P, .Forany x[0P, ; we can choose

a sufficiently small number #0(0,1) such that

HWwsSx<—w.

|-

1 1 v
Since B(lw) SlB(W) and BWw< B(—wy) < —Bw, < 2y ,
H ) 0 fy
then

BxSB(iw)Slde, Bx = B(uw) 2 ltV,w .
U H 1

vV
Evidently, u—fw, MgV, >0 . Thus BxOP, ; that is,
0
B:P, - P, . So the conclusion (1) holds.
Now we define an operator T =A+B by
T(x,y)=A(x,y)+Bx . Then T:PXP - P is a mixed

monotone operator and T(w,w)UP, . In the following, we

show that there exists @(¢) U (z,1] with respect to U (0,1) such
1
that T(tx,;y) >@q)T(x,y), Ox,yOP.

Let @=supa(), a, = thﬁrrll a(t)

i<l . Consider the following

function:

B _
_ -t _
f(t)_ta(t)—_tlg’ DtD(O,l),Where ﬂD(a’,l)

It is easy to prove that f is increasing in (0,1) and

lim £(£)=0, lim f(r)= Bl oo
1-0° -1 a-p
Further, fixing ¢#[J(0,1), we have
lim £(f)= lim ot
BT gt 0 B

So there exists S,(¢) J(a,1) with respect to ¢ such that

tﬁo(f) -t

WSO—O, tD(O,l)

Hence we have

tﬂo(f) -t

> 2—
A(x,y) 2 9yBx 2 (0 _ 4B

Bx, 0t0(0,1), x,ydP.

Then we obtain
17O A(x, y) +1Bx = PO A(x, )+ Bx], 0r0(0,1), x,yOP].

Consequently, for anyzJ(0,1)and x, yO P,

1 1
T(tx,; y) = A(tx,; )+ B(tx) 2 7D A(x, y) +tB(x) = tP D[ A(x, y) + Bx] = tPOT (x, y) .

Let @) =AY, (0(0,1) Then @H)O(t1] and

T(tx,%y) >@0T(x,y) for any ¢t0(0,1) and x,y 0P . Hence

the condition (A2) in Lemma 1.5 is satisfied. An application of
Lemma 1.5 implies:

(cl) there exist ug,v0OPF, and #0(0,1) such

vy Sy <vy,uy ST (ug,vy) ST (Vy,up) vy ;

that

(c2) T has a unique fixed point x * in B, ;
(c3) for any initial values X,,yy P, , constructing
successively the sequences

Xn :T(xn—byn—l)s Y :T(yn—l7xn—l)7 I’l=1,2,...,
we have x, - x* and y, - x*as n > © |
conclusions (T2) —(T4) hold.

From the proof of Theorem 2.1, we can easily prove the

following corollary.

That is, the

Corollary 2.2 Let the function a(¢) be differentiated in the
interval (0,1)and 0 <a(¢) <I.

A:PxP - P is a mixed monotone operator. Assume that
(3) holds and there is W, > & such that A(w,,wy)0PR, .

Then

(T1) A:P,XP, - P,;

(T2) there exist uy,vo 0P, and r0(0,1) such that
vy Suy <vy, Uy < A(ugy,vy) < A(vy,ug) vy ;

(T3) the operator equation A(x,x)=x has a unique
solution x*in B, ;

(T4) for any initial values Xy,y, 0P, , constructing

successively the sequences
xn :A(xn—layn—l)a yn :A(yn—17xn—1)7 n :1525"'5

we havex, — x*andy, —» x*asn — ©
Corollary 2.3 Let the function a(¢) be differentiated in the
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interval (0,1)and 0 < a(¢) <1.

A:PxP - Pisamixed monotone operator and B: P — P is
an increasing sub-homogeneous operator. Assume that (3)

holds and
(i) there is wy > & such that A(wy,wy) O P, and Bw, U P, ;
(ii) constant Oy, >0 such that

there exists a

1
Xp = ;[A(xn—lfyn—l) +an—1]7

* *
we havex, — x andy, - x asn -

Theorem 2.4 4: PXP — Pis a mixed monotone operator
and satisfies

A(tx,}wzm(x,y), (0(0,1), x,y 0P 5)

B:P - P is an increasing general & -concave operator
and satisfies

B(tx) 2t Bx, t0(0,1), x,yOP, (6)

where the function @/(¢) be differentiated in the interval (0,1)
and0<a(r)<l.
Assume that

Xy = A(xn—l’yn—l) + an—l’

we havex, — x*andy, - x*asn - o,
Proof: Firstly, from (5) and (6), we have

Yn =
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A(x,y)=yBx, Ox,ydP .
Then the operator equation 4(x,x) + Bx = Ax has a unique
solution x; in B, for any given/ >0,

Moreover, for any initial values Xy, o U P, , constructing
successively the sequences

1
_[A(yn—bxn—l) +Byn—l]7 n= 1929--- 5

A
(i) there is wy O P, such that A(wy, w,) U P, and Bw, P, ;
(ii) there exists a constant J >0 such that
A(x,y) < OyBx, Ox,y0OP .
Then
(T1) 4:P,xP, - P, B:P, - P,;

(T2) there exist g, vy 0P, and 7 U(0,1) such that
vy Sy <vy, uy< A(ug,vy) + Buy < A(vy,uy) + Bvy < vy s

(T3) the operator equation (1) has a unique solution x * in
P,;

(T4) for any initial values x,,y, 0P, , constructing
successively the sequences

Yn = A(y;1—19x11—l) +Byn—l’ n= 1’2"" ’

1 1 1 1
A(;x,ty)S;A(x,y) and B(;x) ST:)BX fOI'tD(O,l), x,yOP. (7)
t
Next, we define an operator T =4+B by Further, fixing #[1(0,1) , we have

T(x,y) = A(x,y) + Bx . Similarly to the proof of Theorem 2.1,
we have 4: P, xP, - P,,B: P, - P, . Further, we can easily
prove that T:PxP — Pis a mixed monotone operator and
T(w,w)OP, .

In the following, we show that there exists #(#) 0 (¢,1] with
respect to 20 (0,1) such that

T(tx,%y) 29T (x,y), Ox,y0P.

Let @ =supa(), a, =}£r11)a () . Consider the following

0<t<1

function:
PO
f(H= —F d:(0,1), where g(a.l) .
"t =t

It is easy to prove that /" is decreasing in (0,1) and

a-p

lim f(f)=+w, lim f(f)=——2>0.
t-0* t-1" -

5-1

(a0 4B
lim =
B-1"

lim f(f)= oo,
B-1 P —¢

So there exists S, (¢) J(a,1) with respect to ¢ such that

ta(t) - tﬁo([)

WZ%, ID(O,I)

Hence we have

ta([) —_ tﬁo(t)

A(x,y) < JOBX < W

Bx, 0t0(01), x,yUdP.

Then we obtain
tA(x, y) +1°“ Bx= PO A(x, y)+Bx], T¥0(0)), x,yOP.

Consequently, for any s [0(0,1) and x,y O P,
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T(tr, 2 y) = A(tx, S )+ B(t) 2 tA(x, ) + 7O B(x) 2 (PO A(x, ) + Br] = (PO (x, )
t t

Let  ¢(t)=A", (0(0,1) Then ¢OOI]  and

T(tx,;y)z ¢()T(x,y) for any t0(0,1) and x,y P . Hence

the condition (A2) in Lemma 1.5 is satisfied. An application of
Lemma 1.5 implies:

(c,) there exist uy,voOP, and r0(0]) such that
vy Sty <vo,uy < T(uy,vy) S T(vy,uy) S vy ;

(c2) T has a unique fixed point x *in P, ;

(c;) for any initial values x,,y, 0P, , constructing
successively the sequences

x, =T(x,_,v,.) ¥,=T(»y,.x,_) n=L2,..,

we have x, — x* and y, —» x* as n — o . That is, the

Ll»—i

X, =

* *
we havex, - x andy, — x asn — o,

Remark 2.6 Take wOP® . If we suppose that operator
A:P,xP, - P or

A:P°xP° L P® with P is a solid then
A(wy,wy)OP, for any w, 0P, (or P% ) is automatically

cone,

satisfied.
Let D = P, or P’. Then we have

Corollary 2.7 A: Dx D — D is a mixed monotone operator
and B: D - D is an increasing sub-homogeneous operator.
Assume that (3) holds and there exists a constant

Xn = A(xn—lﬁyn—l) + an—l’

we havex, — x*andy, - x*asn - o.

Corollary 2.8 4: Dx D - D is a mixed monotone operator
and B: D - Dis an increasing general & -concave operator.
Assume that (5), (6) hold and there exists a constant J, >0
such that A(x,y) < §yBx, Ox,y 0D . Then

(T1) there exist uy,vy P, and »O(0,1) such that
Xy = A(xn—lﬁyn—l) + an—l’

we havex, — x*andy, - x*asn - o,

3. Applications

Fractional differential equations have been of great interest
recently. It is caused both by the intensive development of the
theory of fractional calculus itself and by the applications of
such constructions in various sciences such as physics,
mechanics, chemistry, engineering, etc. For details, see
[17,18] and references therein. In this section, we use the

conclusions (T2) —(T4) hold.

From the proof of Theorem 2.4, we can easily prove the
following conclusion.

Corollary 2.5 4: Px P - P is a mixed monotone operator
and B: P - P is an increasing general &f -concave operator.

Assume that (5), (6) hold and

(i) there is wy, > @ such that A(w,,w,) O P, and Bw, 0P, ;

(ii) there Oy >0 such that
A(x,y) < OyBx, Ox,y0OP.
Then the operator equation A(x,x) + Bx = Ax has a unique

exists a constant

. * . .
solution x in P, for any given A >0 .
Moreover, for any initial values x,,y, 0P, , constructing
successively the sequences

1
[A(xn—layn—l) + an—]]s yn = ;[A(yn—lsxn—l) + Byn—1]> n= 192a~-~ s

0, > Osuch that A(x,y) = Bx, [x,y 0D . Then
(T1) there exist u,, v, 0P, and r 0(0,1) such that
vy Suy <vy, Uy < A(uy,vy) + Buy < A(vy,uy) + Bvy < vy ;
(T2) the operator equation (1) has a unique solution x * in
D:

(T3) for any initial values x,,y, 0D , constructing
successively the sequences

Yn = A(yn—l’xn—l) + Byn—l’ n= 1’2"" >

vy Suy <vy, Uy < A(uy,vy) + Bug < A(vy,ug) + Bvy < vy ;

(T2) the operator equation (1) has a unique solution x * in
D
(T3) for any initial values x,,y,0D , constructing

successively the sequences

Yn = A(yn—l’xn—l) + Byn—l’ n= 1’2"" >

results in section 2 to study the existence of a unique positive

solution for nonlinear fractional differential equation

boundary value problem:

{— Du(0) = f(tu@.u(0) + g(tu(), 0<1<1, o

u(0) =u(1)=0

where 1<@ <2 is a real number and D?, is the Riemann—
Liouville fractional derivative of order @ > 0, defined by
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1 u(r)

I.)a n+1

Dlu(t) = - a)w>JO

wheren =[a]+1,
see [19, 20].

In recent years, there are many papers discuss the existence
and multiplicity of positive solutions for nonlinear fractional
differential equation boundary value problem by the use of
Leray—Shauder theory, fixed-point theorems, etc., see [21-25].
However, there are few papers consider the existence of a
unique positive solution for nonlinear fractional differential
equation boundary value problem. In this section, we apply
the results in section 2 to study the nonlinear fractional
differential equation boundary value problem (8).

Let £ =C[0,1]be a Banach space of continuous functions
on[0,1]with the maximum norm

|| u |= max{| u(?)|:¢T[0,1]}

P={ulE|u(t)=0,0:0[0,1]}, then P is a normal solid cone
of which the normality constant is 1 in Banach space £ . The
partial ordering defined by P is given byu <v < u(¢) < v(?)
for all £ LJ[0,1].

[a] denotes the integer part of number & ,

a-l ta—l(l
Ma)

Theorem 3.3 Assume that

(H1) f(tu,v):[0,1]1%[0,+00) X[0,+00) — [0,+00) is
continuous and g(z,u):[0,1]%[0,+e) — [0,+c0) is continuous
with g(2,0) #0;

(H2) f(t,u,v)is increasing inu (0[0,+) for fixed #J[0,1]
and v[0,+) , decreasing in v[[0,+) for fixed #1[0,1]
and u 0[0,+) , and g(¢,u) is increasing in u [1[0,+) for fixed
tO[0,17;

(H3) there exists a function g(r) which is differentiated in
the interval (0,1) and 0 < a(r) <1
such that

-0)(1-5)""s<G(1,5) < -

Lemma 3.1 (see [21]) Given yOC[0,1]Jand1<a <2, the
unique solution of

{— Diu(t) = y(1), 0<1<1. o)
u(0)=u(1)=0
is
1
u(t) = [ Gle¥(s)ds,

where

[l S)]ar_; _)(t —9)™ , 0<s<r<l,

Gt,s) = e (10)
=1, 0sisssl.

Ma)

Moreover, G(t,s) =0 for O¢,s 0(0,1) .
Lemma 3.2 (see [22]) The Green function G(¢,s) in Lemma
3.1 has the following property:

L =1 = for e, s 00, (1
a)

f(z,Au,%v) > D) (1), DrO[0,1], AD(0.D), u,vD[0,4+c0)

and
g(t, pu) 2 pg(t,u), p0(0,1), ¢0U[0,1], u [0, +00);
(H4) there exists a constant
f(tu)= qg(tu), (0[01], u,v20.
Then the problem (8) has a unique positive solution u * in
P, , where w(r)=1"""(1-1), ¢t0[0,1].
initial value x,,y, 0P, ,

% >0 such that

Moreover, for any

constructing successively the
iterative scheme

1 1
5,02 [ G8)(5.%,01(9).3,1(9)ds + [ G855, (), =12,

1 1
3002 [ GO9S (53,155, (5)ds + [ G692 (5.3, (5. n =12,

we have x, - u*and y, -» u*asn — o, where G(¢,s) is
given as (10).

Proof. To begin with, from Lemma 3.1, the problem (8) has
an integral formulation given by

u?) :J: QL) (s,145) 145) y+(s,145) )|

where G(t,s) is given as in Lemma 3.1.
Define two operators 4: PXP — EandB: P - E by

A(u,v)(1) = J:G(t,s) /(s,u(s),v(s))ds, Bu(r)= I;G(t,s)g(s,u(s))ds.

It is easy to prove that ¢ is the solution of the problem (8) if and only ifu = A(u,u) + Bu .
By assumption (H1) and Lemma 3.2, we know that 4: PXP — P and B: P — P . Further, it follows from (H2) that 4 is
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mixed monotone and B is increasing. For any A 0(0,1) and u,v I P, from (H3) we know that

A(Au,%v)(t) = .[;G(t,s) f(s,/lu(s),% W(s))ds = A”“’LlG(t,s) £ (5,u(5),v())ds = 17D A(u,v)(7) .

That is, A(/]u,%v) = A”(")A(u,v) for A0(0,1),u,vOP . So the operator satisfies (3). Also, for any [1(0,1) anduJ P, by

(H3) we obtain

1
B = [ Gt ) > 1] Gt u(s))ds = pBu),

That is, B(uu) = pBu for 4 00(0,1), u 0 P . So the operator B is a sub-homogeneous operator.

Next we show that A(w,w) 0P, and BwP,,
By (H1) and Lemma 3.2,

1
A(w,w)(t) = L G(t,5)f (s,w(s),w(s))ds < %

A(w,w)(t) = J. G(t,8)f (s,w(s),w(s))ds >

where w,,,, = max{w(¢):¢0[0,1]} .
From (H2) and (H4), we have

where w(t) =t~ (1-1) .

) [ (19772 £ (5, i 01

w(r)j S(1=5)77 £(5.0, Wy s .

S (8, Wiaxs0) 2 (5,0, W0 ) 2 9,2(5,0) 2 0.

Since g(z,0) # 0, we can get

1 1 1
I £ (5, Wy 0)ds 2 J' F(5.0, W, )ds 2 0, I 2(s5,0)ds >0,
0 0 0

and in consequence,

a-1
(a)Jo

1=

1
j s(1=$)7 £(5.0,w,. )ds >0, 1, =

ah =972 £ (5w 00 0.

So [w(t) < Aw(t) < Lw(¢),t0[0,1], and hence we have A(w,w) P, . Similarly,

a-1
(@)

- (t)I (1= g(s.0)ds < Bu(n) < -

1
) (O] (1= g5, s

from g(¢,0) #0, we easily prove Bw P, . Hence the condition (i) of Theorem 2.1 is satisfied.
In the following we show that the condition (ii) of Theorem 2.1 is satisfied.

Foru,vOP, by (H4),

1 1
AQu,v)(£) = J'OG(z,s) £ (s,u(s),v(s))ds = 5, IOG(t,s)g(s,u(s))ds = 5, Bu(t) .

Then we get A(u,v) = 8yBu, u,vOP. So the conclusion of

Theorem 3.3 follows from Theorem 2.1.
Remark 3.4 There exist many functions which satisfy the
conditions of Theorem 3.3. For example

Ftuv) = £ a0 4 @D gp = 34, @)
a :(0,4) - (0,1) is non-decreasing.

Example 3.5 We give an example to illustrate Theorem 3.3.
Consider the following nonlinear fractional differential

where

equation boundary value problem:

DT () = 273 4 9y Bl 4 =B
DEu(t) =263 + 2uP1D 4+ L0<i<LI<as2
u(0) =u(1) =0,

where f3:(0,+0) - (0,1) is non-decreasing. In this example,

we have
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S(tuv) = 2+ P 4 v_ﬂ(HVH), g(t,u) = £ 4 Al

It is easy to show that the nonlinear fractional differential
equation boundary value problem satisfy the conditions of
Theorem 3.3. So the equation (12) has a unique positive
solution u* 0 P, , where w(r) =7~'(1-1) .

From Theorem 3.3 and using Corollary 2.2, we can easily
obtain the following result.

Theorem 3.4 Assume that

(P1) S (tu,v) :[0,1] %[0, +00) X[0,+00) — [0,+00) is
continuous with f(£,0,w,,,,) ¥0;

(P2) f(t,u,v) is increasing inu [1[0,+w) for fixed#[1[0,1]
and v0[0,4%) , decreasing in v[[0,+) for fixed #J[0,1]
and u J[0,+00) ;

(P3) there exists a function g(¢) which is differentiated in the
interval (0,1) and 0 < a(z) <1
such that

f(t,Au,%v) > D £(tu,v), DrO[0.1], AT(O), uyv D0 +00)

Then the problem

= Dgau(t) = f (t,u(0),u(r)), 0<r<1,
u(0)=u(1)=0

has a wunique positive where

w(t) =t 1-1),
tao,1] .
constructing successively the iterative scheme

solution u* in P, ,

Moreover, for any initial value x,,y, P, ,

1

5(0)= [ G (5.%,1(). 7,1 (Nds, n=120-,
1

20 = [ G (5,341 (55, (s, =12,

we have x, - u*and y, - u*asn - oo, where G(z,s) is
given as (10).

From Theorem 2.4, we can easily obtain the following
result.

Theorem 3.5 Assume that (H1), (H2) hold and (H5) there
exists the function a(¢) which is differentiated in the interval

(0,1) and 0 <a(¢) <1 such that

gt ) =2 (" Pg(tu),  p0(0,1), ¢0[0,1], u O[0,+0)

and
Ft D)2 A ), BO[O1), ATOD, wvO[0.4e)

(H6) there exists a constant such that
S(tu,v) < og(t,u), tO[01], u,v20.
Then the problem (8) has a unique positive solution « * in

P, , where w(r)=t""'(1-1¢) , t0[0,1] . Moreover, for any

5, >0

initial value x,,y,0P, , constructing successively the
iterative scheme

1 1
5,(0)= [ G(0.9)/(5:3,1(9). 3,2 (D) + [ Glt)g(s.,1(5)ds, m =12,

1 1
30 = [ G5 (5.7, ()3,1()ds + [ Gt.9)g(5.7,(D)ds. m =120+

we have x, - u* and y, — u* as n —» oo, where G(z,s) is
given as (10).
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