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Abstract: Finding the roots of nonlinear algebraic equations is an important problem in science and engineering, later many 

methods developed for solving nonlinear equations. These methods are given [1-28], in this paper, a new Algorithm for solving 

nonlinear algebraic equations is obtained by using Lagrange Interpolation method by fitting a polynomial form of degree two. 

This paper compare the present method with the Famous methods of Regula Falsi (RF), Besection (BS), Modified Regula Falsi 

(MRF), Nonlinear Regression Method (NR) given by Jutaporn N, Bumrungsak P and Apichat N, 2016 [1] and Least Square 

Method (LS) given by N. IDE, 2016 [2]. We verified on a number of examples and numerical results obtained show that the 

present method is faster than the other methods. 

Keywords: Nonlinear Algebraic Equations, Least Square Method, Lagrange Interpolation Method,  

Nonlinear Regression Method 

 

1. Introduction 

There are several well-known methods for solving 

nonlinear algebraic equations of the form 

F (x)=0                                  (1) 

Where f denote a continuously differentiable on [�, �]∁ℛ 

and has at least one root α, in [�, �] 
Such as Bisection method, Regula Falsi method, Nonlinear 

Regresion Method and several another methods see for 

example [2-28]. 

Here we describe a new method by using Lagrange 

Interpolation method as a polynomial form of degree two: 

�	
 + �	 + 
 = 0                          (2) 

Where A, B and C are a known constants. 

We used three points (a, f (a)), (b, (f (b)) and (c, f (c)) 

where � = ���



, then we find that, this procedure lead us to 

the root α of equation (1). 

2. The Present Method 

In beginning, we define three initial points (a, f (a)), (b, (f 

(b)) and (c, f (c)), now by using Lagrange Interpolation 

method for these three points we find the polynomial (2) as 

suit, 

P (x)=
(���)(���)

(���)(���)
. f (a)+	(���)(���)

(���)(���)
. f (b)+ (���)(���)

(���)(���)
. f (c)   (3) 

Or the form,  

P (x)=
�������������

(���)(���)
f (a)+

�������������

(���)(���)
f(b) + 

(�����������)

(���)(���)
f (c)                            (4) 

Now by solving the equation of second degree (4), p (x)= 

�	
 + �	 + 
 = 0 we find the two roots 	"  and 	
  of (2), 

we choose 	" or 	
 which verify 	" ∈ [�, �]	or 	
 ∈ [�, �]. 

3. Algorithm. 1 

The present method has 6 steps: 

“a” Take [�, �] is an initial interval, which has at least a root 

in this interval. 

“b” Compute � = ���



. 

“c” Determine the Lagrange Interpolation method as a 
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polynomial form of degree two�	
 + �	 + 
 = 0. 

“d” Solve the equation of second degree �	
 � �	 � 
 � 0 

for determine the root of (1), 	 � 	" or 	 � 	
 which verify 

	" ∈ ��, ��	or 	
 ∈ ��, ��. 

“e” Replace the interval ��, ��  with ��, 		�	%&	�	, ��  which 

Contains the root. 

“f” Return step (2) until the absolute error	|(�	�| ) *. 

4. Examples 

Example 1. Consider the equation: f (x) =		
 + �1 + 	�-= 

0. Applying present method, by using Maple program, for the 

initial interval [0.1, 1], we find the approximate equation of 

second degree (Lagrange Interpolation): 

+1. 8230481482680529243	
 � 2.86821914914608274133	

+ 774.08319341213797212355 ⨯ 10�7 � 0 

Table 1 presents a comparison of iteration numbers and the 

error * between Bisection (BS), Regula Falsi (RF), Modified 

Regula Falsi (MRF), Nonlinear Regresion Method (NR) 

given by Jutaporn N, Bumrungsak P and Apichat N, 2016 

[1], Least Squart Method (LS) given by N. IDE, 2016 [2] and 

NEW method. 

Table 1. Presents comparison of iteration numbers and the error*. 

Method No. Iteration Approximation Root 8 � |9�:�| 
BS 33 0.345954815842023 1. 10�10 

RF 20 0.345954815842023 1. 10�10 

MRF 5 0.345954815842023 1. 10�10 

NR 6 0.345954815842023 1. 10�10 

LS 4 0.345954815671666 1. 10�10 

NEW 4 0.3459548156373397 
2.840546430459496⨯

10�10 

Figure 1 illustrate the plots of approximate solution of the 

equation 

+1. 8230481482680529243	
 � 2.86821914914608274133	 + 774.08319341213797212355 ⨯ 10�7 � 0 

Moreover, exact solution of the equation for example 1, in 

the interval [0.1, 1]. 

 

plot�+1. 8230481482680529243	


� 2.86821914914608274133	

+ 774.08319341213797212355 ⨯ 10�7, x � 0.1. .1� 

 

Figure 1. The plot of approximate solution. Exact solution for example 1. 

Figure 1 illustrate that, in the interval [0.1, 1] we have the 

same graph of the exact solution and the solution given by 

present method. 

Example 2. Consider the equation: f (x) =	@�A
BC
+ 	= 0. 

Applying present method, by using Maple program, for the 

initial interval [0.1, 1], we find the approximate equation of 

second degree (Lagrange Interpolation): 

+69. 61113103652196648308 ⨯ 10�7	


+ 599.38951620870976209087 ⨯ 10�7	

� 362.33026799969775876308 ⨯ 10�7 � 0 

Table 2 presents a comparison of iteration numbers and the 

error * between Bisection (BS), Regula Falsi (RF), Modified 

Regula Falsi (MRF), Nonlinear Regresion Method (NR) 

given by Jutaporn N, Bumrungsak P and Apichat N, 2016 

[1], Least Squart Method (LS) given by N. IDE, 2016 [2] and 

NEW method. 

Table 2. Presents comparison of iteration numbers and the error*. 

Method No. Iteration Approximation Root 8 � |9�:�| 

BS 29 0.5671432904012503 1. 10�"D 
RF 8 0.5671432904012503 1. 10�"D 
MRF 6 0.5671432904012503 1. 10�"D 
NR 7 0.5671432904012503 1. 10�"D 
LS 4 0.5671432901053765 1. 10�"D 

NEW 3 0.5671432904097838 
4.9519418376550871⨯

10�"E 

Figure 2 illustrate the plots of approximate solution of the 

equation 

+69. 61113103652196648308 ⨯ 10�7	


+ 599.38951620870976209087 ⨯ 10�7	

� 362.33026799969775876308 ⨯ 10�7 � 0 

Moreover, exact solution of the equation @�A
BC
+ 	= 0 for 

example 2, in the interval [0.1, 1]. 
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plot(+69. 61113103652196648308 ⨯ 10�7	


+ 599.38951620870976209087 ⨯ 10�7	

� 362.33026799969775876308 ⨯ 10�7, 	 � 0.1. .1� 

 

 

Figure 2. The plot of approximate solution. Exact solution for example 2. 

Figure 2 illustrate that, in the interval [0.1, 1] we have the 

same graph of the exact solution and the solution given by 

present method. 

Example 3. Consider the equation: f (x) =		. @� + 1= 0. 

Applying present method, by using Maple program, for the 

initial interval [0.1, 1], we find the approximate equation of 

second degree (Lagrange Interpolation): 

2. 26139081035670657426	


� 198.15694398841245846300 ⨯ 10�7	

+ 839.76315423983478638222 ⨯ 10�7 � 0 

Table 3 presents a comparison of iteration numbers and the 

error * between Bisection (BS), Regula Falsi (RF), Modified 

Regula Falsi (MRF), Nonlinear Regresion Method (NR) 

given by Jutaporn N, Bumrungsak P and Apichat N, 2016 

[1], Least Squart Method (LS) given by N. IDE, 2016 [2] and 

NEW method. 

Table 3. Presents comparison of iteration numbers and the error*. 

Method No. Iteration Approximation Root 8 � |9�:�| 

BS 33 0.5671432904097837 1. 10�"D 

RF 20 0.5671432904097837 1. 10�"D 

MRF 5 0.5671432904097837 1. 10�"D 

NR 6 0.5671432904097837 1. 10�"D 

LS 4 0. 5671432904097837 1. 10�"D 

NEW 3 0.5671432903946957 
-4.169198416164994 ⨯

10�"" 

Figure 3 illustrate the plots of approximate solution of the 

equation 

2. 26139081035670657426	
 � 198.15694398841245846300 ⨯ 10�7	 + 839.76315423983478638222 ⨯ 10�7 � 0 

Moreover, exact solution of the equation 	. @� + 1 = 0 
example 1, in the interval [0.1, 1]. 

 

plot�2. 26139081035670657426	


� 198.15694398841245846300 ⨯ 10�7	

+ 839.76315423983478638222 ⨯ 10�7, 	 � 0.1. .1 

 

 

Figure 3. The plot of approximate solution. Exact solution for example 3. 
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Example 4. Consider the equation: 

= 0. Applying present method, by 

using Maple program, for the initial interval [0.1, 1], we find 

the approximate equation of second degree (Lagrange 

Interpolation): 

+2. 92059378515695059141	
 � 2.04685760393075285711	
� 416.15494808520891698808 ⨯ 10�7 � 0 

Table 4 presents a comparison of iteration numbers and the 

error * between Bisection (BS), Regula Falsi (RF), Modified 

Regula Falsi (MRF), Nonlinear Regresion Method (NR) 

given by Jutaporn N, Bumrungsak P and Apichat N, 2016 

[1], Least Squart Method (LS) given by N. IDE, 2016 [2] and 

NEW method. 

Table 4. Presents comparison of iteration numbers and the error *. 

Method No. Iteration Approximation Root 8 � |9�:�| 

BS 34 0.865470331016205 1. 10�"D 
RF 12 0.865470331016205 1. 10�"D 
MRF 5 0.865470331016205 1. 10�"D 
NR 6 0.865470331016205 1. 10�"D 
LS 4 0.865470331016205 1. 10�"D 

NEW 3 0.8654740331016144 
1.402601312699497⨯

10�"F 

Figure 4 illustrate the plots of approximate solution of the 

equation 

+2. 92059378515695059141	
 � 2.04685760393075285711	 � 416.15494808520891698808 ⨯ 10�7 � 0 

Moreover, exact solution of the equation  

for example 1, in the interval [0.1, 1]. 

 

plot�+2. 92059378515695059141	


� 2.04685760393075285711	

� 416.15494808520891698808 ⨯ 10�7, x � 0.1. .1� 

 

 
Figure 4. The plot of approximate solution. Exact solution for example 1. 

Figure 4 illustrate that, in the interval [0.1, 1] we have the 

same graph of the exact solution and the solution given by 

present method. 

5. Conclusion 

The present paper suggests a new algorithm for solving 

nonlinear algebraic equations; this method presented by the 

algorithm 1. Numerical examples show that this method is 

remarkably effective for solving nonlinear algebraic equations 

and it is much faster than the method given by the famous 

methods of Regula Falsi (RF), Besection (BS), Modified Regula 

Falsi (MRF), Nonlinear Regresion Method (NR) given by 

Jutaporn N, Bumrungsak P and Apichat N, 2016 [1] and Least 

Squart Method (LS) given by N. IDE, 2016 [2]. We verified on a 

number of examples and numerical results obtained show that the 

present method is faster than the other methods. 
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