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Abstract: The N- dimensional radial Schrödinger equation with an extended Cornell potential is solved. The analytical exact 
iteration method (AEIM) is applied. The energy eigenvalues are calculated in the N –dimensional space. The charmonium 
meson, the bottomonium meson and the ��̅ meson masses are calculated in the N-dimensional space. The special cases are 
obtained from the general case. The study of the effect of dimensionality number is studied. The mean value of the radius and 
the mean square velocity of charmonium meson, bottomonium meson, and bc� meson are calculated. The present results are 
improved in comparison with other recent studies and are in good agreement with the experimental data. Therefore, the present 
method with the present potential gives successfully description of heavy quarkonium properties. 
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1. Introduction 

Studying heavy quarkonium systems such as charmonium 
meson, bottomonium meson, and bc� meson have a vital role 
for comprehension the quantitative tests of (QCD) and the 
standard model [1]. The study of these systems is very 
important. A lot of heavy quarkonium systems can be studied 
within the Schrödinger equation [2]. 

The solution of Schrödinger equation with spherically 
symmetric potential is one of the important problems in 
physics. It plays a large vital role for spectroscopy, atoms, 
molecules, and nuclei, in particular, the properties of 
constituents particles and dynamics of their interactions. 

Several papers have focused on the study of multi-
dimensional space or N-dimensional space [3]. The study of 
multi-dimensional space problems is more general, and it can 
easily obtain the results in the lower dimensional space [4]. 
The effect of the N-dimensional space is studied on the 
energy levels of quantum mechanical systems [5]. The 
Hydrogen atom [6] and the harmonic oscillator [7] have been 
studied in the N-dimensional space. In addition, other 
potentials have been solved in the N-dimensional space such 
as Coulomb potential [8], Psedoharmonic potential [9], 

Kratzer potential [10], Hulthen potential [11], Poschl-Teller 
potential [12], Mie-type potential [13], energy dependent 
potential [14], forth-order inverse power potential [15], Hua 
potential [16], global potential [17], and Cornell potential 
[18]. 

Schrödinger equation has been solved by using numerous 
methods such as quasi-linearization method (QLM) [20], Hill 
determinant method [21], point canonical transformation 
(PCT) [22], and numerical methods [23-25]. The N-
dimensional Schrödinger equation is solved by the 
Nikiforov-Uvarov (UV) method [5, 11, 14], (AIM) method 
[2], Laplace Transform method [3, 8], (SUSQM) method 
[26], power series technique [27], and Pekeris type 
approximation [16, 28]. 

In this paper, we consider the confining potential is the 
extended Cornell potential [19]. 

��	
 = �	
 + �	 − �� − ���                            (1) 

The aim of this paper is to calculate the solutions of the N-
radial Schrodinger equation using the analytical exact 
iteration method (AEIM) [19, 29, 30]. Additionally, the 
present results are applied on quarkonium properties in 
comparison with experimental data and other recent studies. 
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The paper is organized as follows: In Sec. 2, the exact 
solution of the N-dimensional radial Schrödinger equation is 
derived. In Sec.3, the results are discussed. In Sec. 4, 
summary and conclusion are presented. 

2. Exact Solution of the N-dimensional 

Radial Schrödinger Equation with the 

Extended Cornell Potential 

The N-dimensional radial Schrödinger equation for two 
particles interacting via symmetric potential (1) takes the 
form [2]. 

� ����� + ���� 	 ��� − ������

�� + 2�	���� − ��	
 ! "��	
 = 0	  (2) 

where l, N	and	μ  denote the angular quantum number, the 
dimensional number, and μ is the reduced mass of the two 

particles � = +,+,-+,�+,-, respectively. 

Inserting the transformation 

"��	
 = �
��./0
� 	1��	
.                                     (3) 

Eq. (2) takes the form 1�33�	
 +42� 5��� − �	
 − �	 + �� + ���6 −
07����8��9 �������

�� : 1��	
 = 0.            (4) 

Using the simplifications: ;�� = 2���� , �� = 2��, �� = 2��, �� = 2��, <� = 2�<.	   (5) 

Eq. (4) reduces to 1�33�	
 +4;�� − ��	
 − ��	 + �0� + �0�07����8��9
�������

�� : 1��	
 = 0.	  (6) 

To solve the N-dimensional radial Schrödinger equation 
with the analytical exact iteration method (AEIM). The 
following ansatz for the wave function is assumed [19]. 1��	
 = =��	
 >?@Ag�	
C.	                         (7) 

Where 

=��	
 = D 1, F = 0,∏ �	 − HI��

�IJ� , F = 1,2, … ,             (8a) 

g�	
 = − �
H	
 − L	 + M NF 	, H > 0, L > 0.  (8b) 

From Eq. (7), we obtain 

φQ'' �r
 = �g''�r
 + g'
�r
 + TU'' �V
�
TU�V
W 	X�V
WT�V
 ! φQ�r
.     (9) 

Comparing Eqs. (6) and (9) yields 

��	
 + ��	 − �0� + 07����8��9 �������

��0�� − ;�� = g33�	
 +g3
�	
 + YZ[[��
�
YZ��
W 	X��
WY��
 .                      (10) 

At n=0, By substituting Eqs. (8) into Eq. (10) gives 

��	
 + ��	 − �0� + 07����8��9 �������

��0�� − ;\� = H
	
 +2HL	 − HA1 + 2�M + 0
C + L
 − 
]^� + ^�^��
�� .      (11) 

By comparing the corresponding powers of r on both sides 
of Eq. (11), one obtains H = √��,                                       (12a) 

L = `0
√a0,                                        (12b) 

�� = 2L�M + 0
,                                    (12c) 

M = �
 �1 ± NW , NW = c�d − 2

 + 4N�N + d − 2
 − 8�<, (12d) 

;\� = HA1 + 2�M + 0
C − L
.                      (12e) 

To get well- behaved solutions at the origin and the 
infinity, δ is taken in the following from Eq. (12d) as  

M = �
 51 + c�d − 2

 + 4N�N + d − 2
 − 8�<6.   (13) 

From Eqs. (5), (12a), (12e) and (13). The ground state 
energy is: 

�\� = h a
i �2 + NW − 
i������W �	.	                        (14) 

Where the coefficient c satisfy this restriction 

� = 
̀ �1 + NW h �
ia.                                (15) 

Substitution of, H, L and M from Eqs. (12a), (12b) and (13) 
together with Eqs. (3), (7) and (8) gives the following ground 
state wave function: 

"\�	
 = d\		�jW/.k�
� 	exp o− �
c2��		
 − 
i�����W 		p.     (16) 

Secondly, for the first node (n=1), we use f�r
 = r-α���
 and 
g(r) from Eq. (8b) to solve Eq. (10) gives: 

��	
 + ��	 − �0� + 07����8��9
�������

��0�� − ;�� = H
	
 + 2HL	 −
HA1 + 2�M + 1
C + L
 − 
�]�^��
�tt0�0
!� + ^�^��
�� .   (17) 

Then, the relations between the potential parameters and 

the coefficients α, β, δ and H���
 are given by: 	α = √a�,                                   (18a) 

	β = v0
√w0,                                   (18b) 

c� = 2β�δ + 0
,                         (18c) 
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ε�y = αA1 + 2�δ + 1
C-β
		,	                 (18d) 

c�-2β�δ + 1
 = 2αα���
,                        (18e) 

�c�-2βδ
α���
 = 2δ,                               (18f) 

d� = �8 �N
-4N + 3 + l�l + N-2 -	δ�δ-1 ,           (18g) 

Where �, H���
are obtained from the constraint relations, 

	c = v
c
{w �3 + lW + 2h w
{α���
	,                     (19a) 

	αα���

 + βα���
-δ = 0,                              (19b) 

So, one obtain 

	α���
 = - v8w ± h v��|w� + ���yW c}{w,                          (19c) 

Then, the energy eigenvalue is: 

E�y = h w
{ �4 + lW - v�8w.                              (20) 

The corresponding wave function is: 

ψ��r
 = N��r-	α���
 r��W-�k� � 	exp o- �
c2μa	r
-h {
w b	rp. (21) 

The second node (n=2), we use 	f�r
 = �r-α��

 �r-α
�

  

and g(r) from Eq. (8b) to solve Eq. (10) gives: 

��	
 + ��	 − �0� + 07����8��9
�������

��0�� − ;
� = H
	
 + 2HL	 −
HA1 + 2�M + 2
C + L
 − 
�]�^�

�t	∑ t���
���0 !� + ^�^��
�� .	 (22) 

Therefore, the relations between the potential parameters 

and the coefficients, β, δ, α��

	�F<	H
�

 are given by: 	α = √a�,                                    (23a) 

	β = v0
√w0,                                    (23b) 

	δ = �
 �1 + lW ,                              (23c) 

ε
y = αA1 + 2�δ + 2
C-β
,                     (23d) 

c�-2β�δ + 2
 = 2α∑ α��


�J� ,                     (23e) 

�c�-2βδ
∑ α��

α��


��� = 2δ∑ α��


�J� ,                (23f) 

�c�-2β�δ + 1
�∑ α��


�J� = 4α∑ α��

α��


��� + 2�2δ + 1
. (23g) 

The coefficients α��

and	α
�

 are given by the constraint 
relations, 

	α ∑ α��


 + β∑ α��

-
�J�
�J� �2δ + 1
 = 0.             (24a) 

	δ ∑ α��


-
�J� �β∑ α��

 + 1
�J�  ∑ α��

α��


��� -2α∑ α��


α��



��� = 0. (24b) 

Then, the energy eigenvalue is: 

E
y = h w
{ �6 + lW - v�8w.                                 (25) 

The corresponding wave function is: 

ψ
�r
 = N
 ∏ �r-	α��



�J� 	r��W-�k�
� 	exp �- 12c2μa	r2
-h μ2a b	r �.        (26) 

Similarly, the iteration method is repeated many times. 
Thus, the exact energy formula for the confining potential (1) 
with any arbitrary n state is obtained: 

EQy = h w
{ �2 + 2n + lW - v�8w.                         (27) 

The corresponding wave functions for any n state are: 

"��	
 = d� ∏ �	 − 	HI��

�IJ� 		�jW/.k�
� 	exp �− �
c2��		

−h i
a �		 � (28) 

where the relations between the parameters of potential and 

the coefficients H, L, M, H���
, H���
, H
��
, …… . . , H9��
	are 

H = c��, L = ��2√�� , M = 12 �1 + NW , 
;�� = HA1 + 2�M + F
C − L
,	                 (29a) �� − 2L�M + F
 = 0, �F = 0
,            (29b) 

�� − 2L�M + F
 = 2H ∑ HI��
�IJ� , F = 1,2,3, …, 

A�� − 2L�M + F − 1
C∑ HI��
 =�IJ� F�2M + F − 1
, �F = 1
 (29c) 

A�� − 2L�M + F − 1
C�HI��
 =�
IJ� 4H�HI��
H���


�
I��+ F�2M + F − 1
, F = 2,3,4, …, 

A�� − 2L�M + F − 2
C�HI��
H���

�

I�� = 

	�F − 1
�2M + F − 2
∑ HI��
�IJ� , �	F = 2
,          (29d) 

A�� − 2L�M + F − 2
C�HI��
H���

�

I�� = �F − 1
�2M + F − 2
�HI��
H���

�

I�� + 4H � HI��
H���

�

I���� H���
, F = 3,4,5, … . ., 
��� − 2LM
∑ HI��
H���
�I���� H���
 = 2M ∑ HI��
H���
�I�� , �	F = 3
,	                                 (29e) 
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And so on 
Finally, from Eqs. (27) and (12d) together we can write the energy eigenvalue of Eq. (4) in N-dimensional as 

���� = h a
i 52F + 2 ± c�d − 2

 + 4N�N + d − 2
 − 8�<6 − `�8a.                                 (30)

3. Discussion of Results 

3.1. Mass Spectra of Heavy Quarkonia in the N-dimensional Space 

In this section, the properties of charmonuim meson, bottomonium meson, and bc� meson are calculated, in which the 
quarkonium meson have quark and antiquark masses. The following relation [1] is used for determining quarkonium masses in 
the N-dimensional space M = m� + m�- + EQy�                                                                     (31) 

By substituting Eq. (30) into Eq. (31), the quarkonium mass in the N-dimensional space takes the following form 

� = �� + ��� + h a
i 52F + 2 ± c�d − 2

 + 4N�N + d − 2
 − 8�<6	− `�8a.	                       (32) 

Thus, the charmonium mass is given by: 

M� = 2m� + h w�� �2n + 2 ± h�N-2 
 + 4l�l + N-2 -4m�d� - v�8w.	                                (33) 

Similarly, the bottomonium mass is calculated from Eq. (33) by replacing ��	��	�` . 
Table 1. Mass spectra of charmonuim for parameters (��= 1.209 GeV, a = 0.0673	 >�9, b = 0.0895	 >�
, d = 0.001	 >���). 

State P. Work Exp. [27] [2] [4] N=4 N=5 N=6 

1S 3.095481 3.096 3.078 3.078 3.096 3.331703 3.567735 3.803718 

1P 3.567735 - 3.415 3.415 3.433 3.803718 4.039683 4.275638 

1D 4.039683 - 3.581 4.187 3.686 4.275638 4.511588 4.747534 

2S 3.567354 3.686 3.749 3.752 3.767 3.803575 4.039607 4.27559 

2P 4.039607 3.773 3.917 4.413 3.910 4.27559 4.511555 4.74751 

3S 4.039226 4.040 4.085 5.297 3.984 4.275448 4.511479 4.747463 

4S 4.511098 4.263 4.589 6.407 4.150 4.74732 4.983351 5.219335 

Table 2. Mass spectra of bottomonium for parameters (�`=4.823 GeV, a= 0.09347 >�9, b= 0.34457	 >�
, d= 0.001  >���). 

State P. Work Exp. [27] [2] [4] N=4 N=5 N=6 

1S 9.74473 9.46 9.510 9.510 9.460 9.884619 10.02406 10.16338 

1P 10.02406 - 9.862 9.862 9.840 10.16338 10.30266 10.44192 

1D 10.30266 - 10.038 10.627 10.023 10.44192 10.58116 10.7204 

2S 10.02315 10.023 10.214 10.214 10.140 10.16304 10.30248 10.4418 

2P 10.30248 - 10.390 10.944 10.160 10.4418 10.58108 10.72034 

3S 10.30158 10.355 10.566 11.726 10.280 10.44147 10.5809 10.72023 

4S 10.580 10.580 11.094 12.834 10.420 10.71989 10.85933 10.99865 

Table 3. Mass spectra of ��̅ meson for parameters (��=1.209 GeV, �`=4.823 GeV, a= 0.2793 >�9, b= 0.999	 >�
, d= 0.001  >���). 

State P. Work Exp. [32] [33] [34] N=4 N=5 N=6 

1S 6.277473 6.277 6.349 6.264 6.270 6.658294 7.038623 7.418830 

1P 7.038623 - 6.715 6.700 6.699 7.418830 7.798987 8.179120 

2S 7.037641 - 6.821 6.856 6.835 7.418462 7.798791 8.178997 

2P 7.798791 - 7.102 7.108 7.091 8.178997 8.559155 8.939287 

3S 7.797808 - 7.175 7.244 7.193 8.178630 8.558959 8.939165 

 

We choose the positive sign in Eq. (33) in the present 
computations as in Refs. [4, 31]. The free parameters of the 
present computations a, b and d are fitted with experimental 
data and Eq. (33). Ikhdair and Hamzavi [19] solved 

Schrodinger equation in three dimensions for the same 
potential of the present work and calculated the energy 
eigenvalues. It can easily obtain their results if we put (N=3) 
in Eq. (30). In addition, we apply our results to quarkonium 
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properties. In Refs. [2, 27], the potential is a special case of 
the present potential when we put (d = 0). Also, In Ref. [4], 
the potential is a special case of the present potential when 
setting (b=0 and d = 0). 

In Table 1, the charmonium mass is computed from Eq. 
(33) in comparison with other theoretical studies [2, 4, 27], 
and the experimental data. In Ref. [27], the authors computed 
the charmonium and bottomonium masses using the power 
series technique for the quark-antiquark interaction potential. 
In Ref. [2], the authors computed the charmonium and 
bottomonium masses using the asymptotic iteration method 
(AIM) for the quark-antiquark interaction potential. In Ref. 
[4], the authors computed the charmonium and bottomonium 

masses using the Nikiforov-Uvarov (UV) method. The 
present results are in good agreement with experimental data 
and are improved in comparison with results in Refs. [2, 4, 
27]. In Table 2, the bottomonium mass is computed. Most 
states of bottomonium are improved in comparison with 
other theoretical studies [2, 4, 27], and are in good agreement 
with experimental data. In Table 3, the 	bc�  meson mass is 
computed. The 1S state is closed with experimental data and 
the other states are in good agreement in comparison with 
Refs. [32, 33, 34]. The charmonium mass, the bottomonium 
mass, and bc�  mass increase with increasing dimensional 
number due to an increase in the binding energy. 

 

Fig. 1. The present potential is plotted as a function of distance (r) for different states, where (a) represents charmonium states, (b) represents bottomonium 

states, and (c) represents	��̅ meson states. 

In Fig. 1. The present potential is plotted as a function of 
distance (r) for different states for the range of distances 0.1 
fm ≤ r ≤ 1 fm as in Ref. [35]. The three curves increase with 
increasing distance (r). Additionally, all curves shift to upper 
values by increasing angular quantum number. This behavior 
is in agreement with Ref. [35]. 

3.2. Radius of Bound State 

The mean radius 〈r〉 and the mean square velocity 〈v
〉 of the 
bound states of charmonium meson, bottomonium mseon and 
bc� meson are calculated by using the Virial theorem [35]. 
The relation of the mean-kinetic energy and the potential 
energy is given by: 

〈T〉 � �

 〈r

¥¦
¥V〉.                        (34) 

The present potential is	V � ar
 � br- �V -
¥
V�	, reduces 

	E � 2a〈r
〉 � 9v〈V〉

 - �


〈V〉,                      (35) 

The mass relation 

	M � 2m � 2a〈r
〉 � 9v〈V〉

 - �


〈V〉.                  (36) 

The mean square velocity 

〈v
〉 � 

¨ 5a〈r


〉 � v〈V〉

 � �


〈V〉�
¥
〈V�〉6.              (37) 
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Table 4. 〈	〉 and 〈©
〉 of charmonium. 

State Parameter c 〈ª〉(«¬­�®) 〈¯°〉 
1 S 0.31384 1.92740 0.270037 
1 P 0.62740 2.61297 0.390517 
1 D 0.94121 3.16224 0.476976 
2 S 1.36707 2.76119 0.495803 
2 P 2.04345 3.32003 0.593240 
3 S 0.56582 3.10281 0.434766 

Table 5. 〈	〉 and 〈©
〉 of bottomonium. 

State Parameter c 〈ª〉(«¬­�®) 〈¯°〉 
1 S 0.51071 0.70781 0.109020 

1 P 1.02557 1.13682 0.153330 

1 D 1.53909 1.48158 0.190298 

2 S 1.19244 1.18887 0.167441 

2 P 1.82675 1.54697 0.209862 

3 S 0.95280 1.32665 0.146140 

Table 6. 〈	〉 and 〈©
〉 of ��̅ meson. 

State Parameter c 〈ª〉(«¬­�® ) 〈¯°〉 
1 S 1.35685 0.67088 0.469706 

1 P 2.71809 1.07872 0.603684 

1 D 3.15324 1.12857 0.658530 

2 S 4.82411 1.46948 0.763969 

2 P 2.53006 1.25885 0.532638 

In Tables (4, 5, and 6). The quantities. 〈	〉  and 〈©
〉 are 
computed for different states of charmonium meson, 
bottomonium meson and bc�-meson from Eqs. (36) and (37). 
The radius of bb� is larger than the radius of bc� and smaller 
than the radius of cc� . In addition, the values of radii of bb�,	��̅	�F<	��̅ are located in the interval 0.1 to 1 fm. This in 
agreement with Ref. [36]. 

4. Summary and Conclusion 

In the present study, we employ the analytical exact iteration 
method (AEIM) for determining the energy eigenvalues and the 
wave functions of the multi-dimensional radial Schrödinger 
equation with the extended Cornell potential. The charmonium 
mass, bottomonium mass and bc� meson mass are analytically 
obtained in the N-dimensional space and the special cases are 
obtained in comparison with other studies [2, 4, 27]. The effect 
of dimensional number is studied on the mass spectra of 
charmonium, bottomonium and bc� meson in Tables (1, 2, and 
3). Increasing dimensional number increases charmonium mass, 
bottomonium mass, and bc� meson mass. The obtained results 
are in good agreement in comparison with Refs [2, 4, 27] and 
are in agreement with the experimental data. In addition, the 
mean radius 〈r〉 and the mean square velocity 〈v
〉 of the bound 
states of charmonium meson, bottomonium meson and bc� 
meson are computed in Tables (4, 5, and 6). The radius of bb�  is 
larger than the radius of bc� and smaller than the radius of	cc�. 
This observation refers to one of the characteristics of 
quarkonium that the heavy quarkonium have smaller radii. 
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