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Abstract: In this paper, a three parameter probability distribution function called type I generalized half-logistic distribution 

is introduced to model survival or time to event data. The survival function, hazard function and median survival time of the 

survival model were established. Estimation of the parameters of the model was done using the maximum likelihood method. 

We then applied the type I generalized half-logistic survival model to a breast cancer survival data. The derived result from 

type I generalized half logistic survival model was compared with the results of some common existing parametric survival 

models, and this revealed that the type I generalized half-logistic survival model clearly demonstrates superiority over these 

other models. 
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1. Introduction 

Survival analysis is a statistical tool for studying the 

occurrence and timing of events. Initially, survival analysis 

was designed for study of death, but it has now been 

extended to other aspects both in social and natural sciences. 

It measures time to event e.g death, contacting a disease, 

equipment failures, earthquakes, automobile accidents, stock 

market crashes, revolutions, job terminations, births, 

marriages, divorces, promotions and arrests e.t.c. We may be 

interested in characterizing the distribution of time to event 

for a given population as well as comparing this time to event 

among different groups (e.g., treatment vs. control in a 

clinical trial or an observational study), or modeling the 

relationship of time to event to other covariates (sometimes 

called prognostic factors or predictors). The Hosmer and 

Lemeshow [1], Lee and Wang [2], Kleinbaum and Klein [3], 

and Collet [4] books give a detailed overview of survival data 

modeling techniques. Non-parametric and semi-parametric 

survival models such as the Cox regression analysis have 

been the most widely used models in the analysis of time to 

event survival data. On the other hand, if the assumption for 

parametric probability distribution is met for the data set 

under consideration, it will result in more efficient and easier 

to interpret estimates than non-parametric or semi parametric 

models. A comprehensive review was given by Efron [5] and 

Lee and Go [6]. Popular parametric models include the 

exponential, Weibull, log- logistics and lognormal 

distributions. The description of the distribution of the 

survival times and the change in their distribution as a 

function of predictors is of interest. Model parameters in 

these settings are usually estimated using maximum 

likelihood method. Survival estimates obtained from 

parametric survival models typically yield plots more 

consistent with a theoretical survival curve. If the 

investigator is comfortable with the underlying distributional 

assumption, then parameters can be estimated that 

completely specify the survival and hazard functions. This 

efficiency and completeness are the main appeals of using a 

parametric approach. Foulkes et al. [7] used parametric 

modeling to assess the prognostic factors in the recurrence of 

ischemic strokes. Sama et al. [8] used five parametric models 

to analyze the survival time data of infections and they found 

that the best fit could be obtained using parametric models. 

They also indicated that parametric models can be used to 

model the duration of malaria infections. Kannan et al. [9] 

used log-logistic probability distribution to model altitude 

decompression sickness (DCS) risk and symptom onset time. 
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They concluded that the log-logistic model could provide 

good estimates of the probability of DCS over time. The AFT 

model is often viewed as a competitor to the proportional 

hazards (PH) model when the PH model fails to fit. Although 

the AFT model with an unspecified error distribution is a 

natural analog to the PH model, there are no widely accepted 

methods for implementing this approach. Miller [10], 

Buckley and James [11], Koul et al. [12] and Christensen and 

Johnson [13] developed methods for a semi-parametric AFT 

model, but difficulties inherent in the model made their 

approaches somewhat un- palatable. Kuo and Mallick [14] 

and Walker and Mallick [15] present novel Bayesian 

approaches but it will take time to determine their long-term 

viability. Aalen [16] noted that parametric survival model is 

underused in medical research and deserving of more 

attention. Mohammad A Tabatabai et al. [17] derived a new 

two-parameter probability distribution called hypertabastic 

and introduced it to model the survival or time-to-event data. 

Torabi and Bagheri [18] presented an extended generalized 

half logistic distribution and studied different methods for 

estimating its parameter based on complete and censored 

data. They derived maximum likelihood equations for 

estimating the parameters based on censored data. Also, the 

asymptotic confidence intervals of the estimators are 

presented in which they applied using simulation studies and 

properties of maximum likelihood of the estimators are 

given. Alireza Abadi [19] applied the generalized gamma 

distribution to a set of data of breast cancer patients. He fitted 

the saturated generalized gamma (GG) distribution, and 

compared this with the conventional Acceleration Failure 

Time (AFT) model. Using a likelihood ratio statistic, both 

models were compared to the simpler forms including the 

Weibull and lognormal. For semiparametric models, either 

Cox PH model or stratified Cox model was fitted according 

to the PH assumption and tested using Schoenfeld residuals. 

The GG family was compared to the log-logistic model using 

Akaike information criterion (AIC) and Bayesian information 

criterion (BIC). 

2. Type I Generalized Half Logistic 

Distribution 

In this section we introduce the four parameter type I 

generalized half logistic distribution. One of the probability 

distributions, which is a member of the family of logistic 

distribution, is the half logistic distribution with probability 

density function (pdf). 
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and cumulative distribution function as 
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Balakrishnan [20] studied order statistics from the half 

logistic distribution, Balakrishnan and Puthenpura [21] 

obtained best unbiased estimates of the location and scale 

parameter of the distribution while Olapade [22] presented 

some theorems that characterized the distribution. 

Balakrishnan and Wong [23] obtained approximate 

maximum likelihood estimates for the location and scale 

parameters of the half logistic distribution. Torabi and 

Bagheri [18] presented an extended generalized half logistic 

distribution and studied different methods for estimating its 

parameters based on complete and censored data. Olapade 

[24] obtain a generalized form of half logistic distribution 

through a transformation of an exponential random variable 

called four parameter type I half logistic distribution as 
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with cumulative distribution function as 
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2.1. Type I Generalized Half Logistic Survival Function 

Let T be a continuous random variable representing the 

waiting time until the occurrence of an event. Then the four 

parameter type I generalized half logistic survival function 

s(t) is defined as 
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Figure 1 shows the graph shows different shapes of the 

curve with different values of the shape parameter. 

 

Fig. 1. Graph of survival function of type I generalized half logistic 

distribution. 

2.2. The Type I Generalized Half Logistic Hazard Function 

The hazard function is a conditional failure rate which 

gives the instantaneous potential for failing at time t per unit 

time for an individual surviving to time t. 
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Let T be a continuous random variable representing the 

waiting time until the occurrence of an event. Then the type I 

generalized half logistic hazard function h(t) which is the 

instantaneous failure rate at time t given survival up to time t 

is defined as  
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which gives 

+��� � 	 ����	����� �
��	
�������� ��	                         (10) 

 

Fig. 2. Graph of survival function of type I generalized half logistic 

distribution. 

From Figure 2, one thing to note is that the hazard function 

has a monotonically increasing hazard rate for all parameter 

values, a property shared by relatively few distributions 

which have support on the positive real half-line. 

2.3. The Median Survival Time of the Type I Generalized 

Half Logistic Survival Model 

The median survival time is defined as 
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2.4. Accelerated Failure Time Model (AFT) of the Type I 

Generalized Half Logistic Survival Model 

Generally, the AFT model is of the form 

FGH � I * JKL * ɛ                               (18) 

where 

1. ɛ is said to follow a distribution 

2. J is sets of covariates with parameters β 

3. δ is the intercept of the model 

Given that survival times H	, H�, . . . , HN of size n is assumed 

to follow the type I generalized half-logistic distribution, the 

ɛ is assumed to be distributed to exponentiated Type I half 

logistic distribution. We estimate the parameters of the AFT 

model using the maximum likelihood estimation (MLE) 

method, involving optimization technique. 

The method of the MLE is to find an estimator that 

maximizes the likelihood function, or in other words, which 

is ''most likely'' to have produced the observed data. The 

maximum likelihood function for the AFT model is given as 
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which equivalently is 
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where U�J/L�=exp�(JL� and W��� � �exp�(JL�.  
Also �V�W����  and )V�W����  are the baseline probability 

density function and baseline survival function respectively. 

This now gives 
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Taking logarithm of both sides, 
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we obtain the maximum likelihood estimate of the shape parameter α as 
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Equating this to zero to derive α, 
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To estimate the location parameter µ, and scale parameter σ, 
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Since the equations (25) and (26) above are nonlinear in 

the parameters, we can use numerical iterative method with 

the aid of computer program to estimate the parameters from 

a relevant data sample. 

3. Application of the Type I Generalized 

Half Logistic Survival Model 

To investigate the performance of the type I generalized 

half logistic survival model and to compare it with common 

existing models, we retrospectively analysed a set of data for 

breast cancer patients from Ladoke Akintola University of 

Technology Teaching Hospital (LTH), Osogbo. The data 

contain information on 89 patients with breast cancer disease. 

The data is right censored and the survival time is measured 

in days, starting from the date of admission for treatment and 

the date of last contact (death, alive or loss to follow up). The 

histogram of the data shows that the data can be analyzed 

using a type I generalized half logistic or the half logistic 

distribution of Olapade [24]. Besides the type I generalized 

half logistic survival model, we fit Weibull, log-normal, log-

logistic and exponential models and the figure 3 shows that 

the models fit the data. We present the log-likelihood 

estimates, as well as AIC, to assess the goodness-of-fit of the 

models. The data was analyzed using the R-statistical 

software and the result is derived. 

 

Fig. 3. Graph displaying the comparison of the fitted survival models. 

The parametric estimation estimates the parameter 

variables. Using the survival data collected in the hospital, 

we have the µ= 396.842161, σ= 586.200871 and α= 

5.803715. The loglikelihood value is -336.214 and the AIC = 

678.428. 

Comparing it with common existing survival models, the 

result is displayed in the table 1 

Table 1. Table displaying comparison of Type I Generalized Half Logistic 

Survival Model with common existing models. 

Model Loglikelihood AIC 

Type I GHL -336.2 678.4 

Exponential -374.3 773.2 

Log-normal -337.9 693.2 

Log-logistic -338.7 695.8 

Weibull -348.2 702.4 

From table 1, the Type I GHL Survival model (with AIC 

value at 674.4) gives the smallest value and thus is the best 

model when compared with the common existing ones. 

4. Conclusion 

In this paper, we have introduced a new survival model 

called the four parameter type I generalized survival model 

and presented some theoretical work on it. 
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