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Abstract: Measles is still endemic in many parts of the world including developed nations, despite the availability of the 

infectious disease vaccine since 1963. Elimination of measles requires maintaining the effective reproduction number by 

achieving and maintaining low levels of susceptibility R0 <1. In this project, we concentrate on the stochastic modelling of the 

transmission dynamics of measles with vaccination control. We have obtained the stochastic differential equations model from 

the deterministic model. Simulation of the stochastic differential equations model have been performed as well as the 

deterministic model. The stochastic differential equations model has described the transmission dynamics of measles with 

more information compared to the deterministic counterpart. Mathematical technique used in the simulation of the stochastic 

differential equations model is Euler-Maruyama numerical scheme and discussions of the model. 
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1. Introduction 

In this chapter we discuss mathematical modelling, types 

of models and use of models. 

Modelling is the process of producing a model; a model is 

the presentation of the construction and working of some 

system of interest. It is similar to but simpler than the system 

it represents. Mathematical modelling is the process of 

expressing real world phenomena or system using 

mathematical principles and formula. Mathematical 

Modelling can classified into deterministic models and 

stochastic models based on certainty. In this study we will 

study stochastic model of dynamics of measles with 

vaccination by simulation of the transformed deterministic 

model into stochastic differential equations model. 

Measles (also called rubeola) is a highly contagious viral 

infection that can be found around the world through person-

to-person transmission mode, with over 90% attack rate 

among susceptible persons. The measles virus is a 

paramyxovirus, genus morbillivirus. Even though an 

effective vaccine is available and widely used, measles 

continues to occur even in developed countries. Children 

under five years are most at risk. 

The main symptoms of measles are fever, runny nose, 

cough and a rash all over the body, it also produces 

characteristics-red rash and can lead to serious and fatal 

complications including pneumonia, diarrhea and 

encephalitis. Many infected children subsequently suffer 

blindness, deafness or impaired vision. Measles confer 

lifelong immunity from further attacks [15]. 

Measles is a highly contagious virus that lives in the nose 

and throat mucus of an infected person. It can spread to 

others through coughing and sneezing. Also, measles virus 

can live for up to two hours in an airspace where the infected 

person coughed or sneezed. If other people breathe the 

contaminated air or touch the infected surface, then touch 

their eyes, noses, or mouths, they can become infected. 

Measles is so contagious that if one person has it, 90% of the 

people close to that person who are not immune will also 

become infected. Infected people can spread measles to 

others from four days before through four days after the rash 

appears. Measles is a disease of humans; measles virus is not 

spread by any other animal species. 

There is no specific treatment for measles. People with 

measles need bed rest, fluids, and control of fever. Patients 

with complications may need treatment specific to their 

problem. 

In the work [17] performed a study on mathematical 

modeling on the control of measles by vaccination. In their 
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study SEIR model was used to show control of measles by 

vaccination. Their study recommended introduction of mass 

vaccination programmer and improvement in early detection 

of measles cases to the minimize transmission. 

In the work [18] performed a mathematical model of 

measles with vaccination and two phases of infectiousness. 

They followed the SIR modeling approach hence they 

partitioned the total population is into Susceptible, Infectious 

and Recovered compartments. Their study realized that the 

disease will certainly be eliminated if all susceptible are 

vaccinated. Achieving a 100% vaccination coverage is 

impractical but if the goal is set to 100% then we just might 

hit the ≥94% vaccine coverage which is the herd immunity 

for measles. Since measles is predominantly found among 

children aged 5 years and below, they therefore suggested 

that the measles vaccine should be made compulsory such 

that no child is allowed to enter school without evidence of at 

least two dose measles vaccination. 

In the work [12] performed a deterministic mathematical 

model for transmission dynamics of measles it shows that 

vaccination is an important control strategy for the 

transmission of this disease. 

Despite the availability of the measles vaccine since 1963, 

the infectious disease is still endemic in many parts of the 

world including developed nations. The disease has 

continued causing both economic and health problems to 

large population worldwide mostly affecting children. Due to 

these impacts, this study aims to develop a stochastic model 

for control and elimination of the transmission dynamics of 

measles. This research in tends to achieve the following 

specific objectives; to formulate a stochastic model for 

control and elimination of the transmission dynamics of 

measles, to compare the stochastic and deterministic 

mathematical models for measles and to perform simulation 

and analysis of the stochastic mode. The significance of this 

research is to show the strength of stochastic methods in the 

analysis compared to deterministic methods and to 

emphasize on the importance of vaccination in the control of 

transmission dynamics of measles. 

2. Stochastic Differential Equations 

In this chapter we will discuss random variables, stochastic 

process, Markov process, transition pdf, time homogeneous, 

discrete random walk, diffusion process, wiener process and 

Ito formula ([13] and [2]). 

Suppose ����	is a collection of random variables defined 

on a probability space, a stochastic process that is continuous 

in time � ∈ �−∞,∞�	
�	�0,∞�	
�	�0,�] the associated pdf is 

denoted by ���, �� such that ���� ∈ ��, �]� = � ���, �����
�   

If we assume ����  is a stochastic process which is 

continuous in time and in state, then ����  is a Markov 

Process if for any given sequence of times �� < �� < � … <�"#� < �"  ����$ ≤ &|��( = ��, ��) = ��, ��* =� , … , ��$+) = �"#��=����$ ≤ &|��$+) = �"#�� 
The transition pdf for a continuous time and state Markov 

process is the density function for a transition from state � at 

time � to state & at time ,� < ,, it is denoted by ��&, ,; �, �� 
The transition pdf is said to be homogeneous or time 

homogeneous if ��&, , + ∆�; � + ∆�� = ��&, ,; �, ��	0ℎ2�2	�� ≤� < ,	�3�	∆� > 0 so the transitions only depend on the length 

of time between states , − � and the transition pdf is denoted 

as ��&, �, , − �� = ��&, ,; �, �� 
If we consider a random walk on the set �0, ±∆�,±2∆�,… � , let �	�3�	�  be the probabilities of 

moving to the right and to the left respectively such that � + � = 1, let ���� be DTMC for this random walk where � ∈ �0, ∆�, 2∆�, … �, �� ∈ �0, ±∆�,±2∆�,… �	�3�	�8��� =���� = �� , it follows that ���, � + ∆�� = ���� − ∆�, �� +���� + ∆�, ��  by using Taylor series expansion about the 

point ��, �� we obtain: 

���, � + ∆�� = � 9���, �� + :���, ��
:� �−∆��

+ : ���, ��
:� 

�∆�� 
2 + ;��∆��<�=

+ � 9���, �� + :���, ��
:� �∆��

+ : ���, ��
:� 

�∆�� 
2 + ;��∆��<�= 

���, � + ∆�� = �� + �����, �� + �� − �� :���, ��:� �∆��
+ �� + �� : ���, ��:� 

�∆�� 
2 + ;��∆��<� 

���, � + ∆�� − ���, ��
∆�

= �� − �� :���, ��:�
∆�
∆� +

1
2
: ���, ��
:� 

�∆�� 
∆�

+ ;��∆��<∆� � 
Letting ∆�	�3�	∆�  approach zero, then ���, ��  represents 

the pdf of the continuous time and state process ��  that 

satisfy the following partial differential equation which is 

also known as the forward kolmogorov equation: 

:���, ��
:� = > :���, ��:� − ?

2
: ���, ��
:� , � ∈ �−∞,∞� 

where; > = ��@A�	>
2AA@>@23�	�3�	? = �@AAB,@
3	>
2AA@>@23� 
lim∆�,∆8→��� − G�∆�∆� = −> 

lim∆�,∆8→�
�∆�� 
∆� = ? 

lim∆�,∆8→�
�∆��<
∆� = 0 

When the random walk is unbiased or symmetric, the 

limiting stochastic process is known as Brownian motion 
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where > = 0 since � = G = �
  so that: 

:���, ��
:� = ?

2
: ���, ��
:� , � ∈ �−∞,∞� 

The standard Brownian motion with ��0� = 0  is also 

known as Wiener Process. 

The assumptions on the limits in the random walk model 

were necessary to obtain the diffusion equation with drift. 

These assumptions are very important in obtaining the 

Kolmogorov Differential equationsm which are related to 

infinitesimal mean and variance of the process. 

Let ����, � ≥ ��  be a Markov Process with state space �−∞,∞� having continuous sample paths and transition pdf 

given by ��&, ,; �, ��	� < , , then ���� is a diffusion process 

if its pdf satisfy the following three assumptions in terms of 

the expectation: 

lim∆�→�I
1
∆� JK|∆��|L|�� = �M = 0 	N > 2 

lim∆�→�I
1
∆� J�∆��|�� = �� = O(�, �) 

lim∆�→�I
1
∆� JK∆��

 |�� = �M = P(�, �) 
where; ∆�� = ��Q∆� − �� = & − �  

O(�, �) =  drift coefficient and P(�, �) =  diffusion 

coefficient 

The backward Kolmogorov Differential Equation for a 

time homogeneous process is 

:�(&, �, �)
:� = O(�) :�(&, �, �):� + 1

2P(�)
: �(&, �, �)

:� , � ∈ (−∞,∞. 
The forward Kolmogorov Differential Equation for a time 

homogeneous process is 

:�(&, �, �)
:� = O(&) :�(&, �, �):& − 1

2P(&)
: �(&, �, �)

:& , � ∈ (−∞,∞) 

The pdf �(�, �) with �(�. 0) = N(� − ��) is a solution of 

forward Kolmogorov equation and therefore, we can replace 

�(&, �, �) by �(�, �), it follows from the forward Kolmogorov 

differential equation 

:�(�, �)
:� = O(�) :�(�, �):� − 1

2P(�)
: �(�, �)
:� , � ∈ (−∞,∞) 

A solution of a stochastic differential equation is a sample 

path of a diffusion process, if �(�, �) satisfies:  

:�(�, �)
:� = O(�) :�(�, �):� − 1

2 P(�)
: �(�, �)
:� , � ∈ (−∞,∞). 

Then, the sample path of the process {��} is a solution of 

the It
S SDE in the form  

��� = O(�� , �)�� + TP(�� , �)�U� , where U�  is denoted 

by Wiener Process. 

Then the differential equation is equivalent to the It 
S 
stochastic integral equation 

�� = �� +V O(�� , �)�� + V TP(�� , �)�U�
�

�

�

�
 

where, the first integral is a Rieman integral and the second 

integral is an It 
S stochastic integral. 

If the drift and diffusion coefficient are O(�� , �) = 0 and 

P(�� , �) = 1, then we obtain the following diffusion equation 

WX(8,�)
W� = �

 
W*X(8,�)
W8* , � ∈ (−∞,∞) for �(�, 0) = N(�), 

which is the solution of the pdf in wiener process U�: 
�(�, �) = �

√ [� 2�� \−
8*
 �] , � ∈ (−∞,∞) which is the pdf 

of normal distribution with mean zero and variance t. 

Suppose �� is a solution of the following It
S SDE:	��� =O(�� , �)�� + P(�� , �)�U�, if ^(�, �) is a real valued function 

defined for � ∈ ℝ  and � ∈ ��, ��  with continuous partial 

derivatives, then 

�^(�� , �) = A(�� , �)�� + `(�� , �)�U� 

where;  

A(�, �) = :^(�, �)
:� + O(�, �) :^(�, �):� + 1

2P (�, �) :
 ^(�, �)
:�  

`(�, �) = P(�, �) :^(�, �):�  

3. Model Formulation and Analysis 

In this chapter we discuss the modified SEIR model with 

control strategy of vaccination [12] in deterministic and its 

corresponding SDEs for measles transmission. Mathematical 

Models of Epidemics can be broadly classified into two main 

categories: deterministic models and stochastic models. 

These models often result into non-linear systems observed 

through partial noise data. After a deterministic system of 

ODEs has been formulated for the population dynamics it is 

possible to transform the system into various stochastic 

models such as DTMC, CTMC, MCMC, SDEs and others 

that take into account the uncertainties in the population. 

There are many arguments for transforming deterministic 

to stochastic models. The following table shows the 

difference between deterministic and stochastic models [13] 
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Table 1. Difference between deterministic and stochastic approaches. 

 DETERMINISTIC STOCHASTIC 

1 They are simple to analyse but give less information 
They are difficult to analyse though they are preferred when the analysis is 

possible 

2 Depends on the law of large numbers There are cases where the law of large numbers is not satisfied 

3 Difficult to analyse extinction 
Extinction analysis is possible since it occurs when epidemic deviate from mean 

level 

4 Hard to perform estimation because it is not probabilistic The uncertainties makes it easier to perform estimations 

5 Preferable for new phenomena Not preferable for new phenomena 

6 Repeated simulation from identical model result to one realization Repeated simulation from identical model result to different realizations 

7 
Depends on the assumption of mass action to describe spread of 

the disease 
Depends on the natural way to describe spread of the disease 

 

3.1. Formulation of the Deterministic Mathematical Model 

In this section we formulate a deterministic, 

compartmental mathematical model to describe the 

transmission dynamics of measles. We assume that the 

population is homogeneously mixing and reflects increasing 

dynamics such as birth and immigration, Per Capita birth rate 

is time constant, Per Capita natural mortality rate is time 

constant, individual can be infected through direct contact 

with an infectious individual, on recovery the individual 

obtains permanent infection-acquired immunity that is an 

individual cannot be infected again by measles and 

Individual who has attended first and second dose of vaccine 

consecutively receive permanent immunity to measles. 

The total population is divided into the following 

epidemiological classes Susceptible, S (Individuals who may 

get the disease); Exposed or Latent, E (Individuals who are 

exposed to the disease); Infected, I (Individuals who have the 

disease and are able to transfer it to others); Recovered, R 

(Individuals who have permanent infection-acquired 

immunity and those who received the second dose of 

vaccine) and Vaccinated, V (Individuals who have received 

first dose of vaccine). In this study we assume that newborns 

and immigrants who received first dose of vaccine join the 

Vaccinated class, V at rate ϕπN and ρΛ respectively. On the 

other hand newborns and immigrants who have not received 

first dose of vaccine join the Susceptible class, S at rate (1-

ϕ)πN and (1-ρ)Λ respectively. The Susceptible individuals 

who received the first dose of vaccine may join the 

Vaccinated class, V at rate εS. When there is an adequate 

contact of a Susceptible individual with an Infective 

individual so that transmission occurs, then the susceptible 

individual may join the Exposed class, E at the rate λS. After 

Latent period ends, exposed individuals may progress to the 

Infectious class, I at rate σE. When the infectious period 

ends, the individuals may join the recovery class, R at rate ηI 

otherwise they may die at rate (δ+µ)I due to the disease or 

naturally. The recovery class, R consists of those with 

permanent infection-acquired immunity and those who 

received the second dose of vaccine at rate ωθV. The 

Vaccinated individuals who did not receive second dose of 

vaccine may return to Susceptible class, S at rate (1-θ)αV as 

the first dose of vaccine is waning at rate α.  

3.1.1. Description of Variables and Parameters 

The following tables describe the variables and parameters 

used in our model: 

Table 2. Variables used in the model. 

VARIABLE DESCRIPTION 

S The number of Susceptible individuals at time t 

E The number of Exposed individuals at time t 

I The number of Infected individuals at time t 

R The number of Recovered individuals at time t 

V The number of Vaccinated individuals at time t 

N The total population at time t 

Table 3. Parameters used in the model 

PARAMETER DESCRIPTION 

π Per Capita birth rate 
Λ Constant Immigration rate 

ϕ Proportions of newborns who are vaccinated 

1-ϕ Proportion of newborns who are not vaccinated 
ρ Proportions of immigrants who are vaccinated 

1-ρ Proportion of immigrants who are not vaccinated 

a Arrival rate 
c Per Capita contact rate 

δ Death due to disease 

µ Per Capita natural mortality rate 

β 
Probability of one infected individual to become 

infectious 

λ Force Of Infection, λ=
abc
d  

σ Progression rate from latent to infectious 
η Recovery rate of treated infectious individuals 

α The rate of waning of first dose of vaccine 

ω The rate of receiving second dose of vaccine 

ε 
Proportion of individuals who received a first dose of 

vaccine 

θ 
Proportion of individuals who received a second dose 
of vaccine at rate α 

1-θ 
Proportion of individuals who are not vaccinated for a 

second time and return to Susceptible class  

3.1.2. Compartmental Diagram 

The description of measles dynamics can be summarized 

by compartmental diagram below: 

 



 International Journal of Theoretical and Applied Mathematics 2016; 2(2): 60-73 64 

 

 
Figure 1. Compartmental Diagram of the Transmission Dynamics of Measles. 

3.1.3. Ordinary Differential Equations 

From the above explanation and compartmental diagram 

Figure 1, the transition between compartments can now be 

expressed by the following differential equations: 

(1 ) (1 ) (1 )
dS

N V S S S
dt

φ π ρ θ α λ ε µ= − + − Λ + − − − −     (1) 

(1 )
dV

N S V V V
dt

φπ ρ ε θ α ωθ µ= + Λ + − − − −     (2) 

dE
S E E

dt
λ σ µ= − −                   (3) 

( )
dI

E I I
dt

σ η µ δ= − − +                   (4) 

dR
I V R

dt
η ωθ µ= + −                  (5) 

The above system of equations (1)-(5) can be simplified 

into: 

(1 ) (1 ) (1 ) ( )
dS

N V S
dt

φ π ρ θ α λ ε µ= − + − Λ + − − + +    (6) 

((1 ) )
dV

N S V
dt

φπ ρ ε θ α ωθ µ= + Λ + − − + +       (7) 

( )
dE

S E
dt

λ σ µ= − +                              (8) 

( )
dI

E I
dt

σ η µ δ= − + +                            (9) 

dR
I V R

dt
η ωθ µ= + −                              (10) 

where λ  is the force of infection given by  

cI

N

βλ =                                    (11) 

The total population size is: 

N S V E I R= + + + +  

Where by adding the system of equations (6)-(10) we get: 

( )         

dN dS dV dE dI dR

dt dt dt dt dt dt

dN
N I

dt
π µ δ

= + + + +

= Λ + − −
                   (12) 

3.1.4. The Basic Reproduction Number, R0 

Epidemiologists have always been interested in finding the 

basic reproduction number of an emerging disease because 

this threshold parameter can tell whether a disease will die 

out or persist in a population. Denoted by	e�, this parameter 

is arguably the most important quantity in infectious disease 

epidemiology. It is defined as the average number of new 

cases (infections) produced by a single infective when 

introduced into a susceptible population. It is one of the first 

quantities estimated for emerging infectious diseases in 

outbreak situations (Diekmann et al, 2009). It is a key 
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epidemiological quantity, because it determines the size and 

duration of epidemics and is an important factor in 

determining targets for vaccination coverage (Grais et al, 

2006). The basic reproduction number is sought after 

principally because:  

If e� < 1, then throughout the infectious period, each 

infective will produce less than one new infective on the 

average. This in turn implies that the disease will die out as 

the DFE is stable. 

If e� > 1, then throughout the infectious period, each 

infective will produce more than one new infective on the 

average. This in turn implies that the disease will persist as 

the DFE is unstable. In other words, there will be an 

outbreak. 

If e�	can be determined, then the transmission parameters 

which will force e�  to be less than or greater than 1 can 

easily be identified and control measures effectively 

designed. 

Next, we shall find the Basic Reproduction Number of 

the system using the next generation method [6] and we 

obtain the basic reproduction number denoted by e� 

equation (13) below: 

0

( )

( )( )

c a
R

β σ π
µ σ µ η δ µ

+=
+ + +

                     (13) 

3.2. Formulation of Stochastic Mathematical Model 

In this section we will transform the deterministic 

model to stochastic model. The corresponding Stochastic 

Differential Equations model for control of the 

transmission dynamics of measles with vaccination will be 

formulated by construction of equivalent Stochastic 

Differential Equations Models [13]. 

Let ��, � , �<, �f, �g denote the number of individuals for 

h, J, i, e	�3�	j respectively 

Thus we can have 

1

5 1 1 1
(1 ) (1 ) (1 )

dX
N X X X X

dt
φ π ρ θ α λ ε µ= − + − Λ + − − − −  (14) 

2

1 2 2

dX
X X X

dt
λ σ µ= − −                       (15) 

3

2 3 3( )
dX

X X X
dt

σ η µ δ= − − +                  (16) 

4

3 5 4

dX
X X X

dt
η ωθ µ= + −                   (17) 

5

1 5 5 5(1 )
dX

N X X X X
dt

φπ ρ ε θ α ωθ µ= + Λ + − − − −     (18) 

Define = ���	� 	�<	�f	�g� , to transform the above 

deterministic model we need to compute the expectations 

J�∆�� and J�∆�∆�k�. The table below contains the possible 

changes of the process together with their associated 

transition probabilities. 

Table 4. Possible changes of processes and their associated transition 

probabilities. 

POSSIBLE CHANGES PROBABILITIES 

(∆�)� = �1 0 0	0 0�k �� = ((1 − l)mn + (1 − o)Λ) 
(∆�) = �−1 0 0	0 0�k � = O�� 

(∆�)< = �−1 1 0	0 0�k �< = (q�<��/n) (∆�)f = �0 −1 0	0 0�k �f = O�  

(∆�)g = �0 −1 1	0 0�k �g = P�  

(∆�)s = �0 0 −1	0 0�k �s = (O + N)�< 

(∆�)t = �0 0 −1	1 0�k �t = u�< 

(∆�)v = �0 0 0	−1 0�k �v = O�f 

(∆�)w = �0 0 0	0 1�k �w = (lmn + oΛ) 
(∆�)�� = �−1 0 0	0 1�k ��� = x�� 

(∆�)�� = �0 0 0	1 −1�k ��� = yz�g 

(∆�)� = �1 0 0	0 −1�k �� = (1 − z){�g 

(∆�)�< = �0 0 0	0 −1�k ��< = O�g 

From the table above we formulate three systems of SDEs 

that have the same Forward Kolmogorov Differential 

equation and sample paths: 

First SDE model: 

1 2 3 4 5

*

1 2 3 4 5

* * * * * *

( , ) ( , )

(0) [ (0), (0), (0), (0), (0)]

where [ ( ), ( ), ( ), ( ), ( )]

t t t t

T

T

t

dX f t X dt B t X dW

X X X X X X

W W t W t W t W t W t

 = +
 =

=

 

is a vector of five independent wiener processes 

The drift part ( , )
t

f t X  and the diffusion part ( , )
t

B t X  are 

computed by the following neglecting higher orders of ∆� 
(Yuan and Allen, 2011) 

If we define 

[ ]
( , )t

E X
f t X

t

∆=
∆

 and 
1

2
[ ]

( , )
T

t

E X X
B t X V

t

∆ ∆= =
∆

 

where; 
13

1

[ ] ( )i i

i

E X p X t
=

∆ = ∆ ∆∑  and 

13

1

[ ] ( ) ( )T T

i i i

i

E X X p X X t
=

∆ ∆ = ∆ ∆ ∆∑  

Thus computing from the table we obtain: 

1 2 3 13

1 1 1 0

0 0 1 0

[ ] ...0 0 0 0

0 0 0 0

0 0 0 1

E X p t p t p t p t

− −       
       
       
       ∆ = ∆ + ∆ + ∆ + + ∆
       
       
       −       

 

1 2 3 10 12

3 5 4

5 7 6
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The resulting SDE is a multidimensional and multiplicative, hence it is hard to simulate. Also, the diffusion coefficient of the 

formed SDE is a square root of a matrix, that is | = j)
* 

Second SDE model: 
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is a vector of thirteen (13) independent wiener processes 

Since matrix j is hermitian (symmetric) and positive definite, cholesky decomposition can be applied obtain matrix } such 

that; }}k=V 

The diffusion matrix G is a 5×13 matrix of the form: 
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Third SDE model: 
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is a vector of five independent wiener processes 

Column reduction can be performed on the matrix ∆X to obtain matrix H such that; ��k = j 

The diffusion matrix � is a 5×5 matrix of the form: 
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4. Simulation and Discussion 

In this chapter we simulate the deterministic and stochastic models formulated. 

For simplicity this study will perform simulation the Third SDE model at m = O = N = Λ = 0 thus we have the following 

system of non-linear equations: 
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Table 5. Value of Parameters Used in Model. 

PARAMETER DESCRIPTION VALUE/RANGE SOURCE 

π Per Capita birth rate 0.02755 per year [9] 

ϕ Proportions of newborns who are vaccinated 0.5 also varies with scenario (0.0 – 1.0) [10] 

ρ Proportions of immigrants who are vaccinated 0.7 also varies with scenario (0.0 – 1.0) [10] 
a Arrival rate 0.02755 per year [9] 

c Per Capita contact rate 0.09091 per year [9] 

δ Death due to disease 0.125 per year  [4] 
µ Per Capita natural mortality rate 0.00875 per year [9] 

β Probability of one infected individual to become infectious varies with scenario (0.08 – 0.7)  [5] 

λ Force Of Infection, λ=
abc
d  0.096 per year [10] 

σ Progression rate from latent to infectious 0.125 per year [9] 

η Recovery rate of treated infectious individuals 
0.14286 per year varies with scenario (0.0 – 

1.0) 
[9] 

α The rate of waning of first dose of vaccine 0.167 per year [10] 
ω The rate of receiving second dose of vaccine 0.8 per year [10] 

ε Proportion of individuals who received a first dose of vaccine 0.7 per year varies with scenario (0.0 – 1.0) [10] 

θ 
Proportion of individuals who received a second dose of 
vaccine  

0.5 varies with scenario (0.0 – 1.0) [10] 
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Figure 2. Graph of the population by deterministic model. 

From Figure 2 we observe that individuals who have received first and second dose of vaccine and those who have been 

treated which comprise the recovered population in the sense that they can’t be infected is increasing hence the infectious 

disease is controlled in the population. 

 

Figure 3. Graph of the population by stochastic model. 

The Figure 3 shows that Susceptible population is decreasing while the exposed and infected ones are increasing from the 

beginning till a certain time, t where it starts decreasing to be zero. This means that vaccination is controlling the infectious 

disease and eradicated to die out from the population hence the recovered population is increasing. 
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Figure 4. Graph of the population by deterministic and stochastic model. 

Figure 4 shows that the stochastic model describe the dynamics of measles transmission more effectively. 

 

Figure 5. Graph of the susceptible population by stochastic model. 

Figure 5 shows that the Susceptible population varies as time goes on but eventually decreases hence the disease is 

controlled in the population. 
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Figure 6. Graph of the exposed population by stochastic model. 

Figure 6 shows that the exposed population is decreasing since vaccination is controlling the spread of the disease. 

 

Figure 7. Graph of the infected population by stochastic model. 

Figure 7 shows that the infectious population increasing and decreasing in the population till a certain time where it starts 

decreasing to be zero because of vaccination control strategy. 
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Figure 8. Graph of the recovered population by stochastic model. 

Figure 8 shows the variation of the recovered population which shows the vaccination strategy is controlling the disease, 

since as time goes on the recovered population is increasing. 

 

Figure 9. Graph of the vaccinated population by stochastic model. 

Figure 9 shows that the variation of the vaccinated 

population 

5. Conclusion, Recommendation and 

Future Work 

In this chapter we provide conclusion and recommendation 

of the project. 

5.1. Conclusion 

The study has shown the effectiveness of stochastic 

analysis in studying the dynamics of measles compared to 

deterministic analysis. 

5.2. Recommendation 

This study recommend the use of stochastic analysis in 

studying dynamics of infectious diseases. 
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5.3. Future Work 

Based on the model of this study, it is proposed that future 

work should consider the following: 

i. Application of other stochastic approaches such as 

Monte Carlo Markov Chains 

ii. Use of more accurate numerical schemes like Runge-

kutta and others 

List of Abbreviations and Symbols 

AIDS Acquire Immune Deficiency Syndrome 

CFRs Case- Fatality Ratios 

CTMC Continuous Time Markov Chain 

DTMC Discrete Time Markov Chain 

HIV Human Immunodeficiency Virus 

MCC Measles Control Campaign 

MCMC Monte Carlo Markov Chain 

MCV1 First Dose of Measles Containing Vaccine 

MCV2 Second Dose of Measles Containing Vaccine 

MMR Measles Mumps-Rubella 

ODEs Ordinary Differential Equations 

Pdf Probability Density Function 

SEIR Susceptible Latent Period Infectious Recovery 

SIA Supplemental Immunization Activity 

SDEs Stochastic Differential Equations 

SIR Susceptible Infectious Recovery 

U.S United States 

UNICEF United Nation Children’s Fund 

WHO World Health Organization 
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