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Abstract: In this paper, we present the solution of nonlinear fractional partial differential equations by using the Homotopy 

Perturbation Aboodh Transform Method (HPATM) and Homotopy Decomposition Method (HDM). The Two methods 

introduced an efficient tool for solving a wide class of linear and nonlinear fractional differential equations. The results shown 

that the (HDM) has an advantage over the (HPATM) that it takes less time and using only the inverse operator to solve the 

nonlinear problems and there is no need to use any other inverse transform as in the case of (HPATM). 
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1. Introduction 

In recent years, fractional calculus has been increasingly 

used for numerous applications in many scientific and 

technical fields such as medical sciences, biological research, 

as well as various chemical, biochemical and physical fields. 

Nonlinear partial differential equations appear in many 

branches of physics, engineering and applied mathematics. It 

has turned out that many phenomena in engineering, physics 

and other sciences can be described very successfully by 

models using mathematical tools from fractional calculus [1-

3]. For better understanding of a phenomenon described by a 

given nonlinear fractional partial differential equation, the 

solutions of differential equations of fractional order are 

much involved. Fractional derivatives provide more accurate 

models of real world problems than integer order derivatives. 

Because of their many applications in scientific fields, 

fractional partial differential equations [9-11, 24-26] are 

found to be an effective tool to describe certain physical 

phenomena, such as diffusion processes, electrical and 

rheological materials properties and viscoelasticity theories. 

In recent years, many research workers have paid attention 

to study the solutions of nonlinear fractional differential 

equations by using various methods 

Among these numerical methods, the Variational Iteration 

Method (VIM), Adomian Decomposition Method (ADM) 

[12-13], and the Differential Transform Method (ADM) are 

the most popular ones that are used to solve differential and 

integral equations of integer and fractional order. The 

Homotopy Perturbation Method (HPM) [4-6] is a universal 

approach which can be used to solve both fractional ordinary 

differential equations FODEs as well as fractional partial 

differential equations FPDEs. This method the HPM, was 

originally proposed by He [7, 8]. The HPM is a coupling of 

homotopy and the perturbation method. The Homotopy 

decomposition method (HDM) was recently proposed by 

[14-15] to solve the groundwater flow equation and the 

modified fractional KDV equation [17]. The Homotopy 
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decomposition method [16] is actually the combination of 

perturbation method and Adomian decomposition method. 

Recently, Khalid Aboodh, has introduced a new integral 

transform, named the Aboodh transform [18-23], and it has 

further applied to the solution of ordinary and partial 

differential equations. In this paper, the main objective is to 

introduce a comparative study of nonlinear fractional partial 

differential equations by using the Homotopy Perturbation 

Aboodh Transform Method (HPATM) which is the coupling 

of the Aboodh transform and the HPM using He’s 

polynomials. And the Homotopy Decomposition Method 

(HDM) which is the coupling of Adomian decomposition 

method and HPM. 

2. Fundamental Facts of the Aboodh 

Transformation Method 

A new transform called the Aboodh transform defined for 

function of exponential order we consider functions in the set 

A, defined by: 

A = {f�t�:	∃	M, k�, k� > 0, |f�t�| < �e���          (1) 

For a given function in the set �  must be finite 

number,��, ��  may be finite or infinite. Aboodh transform 

which is defined by the integral equation 

������� = �� � = �! " ����#�!$%& '�, � ≥ 0, k� ≤  ≤ k�  (2) 

The following results can be obtained from the definition 

and simple calculations 

1) ���*� = *!!,-. 

2) ���	′���� =  �� � − 1�&�!  

3) ���	′′���� =  ��� � − 12�&�! 	− ��0�. 
4) �4��*����5 =  *�� � − ∑ 1�7��&�!.8,-7*��9:& . 

3. Fundamental Facts of the Fractional 

Calculus 

Definition 3.1. A real function ��;�, ; > 0, is said to be in 

the space <=, µ ∈ ℝ if there exists a real number @ > µ, such 

that ��;� = ;Aℎ�;�, where ℎ�;� ∈ �0,∞� and it is said to be 

in space <=C if ��C� ∈ <C, D ∈ ℕ. 

Definition 3.2. The Riemann-Liouville fractional integral 

operator of order	F ≥ 0, of a function � ∈ <C , G ≥ −1, is 

defined as 

IJ��;� = �
Γ�J�" �; − 1�J��K& ����'�, F > 0, ; > 0     (3) 

IJ��;� = ��;� 
Let’s consider some of properties for operator IJ (e.g., [1-

3]): 

If � ∈ <C, G ≥ −1, F, L ≥ 0 and M > −1 then IJIN��;� =

IJON��;�, IJIN��;� = INIJ��;�, IJ;P = Γ�PO��
Γ�JOPO�� ;JOP  

Lemma 3.1. If D − 1 < F ≤ D,D ∈ ℕ  and � ∈ <C , G ≥ −1 then QJIJ��;� = ��;� and, 

IJQ&J��;� = ��;� − ∑ ��9�C��9:& �0� K79! , ; > 0     (4) 

Definition 3.3. (Partial Derivatives of Fractional order). 

Assume now that ��;�  is a function of R  variables ;S , T = 1, … , R  also of class <  on Q ∈ ℝ* . As an extension of 

definition 3.3 we define partial derivative of order F for ��;� 
respect to ;S 

VWKJ� = �X�C�J�" �;S − 1�C�J��KY& WKYJ�Z;[\]K^:$'�   (5) 

If it exists, where WKYJ  is the usual partial derivative of 

integer order D. 

Theorem 3.1. If �� � is Aboodh transform of f�;�, then as 

is known that the Aboodh transform of derivative with 

integral order can be expressed by  

���	′���� =  �� � − ��0� . 
Proof. Let us take the Aboodh transform 	�	′��� = __$ ����, 

using integration by parts we get 

� ` ''� ����a = 1 b ''� ����#�!$%
& '�

= limA→%
1 b ''� ����#�!$A

& '� 
= limA→% g`1 ����#�!$a&

A + 1 b ����#�!$A
& '�i 

=  	�� � − 1�&�!                              (6) 

Equation (6) gives us the proof of Theorem3.1. When we 

continue in the same manner, we get the Aboodh transform of 

the second order derivative as follows 

� j '�'�� ����k = � ` ''� l ''� ����ma
=  	� ` ''� ����a −

__$ ���� n
$:&

 

=  	� ` 	�� � − ��0� a − __$ ���� n
$:&

 

=  ��� � − �o�0� 	− ��0� 
If we go on the same way, we get the Aboodh transform of 

the nth order derivative as follows 
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�4��*����5 =  *�� � − ∑ 1�7��&�!.8,-7*��9:&  for R ≥ 1     (7) 

or 

�4��*����5 =  * p�� � − ∑ 1�7��&�!.-7*��9:& q.         (8) 

Theorem 3.2. If �� � is Aboodh transform of ���, one can 

take into consideration the Aboodh transform of the 

Riemann-Liouville derivative as follow  

��QJ����� =  J p�� � − ∑ rs871�&�!s87-.*9:� q	; 	−1 < R − 1 ≤ F < R    (9) 

Proof. Let’s consider  

��QJ����� =  J�� � −u 9�QJ�9����0��*��
9:&

 

=  J�� � −u 9���QJ�9��0��*
9:&

=  J�� �
−u 9���QJ�9��0��*

9:�
 

=  J�� � − 1 �9O� u�QJ�9��0��*
9:�

=  J�� �
−u 1 J�9O��J �QJ�9��0��*

9:&
 

=  J�� � −u J 1 J�9O� �QJ�9��0��*
9:�

 

Therefore, we get the Aboodh transformation of fractional 

order of ���� as follows 

��QJ����� =  J `�� � − ∑ v�!wJ�9O� �QJ�9��0��*9:� a (10) 

Definition 3.4. The Aboodh transform of the Caputo 

fractional derivative by using Theorem3.2 is defined as 

follows 

��Q$J����� =  J������� − u  9�J����9�C��
9:&

�0�,	
D − 1 < F < D                           (11) 

4. Basic Idea 

4.1. Basic Idea of HPATM 

To illustrate the basic idea of this method, we consider a 

general form of nonlinear non homogeneous partial 

differential equation as the follow 

Q$Jx�;, �� = yZx�;, ��\ + zZx�;, ��\ + ��;, ��, F > 0  (12) 

with the following initial conditions 

x�;, 0� = {9 , � = 0,… , R − 1,Q&*x�;, 0� = 0 and = �F�. (13) 

Where Q$J  denotes without loss of generality the Caputo 

fraction derivative operator, � is a known function, z is the 

general nonlinear fractional differential operator and y 

represents a linear fractional differential operator. 

Taking Aboodh transform on both sides of equation (12), 

we get 

��Q$Jx�;, ��� = �4yZx�;, ��\5 + �4zZx�;, ��\5 + ����;, ���   (14) 

Using the differentiation property of Aboodh transform 

and above initial conditions, we have 

��x�;, ��� = 	 �!s�4yZx�;, ��\5 + �!s �4zZx�;, ��\5 + {�;, �� (15) 

Operating with the Aboodh inverse on both sides of 

equation (15) gives the solution 

x�;, �� = 	|�;, �� + ��� ` �!s �4yZx�;, ��\5 + �!s �4zZx�;, ��\5a (16) 

Where |�;, �� represents the term arising from the known 

function ��;, �� and the initial condition. Now, we apply the 

homotopy perturbation method 

x�;, �� = ∑ @*x*�;, ��∞*:& .           (17) 

And the nonlinear term can be decomposed as 

zx�;, �� 	= ∑ @*}*�x�∞*:&             (18) 

Where }*�x� are He’s polynomial and given by 

}*�x&, x�, x�… 	x*� = 1R! W*W@* `z lu @SxS�;, ��%
S:& maA:& ,		R = 0,1,2, …                                  (19) 

Substituting equations (18) and (17) in equation (16) we 

get 

∑ @*x*�;, ��%*:& =
|�;, �� + 		@ j��� ` �!s ��y�∑ @*x*�;, ��%*:& �� +
																						 �!s ��z�∑ @*x*�;, ��%*:& ��ak                           (20) 

which is the coupling of the Aboodh transform and the 

homotopy perturbation method using He’s polynomials and 

after comparing the coefficient of like powers of p, we obtain 

the following approximations 

@& ∶ 	 x&�;, �� = 	|�;, ��,	
@� ∶ 	 x��;, �� 	= ��� ` 1 J ��y�x&�;, ��� + }&�x��a ,	
@� ∶ 	 x��;, �� = ��� ` 1 J ��y�x��;, ��� + }��x��a ,	
@� ∶ 	 x��;, �� 	= ��� ` 1 J ��y�x��;, ��� + }��x��a, 
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@* ∶ 	 x*�;, �� 	= ��� p �!s ��y�x*���;, ��� + }*���x��q,  (21) 

Hence, the solution can be expressed in the form  

x�;, �� = limA→� x*�;, �� = x&�;, ��+x��;, �� + x��;, �� 	+ 	⋯ 	 (22) 

By virtue of (21) the solution (22) is converges very 

rapidly 

4.2. Basic Idea of HDM 

The method consists of first step to transform the 

fractional partial differential equation to the fractional partial 

integral equation which applying the inverse operator Q$J  to 

the both sides of equation (12), finally, solution x�;, �� can 

be written in the form 

x�;, �� = ∑ �^X�J�[O��*��[:� �[ + �X�J�" �� − ��J��4yZx�;, ��\ +$&zZx�;, ��\ + ��;, ��5'�         (23) 

Other side using the following 

∑ 1^�K�X�J�[O��*��[:� �J�[ = ��;, �� or ∑ �^X�J�[O��*��[:� �[ = ��;, �� 
We have 

x�;, �� = ��;, �� + �X�J�" �� − ��J��4yZx�;, ��\ +$&zZx�;, ��\ + ��;, ��5'�           (24) 

In the method of homotopy decomposition, the basic 

assumption is that the solutions can be written as a power 

series in @ 

x�;, �, @� = ∑ @*x*�;, ��∞*:&                   (25) 

x�;, �� = limA→� x�;, �, @�	                    (26) 

and the nonlinear term can be decomposed as 

zx�;, �� 	= ∑ @*}*�x�∞*:&                 (27) 

where @ ∈ �0,1�  is an embedding parameter and the He’s 

polynomials that can be generated by 

}*�x&, x�, x�… 	x*� = 1R! W*W@* `z lu @SxS�;, ��%
S:& maA:& ,	R = 0,1,2, …                                   (28) 

The homotopy decomposition method is obtained by the 

graceful coupling of homotopy technique with Abel integral 

and can be written as  

∑ @*x*�;, ��%*:& − ��;, �� = AX�J�" �� − ��J�����;, �� +$&y�∑ @*x*�;, ��%*:& � + z�∑ @*x*�;, ��%*:& ��'�      (29) 

Comparing the terms of same powers of gives solutions of 

various orders with the first term 

x&�;, �� = ��;, ��                        (30) 

we include that the term is the Taylor series of the exact 

solution of equation (12) of order R − 1. 

5. Applications 

Example 5.1. Let’s consider the following one dimensional 

fractional heat like problem: 

Q$Jx�;, �� = �� ;�xKK�;, ��, 0 < ; < 1, 0 < F ≤ 1, � > 0 (31) 

with the boundary conditions 

x�0, �� = 0, x�1, �� = #$ 
and initial condition; 

x�;, 0� = ;� 

5.1. Application Method of Homotopy Perturbation Aboodh 

Transform 

Applying the steps involved in HPATM as presented in 

section 4.1 to equation (31) we obtain the following: 

@& ∶ 	 x&�;, �� = ;� 

@� ∶ 	 x��;, �� = ��� ` �!s � p�� ;�x&�;, ��KKqa =��� ` �!s ��;��a = ��� p K.!s-.q = K.$sJ! = K.$s
Γ�JO��, 

@� ∶ 	 x��;, �� = ��� ` �!s � p�� ;�x��;, ��KKqa =
��� j �!s � p K.$s

Γ�JO��qk = ��� p K.�!.s-.�Γ�JO��q = K.$.s
Γ��JO��, 

Proceeding in a similar manner, we have: 

@� ∶ 	 x��;, �� = ��� ` �!s � p�� ;�x��;, ��KKqa = K.$�sX��JO��, 
@* ∶ 	 x*�;, �� = ��� ` �!s � p�� ;�x*�;, ��KKqa = K.$,sX�*JO��, 

Therefore, the solution x�;, �� can be written in the form  

x�;, �� = ;� v1 + $sX�JO�� + $.sX��JO��+ $�sX��JO��+⋯+
$,sX�*JO��+⋯w              (32) 

This is an equivalent form to the exact solution in closed 

form 

x�;, �� = ;���,J��J�                    (33) 

where ��,J�	� is the Mittag-Leffler function 

5.2. Application the Method of Homotopy Perturbation 

Adomain Decomposition 

Applying the steps involved in HDM as presented in 

section 4.2 to equation (31) we obtain the following 

∑ @*x*�;, ��%*:& − ;� =														 AX�J�" �� − ��J���;��∑ @*x*�;, ��KK%*:& ��'�$&        (34) 
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Comparing the terms of the same powers of @ we obtain 

x&�;, �� = ;� 

x��;, �� = �
Γ�J�" �� − ��J���;��x&�;, ��KK��'�$& = K.$s

Γ�JO��, 
x��;, �� = �

Γ�J�" �� − ��J���;��x��;, ��KK��'�$& = K.$.s
Γ��JO��, 

x��;, �� = �
Γ�J�" �� − ��J���;��x��;, ��KK��'�$& = K.$�s

Γ��JO��, 
x*�;, �� = �

Γ�J�" �� − ��J���;��x*���;, ��KK��'�$& = K.$,s
Γ�*JO��, 

Hence, the asymptotic solution can expressed by 

x�;, �� = ;� v1 + $sX�JO�� + $.sX��JO��+ $�sX��JO�� +⋯+ $,sX�*JO�� +⋯w (35) 

lim*→%J→� x*�;, �, F� = ;�#$ 
This is the exact solution of equation (31) when n = 1. 

Example 5.2. Let’s consider the following three 

dimensional fractional heat like equation 

Q$Jx�;, �, �, �� = �;���� + ��� Z;�xKK + ��x�� +��x��\, 0 < ;, �, � < 1,0 < F ≤ 1          (36) 

With the initial condition x�;, �, �, �� = 0. 
5.3. Application the Method of Homotopy Perturbation 

Adomain Decomposition 

Applying the steps involved in HPATM as presented in 

section 4.1 to equation (36) we obtain the following 

@& ∶ 	 x&�;, �, �, �� = �;���� 

@� ∶ 	 x��;, �, �, �� = ��� ` �!s � p ��� v;�x&KK + ��x&�� +��x&��wqa = �K����$sX�JO�� , 

@� ∶ 	 x��;, �, �, �� = ��� j 1 J � ` 136 v;�x�KK + ��x���
+ ��x���wak = �;������JΓ�2F + 1� 

Proceeding in a similar way, we have 

@� ∶ 	 x��;, �, �, �� = �K����$�sX��JO�� , 

@* ∶ 	 x*�;, �, �, �� = �K����$,sX�*JO�� , 

Therefore, the solution x�;, �� can be written in the form  

x�;, �, �, �� = �;���� v1 + $sX�JO�� + $.sX��JO��+ $�sX��JO�� +⋯+
$,sX�*JO��+⋯w.      (37) 

 

5.4. Application the Method of Homotopy Perturbation 

Adomain Decomposition 

Applying the steps involved in HDM as presented in 

section 4.2 to equation (36) we obtain the following 

u@*x*�;, �, �, ��%
*:& = @Γ�F�b�� − ��J��$

&
 

p�;���� l ��� v;�∑ @*x*�;, �, �, ��%*:& KK +�� ∑ @*x*�;, �, �, ��%*:& �� +��∑ @*x*�;, �, �, ��%*:& ��wmq '�                (38) 

x&�;, �, �, �� = 0 

x��;, �, �, �� = �X�J�" �� − ��J���;����'�$& = �K����$sX�JO�� , 

⋮ 
x*�;, �, �, �� = �X�J�" �� − ��J�� p�;���� ��� v;�x*��KK +$&��x*���� + ��x*����wq '� = �K����$,sX�*JO�� , 

Therefore, the approximate solution of equation for the 

first z can be expressed by 

x*�;, �, �, �� = ∑ �K����$,sX�*JO���*:� , 

when z → ∞ the solution can be expressed by 

x*�;, �, �, �� = u �;�����*JΓ�RF + 1�
%
*:&

− �;����
= �;������J��J� − 1� 

where �J��J	� is the generalized Mittag-Leffler function. 

Note that in case of	F = 1 we have 

x�;, �, �, �� = �;�����#$ − 1�            (39) 

This is the exact solution in case of	F = 1. 

Example 5.3. Consider the following nonlinear time- 

fractional gas dynamics equations [Kilicman] 

Q$Jx�;, �� + �� ZxK�;, ��\� − x�;, ��Z1 − x�;, ��\ = 0, 0 < F ≤ 1 (40) 

with the initial condition 

x�;, 0� = #�K. 

5.5. Application the Method of Homotopy Perturbation 

Adomain Decomposition 

Applying the steps involved in HPATM as presented in 

section 4.1 to equation (40), we obtain the following 

@& ∶ 	 x&�;, �� = #�K 
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@� ∶ 	 x��;, �� = ��� ` �!s � p�� ;�x&�;, ��KKqa = �8�$sX�JO��, 
@� ∶ 	 x��;, �� = ��� ` �!s � p�� ;�x��;, ��KKqa = �8�$.sX��JO�� 

Proceeding in a similar manner, we have: 

@� ∶ 	 x��;, �� = ��� ` �!s � p�� ;�x��;, ��KKqa = �8�$�sX��JO��, 
@* ∶ 	 x*�;, �� = ��� ` �!s � p�� ;�x*�;, ��KKqa = �8�$,sX�*JO��, 

Therefore the solution x�;, �� can be written as  

x�;, �� = #�K v1 + $sX�JO��+ $.sX��JO��+ $�sX��JO�� +⋯+
$,sX�*JO��+⋯w             (41) 

5.6. Application the Method of Homotopy Perturbation 

Adomain Decomposition 

Applying the steps involved in HDM as presented in 

section 4.2 to equation (40) we obtain the following 

x&�;, �� = #�K, 

x��;, �� = �8�$s
Γ�JO��, 

x��;, �� = �8�$.s
Γ��JO��, 

⋮ 
x*�;, �� = �8�$,s

Γ�*JO��, 
Therefore, the solution can be written in the form 

x�;, �� = #�K v1 + $sX�JO��+ $.sX��JO��+ $�sX��JO�� +⋯+
$,sX�*JO��+⋯w                      (42) 

6. Conclusion 

In the present paper, Homotopy Perturbation Aboodh 

Transform Method (HPATM) is employed for solving 

nonlinear fractional partial differential equations; the same 

problems are solved by Homotopy Decomposition Method 

(HDM). It is worth mentioning that the (HDM) has an 

advantage over the (HPATM) that it takes less time and using 

only the inverse operator to solve the nonlinear problems and 

there is no need to use any other inverse transform as in the 

case of (HPATM). The results reveal that the (HDM) is a 

powerful technique and can be applied to other applications. 
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