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Abstract: In practical industrial applications, the networked control system is often affected by external factors and internal 

components in operation, which leads to the fluctuation of some data transmitted by the system and reduces the system 

performance. Therefore, to ensure the normal operation of the system is the key, on this basis, we also need to make the system 

satisfy certain performance indicators. In this paper, guaranteed cost control for networked control systems with time delay and 

time-varying sampling period is studied. By constructing a more general system model, we give a design method of guaranteed 

performance controller to make the closed-loop system asymptotically stable within the allowable range and and satisfies certain 

performance indicators. Firstly, we construct the reasonable Lyapunov function and performance index function. According to 

the relevant lemma, the sufficient conditions for the stability of the system are obtained by equivalent transformation of LMI. 

Then, we design a guaranteed performance controller to minimize the upper bound of the system performance index. In the 

design process, more free variables are introduced, and the convexity of the function is used for equivalent transformation as far 

as possible to make the results less conservative. Finally, we use MATLAB to simulate and prove that the method is feasible. 
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1. Introduction 

The emergence of networked control system brings great 

convenience to the control field. The network is introduced 

into the traditional control system to create a more automatic 

and intelligent control mode [1, 2]. However, due to the 

influence of various uncertain factors, some parameters of 

the controller will fluctuate, which will affect the normal 

operation of the system. The parameters of the controller 

should be analyzed when designing the controller. Therefore, 

the concept of guaranteed performance control came into 

being [3]. Generally speaking, guaranteed cost control refers 

to the ability to master the optimal method of the system to 

achieve the expected goal, and make the performance index 

not exceed the specified range [4]. Its essence is to design 

acontroller for a system with parameter uncertainty and 

certainconstraint conditions, by using LMI method, we carry 

out equivalent transformation and get the stable condition, so 

that the system can not only run stably, but also meet the 

requirement that the system performance index is less than 

the upper bound value of the performance index provided. 

Therefore, how to design a guaranteed performance 

controller with better performance is a research topic that 

attracts much attention. 

In addition, many achievements have been made in the 

study of time-varying sampling period [5-7]. Constant 

sampling periods were investigated in early control studies, 

where the sampling period was set to a constant, which was 

also the easiest method [8, 9]. However, sample period jitter 

is inevitable due to computer hardware facilities and network 

load, so it is clearly unreasonable to set the sample period to 

a constant at all times. Therefore, in order to make the 

designed system more practical, it is necessary to study the 

time-varying sampling period. Literature [10-12] designed a 

memoryless state feedback controller to ensure the 

performance of the system. Literature [13] considered the 

time-delay, and the state feedback controller was designed by 

using time-varying observer, LMI and Lyapunov function. 

The practicability of this method was demonstrated by 

experiments. On this basis, literature [14] gave a design 
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method for a system H∞ controller, which modeled NCSs 

with variable sampling periods as switching systems, 

designed a reasonable H∞ controller, and optimized it using 

LMIs constraints. For nonlinear time-varying delay systems, 

Literature [15] studied the fuzzy sampling optimal control 

problem by using input delay and free weight matrix method, 

and then gave the conditions for the existence of optimal 

controllers. In order to make the bandwidth utilization higher, 

the active variable sampling method was used to switch the 

active variable sampling period within a certain period, and 

the controller of NCSs with time-delay was designed in the 

case of packet loss [16]. 

In this paper, guaranteed cost control for NCSs with time 

delay and variable sampling period is considered. In Section 2, 

the corresponding uncertain systems are described, and a more 

general system model is given, which is transformed into 

parameter uncertainty to establish a more general system 

model. In Section 3, we analyze the stability of the proposed 

model and give the design method of guaranteed cost 

controller. In Section 4, we use MATLAB to simulation, and 

give specific numerical examples to prove the effectiveness of 

the numerical proof method. Section 5 is the summary of the 

full text. 

2. Problem Statement and Modeling 

It is assumed that the state model of the controlled object 

is: 

( ) ( ) ( )

( ) ( )

k kx t A x t B u t

y t Cx t

= +
 =

ɺ

            (1) 

where ( )x t is the state of the system, ( )u t  is the input of the 

controlled object, ( )y t  is the output of the controlled object. 

kA , kB and C are well-dimensional matrices. For the 

convenience of description, select the time driven on the 

sensor side, and use the event driven on the controller and 

actuator side. And assumes that the time delay kh  and the 

sampling period kt  are bounded and time-varying uncertain, 

and satisfying 1  k k kh t t+= − , k N∈ . 

In practical industrial application, due to the influence of 

various factors, the sampling period will inevitably shake, 

and there is often time-varying uncertain delay. In general, 

the total delay is k sc ca cτ τ τ τ= + + , where cτ is the time 

delay generated when the controller calculates the control 

quantity, which can be ignored in general. Therefore, it can 

be assumed that the delay kτ and the sampling period kh are 

bounded and time-varying uncertain, satisfying k khτ ≤ , 

where min max[ , ]kh h h∈ , min max[ , ]kτ τ τ∈ . 

According to the above analysis and hypothesis, the state 

equation of the controlled object is discretized, and the 

following discrete equation can be obtained: 

1 0 0 1 1( , ) ( , )k k k k k k k k

k k

x A x H h u H h u

y Cx

τ τ+ −= + +
=

.     (2) 

where 

0

0
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1
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A e

H h e Bds

H h e Bds
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τ

τ

τ

−

−

=

=

=

∫

∫

         (3) 

For the sake of description, we define the augmented 

matrix vector ( ) [ ( ) ( 1)]
T T T

z k x k u k= − . Therefore, from 

(2) we have: 

0 1 0( , ) ( , )
( 1) ( ) ( )

0 0

k k k kA H h H h
z k z k u k

I

τ τ   
+ = +   

   
 (4) 

Assume that 

0 1
( ) ( )

0
( )

( , )
( , ) [ ]

0 0

( , )
( , ) [ ]

k k
k k ij n p n p

k k
k k ij n p p

A H h
A h a

H h
B h b

I

τ
τ

τ
τ

+ × +

+ ×

 
= = 
 

 
= = 
 

      (5) 

where ija and ijb are the corresponding elements of matrix

( , )k kA h τ and ( , )k kB h τ respectively. Since kh and kτ are 

time-varying indeterminate and bounded, ( , )k kA h τ  and 

( , )k kB h τ  are also time-varying indeterminate and bounded. 

Assume that 

( ) ( ) ( ) ( )

( ) ( )

[ ] , [ ] ,

,

[ ] , [ ] ,

,

m m n p n p M M n p n p
ij ij

m M
ij ij ij

m m n p p M M n p p
ij ij

m M
ij ij ij

A a R A a R

a a a

B b R B b R

b b b

+ × + + × +

+ × + ×

= ∈ = ∈

≤ ≤

= ∈ = ∈

≤ ≤
 

(6) 

where, 

min ( , ), max ( , ),

min ( , ), max ( , ),

m M
ij ij k k ij ij k k

m M
ij ij k k ij ij k k

a a h a a h

b b h b b h

τ τ

τ τ

= =

= =
    (7) 

Then, the system (4) can be written as 

( 1) ( , ) ( ) ( , ) ( )k k k kz k A h z k B h u kτ τ+ = +      (8) 

where, m M
A A A≤ ≤ , m M

B B B≤ ≤ . 

Assume that 

0 ( ) / 2
m M

A A A= + , 0 ( ) / 2
m M

B B B= + ,     (9) 

and 
 



40 Nana Wang and Nan Xie:  Guaranteed Cost Control Research for Networked Control  

System with Time-Varying Sampling Period 

 

1 11 1 1( ) 1 21 2 2( ) 2 ( )1 ( ) ( )( )

1 11 1( ) 21 2( ) ( )1 ( )( )

1 11 1 1( ) ( ) 21 1

[ ,..., , ,..., ,..., ,..., ],

( ,..., , ,..., , ,..., ), | | 1, 1 , ,

[ ,..., ,

n p n p n p n p n p n p n p

n p n p n p n p n p ij

T
n p n p

D e e e e e e

F diag i j n p

E e e e

λ λ λ λ λ λ

ε ε ε ε ε ε ε

λ λ λ

+ + + + + + +

+ + + + +

+ +

=

= ≤ ≤ ≤ +

= 2( ) ( ) ( )1 1 ( )( ),..., ,..., ,..., ].n p n p n p n p n p n pe e eλ λ λ+ + + + + +

 

2 11 1 1 1 21 2 2 2 ( )1 ( ) ( )

2 11 1 21 2 ( )1 ( )

2 11 1 1 21 1 2 ( )1 1

[ ,..., , ,..., ,..., ,..., ],

( ,..., , ,..., , ,..., ), | | 1, 1 ,1 ,

[ ,..., , ,..., ,..., ,...

p p n p n p n p p n p

p p n p n p p ij

T
p p p p n p

D e e e e e e

F diag i n p j p

E

µ µ µ µ µ µ

ε ε ε ε ε ε ε

µ θ µ θ µ θ µ θ µ θ

+ + + +

+ +

+

=

= ≤ ≤ ≤ + ≤ ≤

= ( ), ].n p p pµ θ+
               

(10) 

Where, ie  is the i  column vector of the order n p+  unit 

matrix I , iθ  is the i  column vector of the order p
 

unit 

matrix I , and 1 1
T

F F I≤ , 2 2
T

F F I≤ . Therefore, the matrix 

( , )k kA h τ  is described as 0 1 1 1A A D F E= + , the matrix 

( , )k kB h τ  is described as 0 2 2 2B B D F E= + . 

Therefore, the state model of the system can be finally 

transformed into 

0 1 1 1 0 2 2 2( 1) ( ) ( ) ( ) ( )z k A D F E z k B D F E u k+ = + + +   (11) 

Schur complement. Assume that 11S is square matrix of

R R× , for symmetric matrix 
11 12

22*

S S
S

S

 
=  
 

, the following 

conditions are equivalent: 

(1) 0S <  

(2) 1
22 11 12 22 120, 0

T
S S S S S

−< − <  

(3) 1
11 22 12 11 120, 0

T
S S S S S

−< − <  

Lemma 1. Given the constant matrices 1 2 3, ,Ω Ω Ω , of 

appropriate dimensions, where 1 1
TΩ = Ω

 
and 2 2 0

TΩ = Ω > , 

then 

1
1 3 2 3 0

T −Ω + Ω Ω Ω <  

if and only if 

1 3

3 2

0
T Ω Ω < 

Ω −Ω  
 or 

2 3

3 1

0
T

−Ω Ω 
< 

Ω Ω  
. 

Lemma 2 [17]. Given matrices Y , H , E  of appropriate 

dimensions and with Y symmetric, then for all F  satisfying 
TF F I≤  and 

0T T TY HFE E F H+ + <  

if and only if there exists 0ε > such that 

1 0T TY HH E Eε ε −+ + < . 

3. Main Results 

For system (11), define performance indicators: 

2

( ( ) ( ) ( ) ( ))T T

k

J z k Qz k u k Ru k

∞

=

= +∑ ,      (12) 

where Q  and R  are positive definite matrices. 

Next, we want to design a reliable guaranteed cost feedback 

control law 

( ) ( ) ( )u k K K z k= + ∆ ,            (13) 

such that for any acceptable range of uncertainties, the system 

0 1 1 1 0 2 2 2( 1) ( ) ( ) ( ) ( )z k A D F E z k B D F E u k+ = + + +    (14) 

can remain stable, and the cost function (12) satisfies *J J≤ , 

where *J  is a known constant. 

In equation (13), K  is the gain of the controller, K∆  is 

the disturbance of the gain, and K∆  can be expressed as 

0 0 0K D F E∆ = , where 0D  and 0E  are the given appropriate 

dimension matrices, and 0F  is the unknown parameter 

matrix satisfying 0
T

F F I≤ . 

Definition 1 [18]. For the closed-loop system (11) and the 

performance index function (12), if there are gain matrices 

K  and K∆ , so that the system (11) with any uncertain 

factors is asymptotically stable and satisfies *J J≤ , then 
*J  is the upper bound of the guaranteed performance index, 

and ( ) ( ) ( )u k K K z k= + ∆  is the guaranteed cost control law 

of the system (11) and the cost function (12). 

Theorem 1. For the system (11), if there exist gain matrices 

K , K∆ , positive-definite matrix P, satisfies the following 

inequalities: 

[ ( )] [ ( )]

( ) ( ) 0

T

T

A B K K P A B K K P Q

K K R K K

+ + ∆ + + ∆ − +

+ + ∆ + ∆ <
    (15) 

Then, the cost function (12) satisfies the following bound 

0 0*
T

J J z Pz≤ = . 

Proof. Construct the Lyapunov function ( )
T

k kV k z Pz= , 

and make the difference along any trajectory of the system: 

1 1( ) ( 1) ( )

[ ( )] [ ( )]
k

T T
k k k k

T T T
k k k

V k V k V k z Pz z Pz

z A B K K P A B K K z z Pz

+ +∆ = + − = −

= + + ∆ + + ∆ −
 

(16) 
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Since (15) holds, then 

[ ( ) ( )] 0
T T

k k kV z Q K K R K K z∆ + + + ∆ + ∆ < ,   (17) 

it is further deduced that 

[ ( ) ( )]T T T T
k k k k k k kz Q K K R K K z z Qz u Ru V+ + ∆ + ∆ = + < −∆ , (18) 

So we know that ( ) 0V k∆ < . 

Then, we sum the left and right ends of the above formula 

from 0k =  to k = ∞ , and we can get 

0 0

0

[ ]T T T
k k k k

k

J z Qz u Ru z Pz

∞

=

= + ≤∑       (19) 

It can be seen from this that the performance index is related 

to 0z . If 0z is a random variable and satisfies 0 0{ }
T

E z z I= , 

then the expected value of the system guaranteed performance 

index is 

0 0{ *} { }
T

E J E z Pz trP= =          (20) 

Then, we will design the guaranteed performance controller 

that meets the expectation. 

Theorem 2. For system (11) and performance metrics (12), 

if there are positive-definite matrices X, Y, and scalars 

1 2 3 4 5, , , ,ε ε ε ε ε , such that the following LMI is feasible: 

0 0

1 2 0

2

2 0 2

1

1
0

3

4

5

1 0 0 0 0 0 0 0

* 2 0 0

* * 0 0 0 0 0 0

* * * 0 0 0 0

0* * * * 0 0 0 0

* * * * * 0 0

* * * * * * 0 0

* * * * * * * 0

* * * * * * * *

T T

T

T

A X B Y

XE YE X Y XE

I

I D E

Q

R E

I

I

I

ψ
ψ

ε
ε

ε
ε

ε

−

−

+ 
 
 
 −
 
 −
 

<− 
 

− 
 −
 

− 
 − 

               (21) 

Then 1
( ) ( )u k YX z k

−=  is a control law of the system (11), whose performance index satisfies *J J≤ , where 

1 1 1 1 2 2 3 0 0 0 01
T T T T

X D D D D B D D Bψ ε ε ε= − + + + , 4 0 0 5 0 02
T T

X E E D Dψ ε ε= − + + .            (22) 

Proof. Using the Schur complement, the (15) can be transformed into 

1 ( )
0

* ( ) ( )T

P A B K K

P Q K K R K K

− − + + ∆
< 

− + + + ∆ + ∆  
                              (23) 

Substituting 0 1 1 1A A D F E= +  and 0 2 2 2B B D F E= +  into (23), we can obtain 

1
0 1 1 1 0 2 2 2( )( )

0
* ( ) ( )T

P A D F E B D F E K K

P Q K K R K K

− − + + + + ∆
< 

− + + + ∆ + ∆  
                          (24) 

Splitting inequality (24), we get 

1
0 0

1 1 1 2

2 2

1 11 2

2 2

( )

* ( ) ( )

0 0

0 ( ) 0 0 0

0 0
0

0 0 ( )0 0

T

T T T

P A B K K

P Q K K R K K

E F D D

E K K F

F ED D

F E K K

− − + + ∆
 

− + + + ∆ + ∆  

     
+      + ∆     

    
+ <     + ∆     

                                (25) 

Define 
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1
0 0 ( )

* ( ) ( )T

P A B K K
W

P Q K K R K K

− − + + ∆
=  

− + + + ∆ + ∆  

 

According to Lemma 2, when there is a constant matrix 1 2{ , }diag I Iε ε , the inequality (25) can be equivalently transformed 

into 

1

1 1 1

2 2 2

1 1 2 1 2

2

0 0 0

0 0 ( ) 0 ( )

0
0

0 0 0 0 0

T

T

I E E
W

I E K K E K K

I D D D D

I

ε
ε

ε
ε

−
     

+      + ∆ + ∆     

     
+ <     

    

                               (26) 

By combining and sorting out (26), we can get: 

1
1 1 1 2 2 0 0

1
2 1 1 2 2

( ) ( )
0

* ( ) ( ) ( ( ) ( )

T T

T T T T

P D D D D A B K K

P Q K K R K K E E K K E E K K

ε
ε

−

−

 − + + + + ∆
< 

− + + + ∆ + ∆ + + + ∆ + ∆  
   (27) 

For inequality (27), using Schur complement, we can get: 

1
1 1 1 2 2 0 0

1

2

2

1

1

( ) ( ) 0 0 0 0

* ( ) ( )

* * 0 0 0
0

* * * 0 0

* * * * 0

* * * * *

T T

T T T T

P D D D D A B K K

P E K K E I K K

I

I

Q

R

ε

ε
ε

−

−

−

 − + + + + ∆
 

− + ∆ + ∆ 
 −  <
 −
 

− 
 

−  

              (28) 

Letting 0 0 0K D F E∆ =  in (28), we can obtain 

1
1 1 1 2 2 0 0 0 0 0 0

1 2 0 0 0 2 0 0 2

2

2

1

1

( ) 0 0 0 0

* ( )

* * 0 0 0
0

* * * 0 0

* * * * 0

* * * * *

T T

T T T T T T

P D D D D A B K A D F E

P E K E D F E E I K D F E

I

I

Q

R

ε

ε
ε

−

−

−

 − + + + +
 

− + + 
 −  <
 −
 

− 
 

−  

    (29) 

The above equation (29) is equivalent to 

1
1 1 1 2 2 0 0

1 2 0 0 0 2 0 0 2

2

2

1

1

( ) 0 0 0 0

* ( )

* * 0 0 0

* * * 0 0

* * * * 0

* * * * *

T T

T T T T T T

P D D D D A B K

P E K E D F E E I K D F E

I

I

Q

R

ε

ε
ε

−

−

−

 − + + +
 

− + + 
 −  +
 −
 

− 
 

−  

0 0 0 0

0 0

0 0

0 0

0 0

0 00 0
0

0 00 0

0 00 0

0 00 0

T
T T

T T

A D A D

E E

F F

                             + <                                          

 (30) 

Introducing scalar 3ε , using Lemma 2 and Schur complement, it can be obtained 

0 0

1 2 0 0 0 2 0 0 2 0

2

2

1

1

3

0 0 0 0 0

* ( )

* * 0 0 0 0

* * * 0 0 0 0

* * * * 0 0

* * * * * 0

* * * * * *

T T T T T T T

A B K

P E K E D F E E I K D F E E

I

I

Q

R

I

φ

ε
ε

ε

−

−

+ 
 

− + + 
 −
 

−  <
 

− 
 − 
 − 

                      (31) 
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where, 1
1 1 1 2 2 3 0 0 0 0( )

T T T T
P D D D D B D D Bφ ε ε−= − + + + . 

Similarly, introducing scalars 4ε and 5ε , by using Schur complement again, and by Lemma 2, we can get: 

0 0

1 2 0

2

2 0 2

1

1
0

3

4

5

0 0 0 0 0 0 0

* 0 0

* * 0 0 0 0 0 0

* * * 0 0 0 0

0* * * * 0 0 0 0

* * * * * 0 0

* * * * * * 0 0

* * * * * * * 0

* * * * * * * *

T T T T T

T T

T

A B K

E K E I K E

I

I D E

Q

R E

I

I

I

φ

ϕ
ε

ε

ε
ε

ε

−

−

+ 
 
 
 −
 
 −
 

<− 
 

− 
 −
 

− 
 − 

                   (32) 

where 1
4 0 0 5 0 0

T T
P E E D Dϕ ε ε−= − + + . 

Multiply the left and right sides of the inequality (32) by 
TΩ  and Ω , where 

{ }1diag , , , , , , , ,I P I I I I I I I−Ω = , 

and take 1X P−= , Y KX= , substitute them into the matrix 

inequality (32), after sorting out, the inequality (21) in 

theorem 2 is obtained, and the proof is completed. If there are 

feasible solutions to the inequality (21), it means that the 

system is still able to maintain asymptotic stability under the 

sampling period is uncertain, and a reliable guaranteed cost 

controller is 1
k ku YX z

−= , and the corresponding 

performance index satisfies *J . 

Based on Theorem 2, the following optimization problems 

are given 

min ( )tr S  

(i) (21), 

(ii) 0
X I

I S

 
> 

 
,            (33) 

Using Lemma 1, (ii) in (33) can be converted into 
1 0S X −− > . If there exist feasible solution ( , )X S , the 

minimization of ( )Trace S  can guarantee the minimization of 

( )Trace X , which ensures that a global optimum. The 

following will verify the feasibility through numerical 

simulation. 

4. Simulations 

Consider the following controlled system model 

[ ]

0 1 0 0

( ) 0 0 1 ( ) 1 ( )

0 0 0 0

( ) 1 1 0 ( )

x t x t u t

y t x t

    
    = +    
       
 =

ɺ

            (34) 

Assuming the bounded interval [ ]0.1 0.5kh ∈ , 

[ ]0.05 0.1kτ ∈ . Using the method proposed in this chapter, 

the following interval matrix is obtained 

0

1 0.3 0.0244

0 1 0.075

0 0 0

A

 
 =  
  

, 0

0.507

0.225

1

B

 
 =  
  

, 

taking { }diag 1, 1, 1Q = , R = 0.01. 

The optimal solution can be obtained: 

0.1871 0.0503 0.0266

0.0503 0.2165 0.0303

0.0266 0.0303 0.1812

X

 
 =  
  

 

[ ]0.0714 0.2007 0.1214Y = −
 

20.0722 0.0229 0.0125

0.0229 20.0865 0.0143

0.0125 0.0143 20.0699

S

− − − 
 = − − − 
 − − −  .

 

The corresponding guaranteed performance controller is 

[ ]0.5856 1.1722 0.78k ku z= −  

and the upper bound of the corresponding closed-loop cost 

function is * 23.08J = . 

These numerical results show that the matrix inequality 

presented in Theorem 2 has satisfactory solutions, and the 

state feedback control law can also be obtained. This indicates 

that the analysis and design method of the NCS with 

time-varying sampling period in this chapter is feasible, which 

can keep the system stable and satisfy certain performance 

indexes. 

Let the initial value of the controlled system be 

(0) [1, 0.5, 2]
T

x = , using MATLAB to simulate, the 

corresponding state response curve can be obtained. It can be 

seen from Figure 1 that the system is asymptotically stable. 
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Figure 1. State response curve of closed-loop system. 

5. Conclusions 

In this paper, we have established a more general system 

model for the NCSs with time-varying sampling period. Based 

on LMI properties, the design method of guaranteed cost 

controller has been proposed, and the parametric 

representation of the controller has been given, so that the 

networked control system can keep normal operation when 

uncertainty factors fluctuate within the allowable range. In the 

design process, more free variables have been introduced to 

make the results less conservative. The feasibility solution has 

been given by using LMI toolbox, which has verified the 

effectiveness of the method. In the future research, we should 

consider and analyze the possible problems more 

comprehensively, such as packet loss, timing disorder, 

equipment failureand and so on. And the application of 

theoretical research in practical engineering, further verified 

in practice, will be the future research goal. 
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