

International Journal of Sensors and Sensor Networks
2015; 3(1): 1-11

Published online March 21, 2015 (http://www.sciencepublishinggroup.com/j/ijssn)

doi: 10.11648/j.ijssn.20150301.11

An IEEE 1451.0-based Platform-Independent TEDS Creator
Using Open Source Software Components

Paul Celicourt, Michael Piasecki

Civil Engineering Department, The City College of New York, New York, USA

Email address:
pcelico00@citymail.cuny.edu (P. Celicourt), mpiasecki@ccny.cuny.edu (M. Piasecki)

To cite this article:
Paul Celicourt, Michael Piasecki. An IEEE 1451.0-based Platform-Independent TEDS Creator Using Open Source Software Components.

International Journal of Sensors and Sensor Networks. Vol. 3, No. 1, 2015, pp. 1-11. doi: 10.11648/j.ijssn.20150301.11

Abstract: This paper introduces a Graphical User Interface supported and platform-independent application to generate a

Transducer Electronic Data Sheet (TEDS) based on the IEEE 1451.0 standard using Python programming language. Compared

to other TEDS application development efforts, this application provides a help system that improves the usability as it requires

little familiarity with the IEEE 1451 standard. It is built on the Hierarchical Model-View-Controller software design architecture

to improve reusability and modularity, it is platform agnostic, light-weight and easy to install, it produces both binary and

Text-based TEDS, supports a large array of physical units used in the hydrology field and also incorporates sensor data

management provision. We have used the Consortium of Universities for the Advancement of Hydrologic Sciences, Inc.’s

Observations Data Model (CUAHSI ODM) as a test case to demonstrate how backend demands on data management can be

incorporated in front end applications such as the TEDS. We have tested the results of our application with examples provided in

the IEEE 1451.0 documentation, and both results show agreement.

Keywords: IEEE 1451, Transducer Electronic Data Sheet, CUAHSI’s Observations Data Model,

Automatic Data Management, Python, Low-Cost Sensor Network

1. Introduction

Implementing a sensor network requires, in most cases, the

use of proprietary protocols and programming languages to

configure sensors and loggers. When using different sensors

platforms the configuration task becomes more complex due

to the need of having to learn different proprietary data

formats and protocols which constitute a bottleneck for the

expansion of sensor networks [1]. In response to this rising

complexity the Institute of Electrical and Electronics

Engineers (IEEE) have sponsored the development of the

IEEE 1451 standard [2, 25, 46] to introduce a common

standard. This standard is a family of eight (8) (sub)standards,

as of the date of this writing, that provides the common

interface and enabling technology for the connectivity of

transducers to microprocessors, control and field networks,

and data acquisition and instrumentation systems in a

plug-and-play fashion [2]. The standard puts forth the concept

of a Transducer Electronic Data Sheet (TEDS) which plays the

role of an identification card attached to smart transducers

enabling transducers self-identification, self-description,

self-diagnosis, self-calibration, and plug-and-play

functionality.

While offering substantial benefits, implementation of the

IEEE 1451 standards, more importantly the TEDS for

traditional sensors and sensor platforms, remains a tedious

task especially for practitioners with no or little background in

computer programming. Hence, the development of an

application that incorporates an intuitive Graphical User

Interface (GUI) to generate the TEDS represents a critical step

to both reduce work load and also to avoid mistakes as manual

compilation has shown to be tedious and error prone [1, 4, 11,

12, 45, 55-57]. Multiple mistakes in manually assembling the

TEDS in addition to lack of knowledge of the IEEE 1451

standard have been reported in Rana et al. [11] where, for

example, instead of providing the “Design operational upper

and lower measurement limits” for the temperature sensor

they use in their setup; they provide the operating temperature

range for the Arduino board itself.

TEDS generators have been developed before; see [3, 5-10,

44, 61-62]. A key aspect to evaluate most of these TEDS

generators is their level of convenience vis-à-vis the user’s

experience or expertise with this standard. In other words,

these applications require the users to know the intricate

details and technical terms of the standard. Acquiring

detailed knowledge of the standard however is a time

2 Paul Celicourt and Michael Piasecki: An IEEE 1451.0-based Platform-Independent TEDS Creator Using

Open Source Software Components

consuming and onerous task for one because it is an

expansive standard, for another because it is filled with

technical jargon. For example, the TEDS generator in [6]

requires the users to understand how physical units are

represented in the TEDS and they have to insert the proper

and correct forms themselves, which has shown to be a likely

source of error in TEDS creation; see table 1 for more details.

Additionally, these applications suffer from a general lack of

controlled vocabularies to allow sensors data to be organized,

cataloged and retrieved painlessly. For example, in [3]

temperature unit is “celsius” while in [6] it is “DEGREE

CELSIUS”. A somehow similar issue has been raised by Hu

et al. [37] prompting them to develop ontology to model

terminologies defined in IEEE 1451.4 [63] and consequently,

bridge the gap between IEEE 1451 and SensorML [65-67].

None of these applications have an interface or mechanism

that would allow integration of controlled vocabularies such

as the CUAHSI ODM [29] Physical Units controlled

vocabularies, which we seek to use in the present application

to improve on and ease the burden of inserting correct units.

Another important aspect that has been overlooked and

omitted in TEDS applications is the fact that the IEEE 1451

is flexible enough to allow practitioners to store ancillary

information (metadata) about the sensors data values that in

turn can be used to provide traceable heritage from raw

measurements to usable information and be unambiguously

interpreted in the form of Text-based TEDS. For this TEDS

category, the IEEE 1451.0 documentation [12] only provides

a suggestive model of the Text portion. Hence, this TEDS

category is not fully documented to be seamlessly replicated.

Table 1. Summary of the existing TEDS editors characteristics.

References Programming language Comments

[10] Labview Poor documentation for TEDS implementation

[5] Delphi Poor documentation for TEDS implementation

[6] C# Manual decomposition of Physical units, Use IEEE 1451 keywords

[7] ANSI C Manual decomposition of Physical units, Use IEEE 1451 field type names abbreviations for GUI labels

[8] C/C++ Poor documentation for TEDS implementation

[9] C++ Poor documentation for TEDS implementation

[3] Not reported
User-friendly GUI, Preliminary TEDS editor, No further improvement, Published prior to the acceptance

and publication of IEEE 1451.0,

[44] Web Technologies Manual decomposition of Physical units, Heavily use abbreviations for GUI labels

[62] Web Technologies Well documented TEDS editor, but requires familiarity with IEEE 1451 and HEX manipulation

Finally, while a mature language, the use of Python

programming language in sensor application is still at its

infancy. A review of the current status of the IEEE 1451

standard based sensor applications [52] such as GUI for data

management and visualization, communication drivers and

data logging demonstrates that programming languages such

as the C family, Java and LabVIEW (a proprietary language

and programming environment) remain the de facto

programming languages adopted. Out of 24 GUI applications

reported in that review, only one [53] has used Python. A

similar dominance of those programming languages has also

been noted in TEDS creator applications (Table 1).

This paper presents a much improved and

platform-independent TEDS generator application developed

using Python programming language and incorporates

provision for a unified standards-based automatic data storage

system incorporating IEEE 1451.0 features [12, 16].

The paper is organized as follows: Section II provides an

overview of the IEEE 1451 family of standards, Section III

provides an understanding of the TEDS, Section IV presents

the key design principles underlying the application, Section

V shows an essential UML model of the application, Section

VI presents some of GUIs and demonstrates some results and

finally, Section V summarizes the paper and provides insight

to future works.

2. Overview of the IEEE 1451 Standards

The anatomy of the IEEE 1451 standard can be succinctly

explained using the Smart Transducer model as a reference

(figure 1 (a) from [13]). It comprises analog or digital sensor

or actuator elements, a processing unit, and a communication

interface as a single block element [14]. The IEEE 1451

retrofits the Smart Transducer model and splits it into two

major components: the Transducer Interface Module (TIM)

and the Network Capable Application Processor (NCAP)

linked by a Transducer Independent Interface (TII) (fig. 1 (b)).

The TIM consists of a Transducer Signal Conditioning and

Data Conversion unit, a maximum of 255 sensors and

actuators, and the TEDS files. This differentiates the IEEE

1451 smart transducer from the conventional smart transducer.

The NCAP performs application processing and network

communication functions. The IEEE 1451 smart transducer

model (fig. 1(b)) demonstrates that both TIMs and NCAPs can

be implemented using off-the-shelf components [15] like the

Arduino (http://www.arduino.cc/) microcontroller as TIM and

the Raspberry Pi (http://www.raspberrypi.org/) as a NCAP

which is what we ultimate lively seek to accomplish.

We focus on the presentation of a straightforward

creation of the various types of TEDS as defined in the

IEEE 1451.0 standard [12]. The IEEE 1451.0 standard

member provides a common basis to enable interoperability

between the other members (named IEEE 1451.X). Within

this interoperability philosophy, the IEEE 1451 standard

defines a common set of commands for setting up,

accessing sensors and actuators connected in various

physical configurations such as point-to-point, distributed

multi-drop and wireless configurations as well as reading

 International Journal of Sensors and Sensor Networks 2015; 3(1): 1-11 3

and writing the data used by the system [13]. It defines the

functions that are to be performed by a transducer interface

module (TIM) and the common characteristics for all

devices that implement the TIM. More importantly, it

specifies the formats for the TEDSs and defines a set of

commands to facilitate the setup and control of the TIM. It

also defines Application Programming Interfaces (APIs) to

facilitate communications with the TIM and with

applications through a network link. As this paper is

concerned with the IEEE 1451.0 member only, the bolts and

nuts of the IEEE 1451 family of standards are not explained

here. Further details can be found in [2] and [13].

Figure 1. Smart Transducer model (a) vs IEEE 1451 Smart Transducer Model

(b).

3. TEDS Background

The IEEE 1451.0 defines 16 TEDS types [46] divided in

two general categories based on the content of the TEDS

information block and can accommodate a wide range of

potential sensors and actuators. These are: the Binary TEDS

which are divided into two sub-categories, Required and

Optional TEDS; and the Text-based TEDS which are all

Optional TEDS. However, the exceptions to the rule are the

Optional Manufacturer-defined and End User’s Application

Specific TEDS which can be either a Text-based or Binary

TEDS the choice of which is left up to the user’s discretion.

Fig. 2 depicts the division of the IEEE 1451.0 TEDS.

The IEEE 1451.0 format for binary TEDS consists of three

major blocks: the Length block specifying the number of

octets in the information block and the checksum, the

Information block (a series of ordered entries) and the

Checksum block to verify data integrity. In addition, each

entry in the information block uses the Time-Length-Value

(TLV) format where T is an octet representing the entry

number, L represents the number of octets in the V, and V is

the data value octets describing the property of the entry.

There is an exception to this convention however; the User’s

Transducer Name TEDS, even when implemented as a binary

TEDS, has the “TCName” user-dependent entry, a name to

recognize the TIM that does to not follow the TLV rule. The

data block of the Text-based TEDS also ignores this

convention. It is also worthwhile noting that not all of the

defined entries in any TEDS need to be included in the

implemented TEDS information block. For example, the field

indicating the time and date when a sensor was last calibrated

can be omitted in the Calibration TEDS.

The TEDS for smart sensors are typically stored and

shipped on a nonvolatile memory embedded in the sensor or

the TIM. However, the standard allows the TEDS to be

stored in other places within the user’s system; in this case

they are known as Virtual TEDS. These permit traditional

analog sensors to also enjoy the benefits of TEDS without

needing to be retrofitted with an embedded nonvolatile

memory. This is achieved by generating and storing the

TEDS on the sensor platform or downloading it from an

online repository managed by the sensor manufacturer. Once

implemented and loaded to the TIM or somewhere within the

system a copy of each TEDS is transferred to the NCAP; this

action utilizes the TEDS information to help identify which

TIMs are attached to it and further identify which

transducers are attached to a TIM [16].

Figure 2. IEEE 1451.0 TEDS types and their categorization.

4. Application Design Principles

The TEDS generator is built upon the following key design

principles:

4.1. Minimal Dependency on Python’s Non-Native Package

Our application has been developed in Python, an

interpreted, interactive, and object-oriented programming

language. It is built using primarily python’s built-in packages

to make installation and utilization as easy and convenient as

possible. This design principle allows the application to be as

light-weight as possible in terms of memory usage and also

permits it to run on resource constrained devices like the

Raspberry Pi. Moreover, because the application is developed

in Python it is platform agnostic which means that it is able to

run common platforms such as Windows, Mac OS, Linux,

Android, etc., without alteration.

4.2. Open-Source GUI Development Toolkit (WxPython)

Our application provides a GUI to enable users to create the

implemented TEDS. The stand-alone WxPython [49]

open-Source GUI development toolkit was selected for its

simplicity in both utilization and installation compared to the

4 Paul Celicourt and Michael Piasecki: An IEEE 1451.0-based Platform-Independent TEDS Creator Using

Open Source Software Components

use of other toolkits such as PyQt4 [50]. The package is free

for anyone to use in commercial and non-commercial

applications and is also platform agnostic.

4.3. Model-View-Controller Architecture

A key strategy in the development of our application was

the introduction of the Model-View-Controller, MVC,

approach developed by Tryge Reenskaug [17-24, 51]. It

permits the separation of the View, Controller, and Model

components such that alterations and further developments

on one component will not affect the usability of the other

two [17]. It thus greatly aids in meeting our objective for

software reusability and ease-of-use, parallel

implementation of components, and modularity. The design

rules and conventions for reusable application/classes

suggested by [26] were followed wherever they are

applicable to our application.

4.4. Help System

Besides the translation of the IEEE 1451 technical terms

into more comprehensible terms, our application has been

augmented with a help system in the form of a tooltip that

gives instructions to the user with regard on how to select

entries in the Graphical User Interface. In addition, an asterix

(*) is added to the essential fields required to create the

TEDS.

4.5. TEDS-Based Controlled Vocabularies and Ready-Made

Metadata

The CUAHSI Observations Data Model (ODM) [29] is a

relational database designed to store time series observations

with sufficient ancillary information (metadata) about the data

values to provide traceable heritage from raw measurements

to usable information [27-28]. [28] provides a detailed

description of the tables and associated attributes in this data

model, a listing of the fields contained in each table, a

description of the data contained in each field and its data type,

specific constraints imposed on each field, and discussion on

how each field should be populated. Because the authors deal

with a substantial amount of time series generated data, the

motivation arose to integrate information system requirements

up front into the TEDS. A key component for the successful

functioning of a distributed time series database system is the

provision and subsequent adherence to controlled

vocabularies. We demonstrate using CUAHSI ODM

Controlled Vocabularies how these can be integrated into our

system, in this case the inclusion of the physical units CV, to

aid discovery, search and publication of sensor data at the

NCAP level. We have also integrated a “crawler” that

automatically interrogates the CVs we are using for

integration of the latest version.

Currently available Python packages intended to

manipulate units do not natively support conversion of units

with the naming convention adopted by CUAHSI like

'kilograms per 1000 square meter' or by the National Institute

of Technology and Standard [35]. In addition, there are a

number of peculiarities and subtleties in the unit names and

abbreviation that these packages cannot manage

out-of-the-box such as “gallon” represented by lower (g) and

uppercase (G) abbreviations. On top of those issues, these

packages could not be used because they perform what we

may call “meshed dimensional conversion” by analogy to a

meshed sensor network. A special Python package having the

capabilities to perform Dimensional Analysis, Unit Reduction

and Conversion has been developed according to the unit

definition and conversion algorithm proposed by [36] after

pre-processing the units. In addition, a Compact

Representation of the units according to [34], a structure that

encodes only the exponents of a physical unit decomposed

into the product of the seven Système International (SI) base

units and two SI supplementary units (radian and steradian) as

a vector in a well-defined order (e.g., joule (m^2*kg/s^2) is

[0,0,2,1,-2,0,0,0,0]), is also a feature of our newly developed

Python package to meet the unit representation specification

in IEEE 1451. A full description of our package however, is

beyond the scope of this paper and we just introduce its

existence for the time being.

4.6. TEDS Structure Model

Each entry in the TEDS data block requires the field types

(Type), generally a sequence of numbers, to be known. In

addition, each entry has a specified data type (Int, float, etc.)

and is represented with a certain length or number of octets.

Some data blocks also contain nested entries such as parent

entries with children entries where both parents and children

have to follow the TLV format. This means that the V in the

parent entry is a sequence of TLVs. Generating these TLVs is

an involved and onerous task that complicates the creation of

TEDS thus prompting the desire to develop a one-size-fits-all

[30] method to generate the desired TEDS. Therefore, we

need a model/pattern of the TEDS structure defined in IEEE

1451.0 for each TEDS type to be implemented. In our

application, the TEDS structure is modeled using the

following general pattern (fig. 4):

TEDS Type = Field Type: {Field Name: {Key1: Field Type,

Key2: Number of bits, Key3: Value, Key4: Data type,

Children: Children_Fields/None}}.

The Python dictionary type allows the capture of more

structured information than a simple list of elements and its

nesting feature allows building up and access complex

information structures directly and easily. The strength of this

data structure is that it can accommodate and store an

unlimited number of data structures and types.

Adoption of this strategy also permits i the model to offer an

all-encompassing to encapsulate the user inputs and the

one-size-fits-all method processing the inputs to create the

TEDS. In addition, if the IEEE standard is subject to some

future revisions, the same method can be used without

modification to accommodate new entries by simply updating

the TEDS structure model with only, if at all, minimal changes

needed in the View and Controller classes.

 International Journal of Sensors and Sensor Networks 2015; 3(1): 1-11 5

Figure 3. The Main View of the application.

Figure 4. Example of the TEDS model used as a helper to create the TEDS.

5. A Simplified UML Model of the

Application

The MVC architecture while conceptually simple

nevertheless requires a substantial effort when implementing.

The goal of the MVC triad is to separate application

components into three independent action blocks. Each one of

them however, still requires considerable coding work in

addition to needing to stipulate data and information flow

interfaces that require careful consideration. The three

components are tasked as follows:

a. The Model handles data storage, provision and

processing tasks and operates independently of the other

two. It is also responsible for broadcasting messages

about changes occurring on the data to its dependent

view-controller pairs.

b. The View requests and presents the data and the state of

the application held by the Model to the user through a

GUI. In order to obtain information about the Model

contents, the View component must register itself as a

dependent or an observer of the Model using an Observer

Pattern [41].

c. The Controller is the interface or the glue between the

View and the Model and handles the user interaction

with the application. It receives and registers user actions

and determines the action to be taken, for example,

calling a method. Like the View, the Controller registers

itself as an observer of the Model.
To better illustrate the complexity of the interactions of all

components in our application, we have developed a UML

representation that depicts the dependencies and inheritance,

as shown in Fig. 5. The UML model shows that our

application is actually built on a variant of the MVC pattern

named Hierarchical MVC [31, 33] which is a hierarchy of

parent-child MCV layers. We introduced this as a convenient

way of structuring the Main GUI (Fig. 3) from which users

can choose the TEDS to be implemented (e.g., Fig. 6) which

themselves are based on the MVC pattern. Hence, the

application is built as layered/hierarchical MVC in which a

link is made between the main layer and the children layers.

To better illustrate the HMVC setup, we provide the following

example: Fig. 3 is modeled in the UML Model by the

classes/objects: Main View, Main Controller and Model that

together constitute the parent MVC layer; The Main

Controller follows up on the user actions (click a button to

implement a TEDS) on this GUI and calls the MVC layer

associated to the clicked button. We use a common model

(IEEE1451Dot0Model) instead of using a separate model for

each controller-view pair.

6 Paul Celicourt and Michael Piasecki: An IEEE 1451.0-based Platform-Independent TEDS Creator Using

Open Source Software Components

Figure 5. An Essential UML model of the TEDS generator application.

Figure 6. Meta-TEDS Created for the Arduino Uno.

6. TEDS Implementation

Our work has been motivated in the context of developing

affordable and smart hydro-climate sensor stations that are

easily deployed in the field. Our goal is to provide a complete

sensor-to-end user package in which data management aspects

in addition to data submission and retrieval are handled

automatically thus providing a solution that is as hands-off as

it can be. As mentioned before we choose the Observations

Data Model of the CUAHSI HIS [43] a system to store point

based time series data using international standards such

WaterML2.0 [58-59] and Water One Flow web services to

provide computer-to-computer communications. One

consequence of this specific adoption is the need to provide

compliant metadata to adequately annotate the time series

data.

The IEEE 1451.0 standard is flexible enough that it can be

used to embed textual information into a TEDS where each

block is an XML “instance document”, the only constraint

imposed. Researchers have taken steps to either suggest some

additional entries [1] or develop new TEDS [38] that have the

potential to fulfill some application specific needs such as

reporting on sensor health. While possible, our application

does not demand this extra work of supplying metadata and

stays within the confinement of the TEDS list enumerated

above. This is because the required metadata can easily be

described using the CUAHSI Water Markup Language

(WaterML) [39]-[40] making the information block of the

Text-based TEDS comply with the XML “instance document”

constraint imposed by IEEE 1451.0. The metadata is encoded

in WaterML at the TIM level for transmission to the NCAP

and an application at the NCAP level will consume the

WaterML description to dynamically process and store the

data properly into the ODM.

There are, however, three metadata tables that need direct

 International Journal of Sensors and Sensor Networks 2015; 3(1): 1-11 7

user input: Variable, Source, and Site tables. The last two

tables contain information common to all Transducer

Channels attached to the TIM. There are three TEDS

candidates to represent those tables: Meta-Identification

TEDS, End User’s Application Specific TEDS and

Manufacturer-Defined TEDS. Based on the fact that the

Meta-TEDS provides information common to all Transducer

Channels, the Meta-Identification TEDS is the best candidate

to represent the TEDS describing the Source and Site

metadata tables in the CUAHSI ODM. This same reasoning

holds for the Variable metadata table and the Transducer

Channel Identification TEDS was selected to represent the

information that will be loaded into the ODM Variable table.

Our application implements the following TEDS.

6.1. Meta-TEDS

The Meta-TEDS ensures availability of information

necessary to gain access to any Transducer Channel, plus the

information common to all Transducer Channels. An essential

Meta-TEDS consists of the key fields (with asterix) in figure 6.

As an example, we show the geographic location of the

Arduino Uno manufacturer in Turin, Italy together with a

made-up manufacturing date and we also assume that a

collection of seven sensors will be connected to the Arduino.

Our application produces the TEDS as shown above where the

first line indicates the total number of bytes in the TEDS, the

second one is the TEDS identifier, the third one identifies the

microcontroller manufacturer, the fourth to sixth lines show

the communication-related time, the seventh is the number of

sensors to be implemented, and the last one is the Checksum

to ensure data integrity. To minimize the space occupation of

the figures, we put the TEDS figure on the GUI.

6.2. Transducer Channel TEDS

The Transducer Channel TEDS describes and makes

available all of the information concerning the Transducer

Channel being addressed thus ensuring proper operation of the

channel. We have used the MPX5050/MPXV5050G series

pressure sensor [54] compatible with Arduino for testing, the

results of which are shown below (Fig. 7). We do not show the

GUI here because it is too large to fit into the text at a

resolution high enough to discern the individual input field

descriptions. Instead we show the TEDS content as a series of

entries to facilitate its interpretation and understanding, but we

could also group the whole content as a series of octets.

Figure 7. Transducer Channel TEDS for the MPXx5050 series.

6.3. Transducer Channel Identification TEDS (Variable

Metadata Table)

The Transducer Channel Identification TEDS falls into the

category of Text-based TEDS that comprises two blocks: a

binary which is a directory to allow a processor to locate and

read the information block for a single language in the TEDS.

Note that multiple information blocks in different languages are

permitted. The second block, the Text (XML instance) based

portion, should be created first as the binary portion contains

sub-fields that depend on the memory size of the text portion.

Text-based TEDS are much more cumbersome to be created

manually than binary TEDS because byte counting, evaluation

and subsequent checksum computations are labor intensive.

They are also highly prone to error in addition to requiring

multiple checksum computations for text based TEDS. This is

even more difficult if the content is to be implemented in more

than one language because the memory size of the text portion

may vary from one language to another and the binary part has

to contain the right information to allow the TEDS processor to

accurately locate the text portion for each language.

Figure 8 shows the TEDS containing information about the

ODM Variable table as a Water ML instance for the selected

pressure sensor. Currently, our application supports only a

single language (English) but there is the opportunity to

extend it to support more than one language in the context of

the “Internationalization of the CUAHSI Hydro Server” [42].

Figure 8. Text-based TEDS to describe the ODM variable table.

For transmission purposes, the text information block

(Water ML string) is compressed using the Gzip compression

method natively available in Python and accepted by the IEEE

1451.0. This compression technique helps achieve a

compression ratio of about 50%, which is important because

8 Paul Celicourt and Michael Piasecki: An IEEE 1451.0-based Platform-Independent TEDS Creator Using

Open Source Software Components

data transmission/reception time is proportional to data packet

size and a sensor node expends maximum energy in data

communication [60]. We need to mention also that the

compression has an impact on the checksum computation for

the information block and subfields in the binary portion. To

avoid users’ mistakes in associating the Variable metadata to

the appropriate sensor, the GUI generating this TEDS is

integrated into the Transducer Channel TEDS GUI so they are

implemented simultaneously.

6.4. Meta-Identification TEDS (Source & Site Metadata

Tables)

The Meta-Identification TEDS provides all information

needed to identify the TIM plus any information common to all

channels. Under this Text-based TEDS, we implement the

ODM Source and Site Tables. The result is similar to the text

shown Fig. 8 with the unique difference that this TEDS contains

an information block with two XML elements “source” and

“site”. To minimize space, it is not presented here.

6.5. Calibration TEDS

Finally, the calibration TEDS provides all of the

information used by the correction software in charge of

converting the sensor output (electrical signal) into

engineering units in connection with the Transducer Channel

being queried. Our application supports both the Linear and

General (Polynomial form) sensor data Correction Method

(LCM/LGM) of the IEEE 1451.0.

We referred to [64] to implement the general correction

method in which provision to accommodate a large array of

sensor outputs as inputs is made. However, due to the

complexity of this method and even though we provide

instructions to users about how to provide the information, it

must be implemented by users with an adequate comprehension

of the general calibration method of the IEEE 1451 to correctly

supply the information to the application. We need to point out

here that none of the previously studied TEDS creators has

implemented the general correction method.

Figure 9. The Calibration TEDS GUI.

For unit-to-unit conversion, the application provides the

conversion slope and intercept to the user on the fly using the

Physical unit selected in the Transducer Channel TEDS GUI

once the related Transducer Channel TEDS has been created.

Fig. 9 shows those two values for the selected sensor and

figure 10 shows the calibration TEDS created (LCM).

Figure 10. The Calibration TEDS for the pressure sensor used.

7. Summary

A practical user-friendly and platform-independent

application designed to generate Transducer Electronic Data

Sheet (TEDS) according to the IEEE 1451.0 standard using

the Python open source programming language has been

presented. It has been designed to ease the end user’s work

with an on-the-fly help system provided and constrained the

user to provide required information for compliance to the

specification of the standard. It has been successful in

producing the supported TEDS including Text-based TEDS

smoothly. The Hierarchical Model-View-Controller software

design architecture has been used to produce concise,

maintainable and reusable high quality software. It also

demonstrates the promising capability of the Python

programming language to be used in sensor applications and

more importantly when the aspect of sensor data management

is considered.

The reusable and modular software development mind will

allow us to easily decode and test the TEDS for compliance

and perform tasks necessary to achieve an

Auto-programmable Data Acquisition System. We have tested

the results of our application with examples provided in the

IEEE 1451.0 documentation, and both results show

agreement.

References

[1] J., Higuera, J., Polo, & M., Gasulla (2009). A ZigBee wireless
sensor network compliant with the IEEE 1451 standard. In
Proceedings of the IEEE Sensors Applications Symposium.

[2] K., Lee (2000). IEEE 1451: A standard in support of smart
transducer networking. In Instrumentation and Measurement
Technology Conference, 2000. IMTC 2000. Proceedings of the
17th IEEE (Vol. 2, pp. 525-528). IEEE.

[3] Liu, W. (2006). Design of teds writer, reader and testing system
for transducer interface modules based on the ieee 1451
standard. State University of New York at Buffalo.

 International Journal of Sensors and Sensor Networks 2015; 3(1): 1-11 9

[4] D., Wobschall (2007). IEEE 1451—a universal transducer
protocol standard. In Autotestcon, 2007 IEEE (pp. 359-363).
IEEE.

[5] L., Cámara, O., Ruiz, & J., Samitier (2000). Complete
IEEE-1451 node, STIM and NCAP, implemented for a CAN
network. In Instrumentation and Measurement Technology
Conference, 2000. IMTC 2000. Proceedings of the 17th IEEE
(Vol. 2, pp. 541-545). IEEE.

[6] S., Manda & D., Gurkan (2009). IEEE 1451.0 compatible
TEDS creation using. NET framework. In Sensors
Applications Symposium, 2009. SAS 2009. IEEE (pp.
281-286). IEEE.

[7] J., Guevara, F., Barrero, E., Vargas, J., Becerra, & S. Toral
(2012). Environmental wireless sensor network for road traffic
applications. IET Intelligent Transport Systems, 6(2), 177-186.

[8] D., Markovic, U., Pesovic, & S., Randic (2012)"TEDS
specification for IEEE 1451.0 smart Transducer,"
Telecommunications Forum (TELFOR), 2012 20th, vol., no.,
pp.1532, 1535, 20-22 Nov. 2012.

[9] N., Kularatna & B. H., Sudantha (2008). An environmental air
pollution monitoring system based on the IEEE 1451 standard
for low cost requirements. Sensors Journal, IEEE, 8(4),
415-422.

[10] Jevtic, N., & Drndarevic, V. (2013). Design and
implementation of plug-and-play analog resistance temperature
sensor. Metrology and Measurement Systems, 20(4), 565-580.

[11] R., Rana, N., Bergmann, & J., Trevathan (2011). Towards
plug-and-play functionality in low-cost sensor network. In
Intelligent Sensors, Sensor Networks and Information
Processing (ISSNIP), 2011 Seventh International Conference
on (pp. 265-270). IEEE.

[12] IEEE Standard for a Smart Transducer Interface for Sensors
and Actuators – Common Functions, Communication
Protocols, and Transducer Electronic Data Sheet (TEDS)
Formats, IEEE Standard 1451.0-2007.

[13] E. Y., Song & K., Lee (2008). Understanding IEEE
1451-Networked smart transducer interface standard-What is a
smart transducer? Instrumentation & Measurement Magazine,
IEEE, 11(2), 11-17.

[14] W., Elmenreich, & S., Pitzek (2003). Smart
transducers-principles, communications, and configuration. na.

[15] S., Woods et al. (1996). “IEEE-P1451.2 Smart Transducer
Interface Module,” Proceedings Sensors Expo Philadelphia, pp.
25-38, October 1996, Helmers Publishing.

[16] J., Wiczer & K., Lee (2005). ‘A Unifying Standard for
Interfacing Transducers to Networks–IEEE 1451.0. In
Proceedings of ISA Conference, Chicago, IL.

[17] G. E., Krasner & S. T., Pope, “A cookbook for using the
model-view-controller user interface paradigm in smalltalk-80,”
J. Object Oriented Program., vol. 1, no. 3, pp. 26–49, Aug.
1988.

[18] T., Reenskaug (2003). The Model-View-Controller (MVC): Its
Past and Present. [Online] Draft of August 20, 2003. Accessed
January 15th, 2015.
http://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_patt
ern.pdf

[19] T., Reenskaug (2007). The original MVC reports. [Online]

February 12, 2007. Accessed January 15th, 2015.
http://heim.ifi.uio.no/~trygver/2007/MVC_Originals.pdf

[20] J., Deacon (2009). Model-view-controller (mvc) architecture.
Online] [Citado em: 10 de março de 2006.]
http://www.jdl.co.uk/briefings/MVC.pdf

[21] A., Bower & B., McGlashan (2000). Twisting the triad: the
evolution of the Dolphin Samlltalk MVP application
framework. Tutorial Paper for ESUG, 2000.

[22] S., Burbeck (1987). Applications Programming in
Smalltalk-80(TM): How to use Model-View-Controller (MVC).
Accessed January 15th, 2015.

[23] M., Fowler (2006). GUI Architectures. [online]
martinfowler.com. Available at:
http://martinfowler.com/eaaDev/uiArchs.html [Accessed 16
Jan. 2015].

[24] T., Reenskaug (1979). Models - Views - Controllers. Technical
note, Xerox PARC.

[25] K. B., Lee (2014). Smart Transducer Interface Standard for
Sensors and Actuators. Industrial Communication Technology
Handbook, Second Edition. Aug. 2014, 1 -17.

[26] R. E., Johnson & B., Foote (1988). Designing reusable classes.
Journal of object-oriented programming, 1(2), 22-35.

[27] D. G., Tarboton, J. S., Horsburgh & D. R., Maidment (2007).
CUAHSI community Observations Data Model (ODM)
version 1.1 design specifications.

[28] J. S., Horsburgh & D. G., Tarboton (2008). CUAHSI
Community Observations Data Model (ODM) Version 1.1. 1
Design Specifications.

[29] J. S., Horsburgh & D. G., Tarboton, D. R., Maidment & I.,
Zaslavsky (2008). “A relational model for environmental and
water resources data.” Water Resources Research, Vol. 44 (2008).

[30] M., Stonebraker & U., Cetintemel (2005). “One Size Fits All:
An Idea Whose Time has Come and Gone”. In Proceedings of
the International Conference on Data Engineering (ICDE),
2005.

[31] Cai, J., Kapila, R. and Pal, G. (2000). HMVC: The layered
pattern for developing strong client tiers. [online] Available at:
http://www.javaworld.com/article/2076128/design-patterns/h
mvc--the-layered-pattern-for-developing-strong-client-tiers.ht
ml [Accessed 17 Jan. 2015].

[32] B., Cogan (2010). HMVC: an Introduction and Application -
Tuts+ Code Tutorial. [online] Code Tuts+. Available at:
http://code.tutsplus.com/tutorials/hvmc-an-introduction-and-a
pplication--net-11850 [Accessed 17 Jan. 2015].

[33] W., Crow (2012). Hierarchical Model-View-Controller
(HMVC): Planning for the Future. [online] Available at:
http://somethingstatic.com/hierarchical-model-view-controller
-planning-future/ [Accessed 17 Jan. 2015].

[34] B., Hamilton (1996). A compact representation of units.
Hewlett-Packard Laboratories, Technical Publications
Department.

[35] A., Thompson and B. N., Taylor (2008), Guide for the Use of
the International System of Units (SI) NIST Special Publication
811, 2008 Edition (version 3.0). [Online] Available:
http://physics.nist.gov/SP811 [Saturday, 24-Jan-2015 22:46:15
EST]. National Institute of Standards and Technology,
Gaithersburg, MD.

10 Paul Celicourt and Michael Piasecki: An IEEE 1451.0-based Platform-Independent TEDS Creator Using

Open Source Software Components

[36] G. S., Novak (1995). Conversion of units of measurement.
Software Engineering, IEEE Transactions on, 21(8), 651-661.

[37] Hu, P., Robinson, R., & Indulska, J. (2007). Sensor standards:
Overview and experiences. In Proceedings of the 3rd
International Conference on Intelligent Sensors, Sensor
Networks and Information Processing ISSNIP’07.

[38] R. L., Oostdyk, C. T., Mata & J. M., Perotti (2006). A Kennedy
Space Center implementation of IEEE 1451 networked smart
sensors and lessons learned. In Aerospace Conference, 2006
IEEE (pp. 20-pp). IEEE.

[39] Zaslavsky, I., Valentine, D., Maidment, D., Tarboton, D. G.,
Whiteaker, T., Hooper, R., & Rodriguez, M. (2009). The
evolution of the CUAHSI Water Markup Language (WaterML).
In EGU General Assembly Conference Abstracts (Vol. 11, p.
6824).

[40] Valentine, D., Zaslavsky, I., Whitenack, T., & Maidment, D. R.
(2007). Design and implementation of CUAHSI WATERML
and WaterOneFlow Web services. In Proceedings of the
Geoinformatics 2007 Conference, San Diego, California (pp.
5-3).

[41] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994).
Design patterns: elements of reusable object-oriented software.
Pearson Education.

[42] J. Sadler, S. Bolster, D. Ames and E. Nelson (2013).
Internationalizing HydroServer - Multilingual Support for
Water Data Sharing. In: CUAHSI conference on
Hydroinformatics and Modeling. [online] Available at:
https://www.cuahsi.org/PageFiles/2013PosterAbstracts.pdf
[Accessed 25 Jan. 2015].

[43] D. G. Tarboton, J. S. Horsburgh, D. R. Maidment, T. Whiteaker,
I. Zaslavsky, M. Piasecki, J. Goodall, D. Valentine, and T.
Whitenack, "Development of a community hydrologic
information system," in 18th World IMACS Congress and
MODSIM09 International Congress on Modelling and
Simulation, 2009, pp. 988-994.

[44] Barrero, F., Toral, S., Vargas, M., & Becerra, J. (2012).
Networked Electronic Equipments Using the IEEE 1451
Standard—VisioWay: A Case Study in the ITS Area.
International Journal Of Distributed Sensor Networks, 2012,
1-12. doi:10.1155/2012/467124

[45] T. A. dos Santos Filho, A. C. R. da Silva, A. Luiz, A. Nogueira,
S. R. Rossi, E. A. Batista (2010). Descricao Dos Teds Para O
Controle De Motores De Passo Em Conformidade Com Do
Padrao IEEE 1451. [online]
http://www.eletrica.ufpr.br/anais/cba/2010/Artigos/65581_1.p
df [Accessed 01-29-2015]

[46] K. Lee, A Smart Transducer Interface Standard for Sensors and
Actuators, The Industrial Information Technology Handbook,
Zurawski R. (Ed.), CRC Press, Boca Raton, FL, 2004

[47] Ilyas, M., & Mahgoub, I. (Eds.). (2004). Handbook of sensor
networks: compact wireless and wired sensing systems. CRC
press.

[48] National Instruments, (2006). Sensor Calibration with TEDS
Technology. [online] Available at:
http://www.ni.com/white-paper/4043/en/ [Accessed 29 Jan.
2015].

[49] N. Rappin and R. Dunn, wxPython in action. Greenwich, Conn.:
Manning, 2006.

[50] M. Summerfield, Rapid GUI programming with Python and Qt.
Upper Saddle River, NJ: Prentice Hall, 2008.

[51] Sasine, J. M., & Toal, R. J. (1995, November). Implementing
the model-view-controller paradigm in Ada 95. In Proceedings
of the conference on TRI-Ada'95: Ada's role in global markets:
solutions for a changing complex world (pp. 202-211). ACM.

[52] A. Kumar, V. Srivastava, M. Singh and G. Hancke, 'Current
Status of the IEEE 1451 Standard Based Sensor Applications',
IEEE Sensors Journal, pp. 1-1, 2014.

[53] Fadzil, M. H., Abas, M. A., & Hakiim, A. K. (2010, April).
Development of Environmental Monitoring Data Management
System using OSS Python. InProceeding of the International
Conference on Electrical and Computer Engineering.

[54] Freescale Semiconductor (2010). 'Integrated Silicon Pressure
Sensor On-Chip Signal Conditioned, Temperature
Compensated and Calibrated', 2010. [Online]. Available:
http://cache.freescale.com/files/sensors/doc/data_sheet/MPX5
050.pdf. [Accessed: 04- Feb- 2015].

[55] Kamala, J. and Umamaheswari, B. “IEEE 1451.0-2007
compatible smart sensor readout with error compensation using
FPGA”, International Journal of Sensors and Transducers, Vol.
102, Issue 3, pp. 10-21, 2009 (Elsevier Publishers).

[56] R. J. Costa, G. R. Alves, and M. Zenha-Rela, “Extending the
IEEE 1451.0 Std. to serve distributed weblab architectures,“ in
1st Experiment@ International Conference (exp.at’11),
Calouste Gulbenkian Foundation, Lisboa-Portugal, 2011.

[57] G. Giorgi and C. Narduzzi, “Instrumentation electronic data
sheets: IEEE 1451-like extension to measuring systems,
“Instrumentation and Measurement Technology Conference
(I2MTC), 2012 IEEE International, 2012.

[58] Almoradie, A., Popescu, I., Jonoski, A., & Solomatine, D.
(2013). Web Based Access to Water Related Data Using OGC
Water ML 2.0. Specialissue, 3(3).
doi:10.14569/specialissue.2013.030310

[59] P. Taylor, S. Cox, G. Walker, D. Valentine and P. Sheahan,
'WaterML2.0: development of an open standard for
hydrological time-series data exchange', Journal of
Hydroinformatics, vol. 16, no. 2, p. 425, 2014.

[60] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E.
(2002). Wireless sensor networks: a survey. Computer
networks, 38(4), 393-422.

[61] D., Wobschall (2008). Networked sensor monitoring using the
universal IEEE 1451 standard. Instrumentation &
Measurement Magazine, IEEE, 11(2), 18-22.

[62] Ma, A. Cherian and D. Wobschall, 'IEEE 1451 Development
Kit Description', Esensors Inc., 2013. [Online]. Available:
http://eesensors.com/media/wysiwyg/pdf/1451_manual.pdf.
[Accessed: 12- Feb- 2015].

[63] IEEE Standard 1451.4 (2004) IEEE Standard for a Smart
Transducer Interface for Sensors and Actuators: Mixed-Mode
Communication Protocols and Transducer Electronic Data
Sheet (TEDS) Formats, IEEE Standard 1451.4-2004.

[64] Eccles, L. (1999). IEEE-1451.2 Engineering Units Conversion
Algorithm. Sensors Magazine, [online] (Volume 16, No. 5).
Available at:
http://archives.sensorsmag.com/articles/0599/0599_p107/inde
x.htm [Accessed 30 Jan. 2015].

 International Journal of Sensors and Sensor Networks 2015; 3(1): 1-11 11

[65] Botts, M. (2002). Sensor Model Language (SensorML) for
In-situ and Remote Sensors IPR. OpenGIS Project Document.

[66] Reichardt, M. (2005). Sensor web enablement: An OGC white
paper. Open Geospatial Consortium (OCG).

[67] M. Botts and L. McKee, 'A Sensor Model Language: Moving
Sensor Data onto the Internet | Sensors', Sensors Magazine,
2003. [Online]. Available:
http://www.sensorsmag.com/networking-communications/a-se
nsor-model-language-moving-sensor-data-internet-967.
[Accessed: 14- Feb- 2015].

