

International Journal of Systems Science and Applied Mathematics
2023; 8(2): 23-30

http://www.sciencepublishinggroup.com/j/ijssam

doi: 10.11648/j.ijssam.20230802.12

ISSN: 2575-5838 (Print); ISSN: 2575-5803 (Online)

An Analysis of Solutions of Nonlinear Equations Using AI
Inspired Mathematical Packages

Isaac Azure

Department of Computer Science, Regentropfen College of Applied Sciences, Bolgatanga, Ghana

Email address:

To cite this article:
Isaac Azure. An Analysis of Solutions of Nonlinear Equations Using AI Inspired Mathematical Packages. International Journal of Systems

Science and Applied Mathematics. Vol. 8, No. 12, 2023, pp. 23-30. doi: 10.11648/j.ijssam.20230802.12

Received: August 11, 2023; Accepted: August 29, 2023; Published: September 8, 2023

Abstract: In the era of Artificial Intelligence (AI), achieving precise solutions for nonlinear equations has been considerably

streamlined, thanks to the advancement of various mathematical tools designed for numerical computations. However, as the

utilization of these mathematical software continues to rise, researchers are keen to ascertain the optimal choice among these

tools based on their outcome when applied to solving nonlinear equations. This study addresses this question by undertaking a

comparative analysis of three prominent mathematical software packages Python, Scilab, and MATLAB using two numerical

approaches: Newton-Raphson and Secant. By employing the Newton-Raphson and Secant methods to solve five benchmark

problems, this paper assesses the performance of the aforementioned mathematical tools. Notably, the outcomes underscore the

competence of all three software options in yielding suitable approximations of the problem's root solutions. In particular,

Python stands out for its ability to achieve this while utilizing the fewest iterations and minimizing computational time. As a

result, among the three tools investigated, Python emerges as the most favorable choice, considering its efficiency and

accuracy. Furthermore, this research validates the robustness of the Newton-Raphson approach over the Secant method, given

its capability to efficiently converge to the solutions with the minimal iteration count across the benchmark problems. This

finding highlights the superiority of the Newton-Raphson method as a more efficient and reliable technique for solving the

considered benchmark problems.

Keywords: Nonlinear Equations, Artificial Intelligence (AI), MATLAB, SCILAB, Python, Secant Method,

Newton Raphson Method

1. Introduction

Finding solutions to mathematical problems necessitates

the use of the most accurate and robust methods, and now,

with the presence of Artificial Intelligence (IA), there are

several software tools capable of solving these mathematics

problems with ease provided the appropriate code is designed

for the tool in question. The following are some of the most

important considerations when using mathematical software

to solve a mathematical problem:

1. How well is the software able to give the right answer

to the problem under consideration?

2. In the case of numerical methods, the interest will be to

know how many iterations are needed to arrive at a

solution using the given mathematical software?

3. What is the computational time required to reach

solution using a given method with the help of the

mathematical software?

The difficulties of mathematics are simply due to the wide

number of problems that may be modeled into mathematical

problems, each of which requires a different strategy to solve.

A linear equation, a nonlinear equation, a system of linear

equations, or a system of nonlinear equations will invariably

come from the equations formulated as a result of modeling a

real-life problem [2, 6]. To solve, each of these equations

will necessitate the use of the most appropriate mathematical

approach and instrument.

The nonlinear equation was the focus of this study.

Nonlinear equations are mathematical equations that have at

least one nonlinear term, making them more difficult to solve

than linear equations. When solving nonlinear equations,

which can be highly complicated, numerical methods are

used, which normally require an initial guess [3, 16].

A related study examined five numerical approaches for

24 Isaac Azure: An Analysis of Solutions of Nonlinear Equations Using AI Inspired Mathematical Packages

solving non-linear equations after their answers were

manually obtained. The Bisection method, Newton Raphson

method, Regula-Falsi method, Secant method, and Fixed-

Point Iteration method were all compared. The researchers

created a manual computing algorithm for each method and

used it to solve a root-finding problem manually using a TI-

inspire instrument. All methods converged to an exact

solution, but the Bisection method converged at the 14th

iteration, the Fixed Point Iterative Method at the 7th iteration,

the Secant method at the 5th iteration, and the Regula Falsi

and Newton Raphson methods at the 2nd iteration [2, 16].

In another related study, the problem of finding roots of

nonlinear equations, which arose in a variety of practical

applications in science and engineering, was thoroughly

examined. The method of locating a root is known as root-

finding, and the value of x that fulfills f(x) = 0 is known as a

root of f(x) = 0. The research compared the rate of

convergence of two common root-finding methods, Bisection

and Newton-Rhapson. The authors utilized MATLAB

software to locate the root of a particular function and

compare the results of the two methods. The article

concludes that Newton's approach is more successful than the

Bisection method [1].

Another study presented four numerical methods which

were applied to solve nonlinear equations and the Newton

Raphson method was recommended as the best method for

solving the nonlinear equations of the form ���� = 0

because of its high rate of convergence [5].

In all of the above researches carried out, the MATLAB

software was used to estimate the root of nonlinear equations.

This research aimed at comparing the solutions of nonlinear

equations using the Python, Scilab and MATLAB software.

According to Downey, A. B., Python is a widely-used

high-level programming language known for its simplicity,

readability, and versatility [4]. It was created by Guido van

Rossum and first released in 1991. Over the years, Python

has evolved into a powerful language with a large and active

community of developers. Python's origin can be traced back

to the late 1980s when Guido van Rossum began working on

a new programming language during Christmas holidays in

December 1989. He named it "Python" after the British

comedy series "Monty Python's Flying Circus" [14]. With the

many literature around the Python software, it was prudent to

find out how well this software can perform compared to

others such as MATLAB and Scilab.

On the other hand, Scilab is an open-source numerical

computing software package that provides a powerful

environment for scientific and engineering computations [17].

It is often used for tasks such as mathematical modeling,

simulation, data analysis, and visualization [20]. Scilab was

developed to provide a free and open alternative to

commercial numerical computing environments like

MATLAB [13, 17]. Though the Scilab is an open-source

mathematical software, many researchers prefer using other

software and this research sought to find out how accurate it

is in computing the roots of a nonlinear equation.

Unlike the Python software, the MATLAB and Scilab

software have a lot of similarities in their features. MATrix

LABoratory, commonly known as MATLAB is a powerful

and widely used high-level programming language and

numerical computing environment [10]. It was initially

developed in the late 1970s by Cleve Moler, a professor of

mathematics, as a tool to help his students access

mathematical and matrix computations more easily. Since

then, MATLAB has evolved into an indispensable tool for

engineers, scientists, researchers, and educators across

various disciplines. MATLAB is designed to facilitate

numerical computations and data analysis. It excels in

handling matrix operations, linear algebra, optimization,

statistics, and other mathematical tasks, making it

particularly valuable for solving complex mathematical

problems [7, 8, 18].

As this study seek to compare the performance of Python,

Scilab and MATLAB with respect to solving the roots of

nonlinear equations, a related paper compared the

performance and features of the two high-level numerical

computing and modeling software environments: the

commercial MATLAB and the freeware Scilab. The

motivation for the work was to compare these tools for

educational use at the college and university level, but with a

perspective to their professional and scientific use as well.

The paper aimed to provide an objective performance

comparison of the two tools and help the reader to choose

between them. The paper also provided a benchmarking

methodology and original benchmarks to compare the

performances of both calculation tools [12].

2. Objectives of the Study

i. To compare the solutions of nonlinear equations using

different mathematical tools (software).

ii. To assess the speed with which the selected

mathematical tools produce results.

3. Methodology

Two key things were at the core of this research; firstly,

the numerical methods under consideration and secondly the

mathematical tool(s) were used for the computation. This

section gives an overview of numerical methods and

mathematical tools that were adopted for this study.

3.1. Numerical Methods

For the purpose of this study, the Secant method and

Newton Raphson method were adopted for find the roots of

the bench mark nonlinear equations using different

mathematical tools.

3.1.1. Newton Raphson Method

The Newton-Raphson method is an iterative numerical

technique used to find the roots of a real-valued function. It is

based on the idea of approximating the function by its

tangent line at an initial guess and then finding the x-

intercept of that tangent line as an improved approximation

 International Journal of Systems Science and Applied Mathematics 2023; 8(2): 23-30 25

of the root [11, 15].

Theorem 1: Convergence of the Newton-Raphson Method

Suppose ���� is a continuous function and ����� is

continuously differentiable in an open interval containing the

root �. If ���� = 0 and ����� ≠ 0, then the Newton-Raphson

method converges to � quadratically [19].

Let �
 be the � th approximation obtained from the

Newton-Raphson method

� be the exact root

���� be the error function

For each iteration, the error function ���� is approximated

by its tangent line at �

That is;

� = ���
� + ����
�. �� − �
� (1)

At � intercept of the tangent line, � = 0, ℎ���� ��� � =
�
��

⇒ 0 = ���
� + ����
�. ��
�� − �
� (2)

Solving for �
�� in equation (2) above gives the formula

for the Newton Raphson method

�
�� = �
 − �����

������
 (3)

Algorithm

Step 1: Find points � ��� such that � < and

����. �� � < 0

Step 2: Take the initial [�,] and find the next �$ = %�&

'

Step 3: Find ���$� and ����$�

�� = �$ − ���(�

���(�

Step 4: If ����� = 0 then ��is an exact root else �$ = ��

Step 5: Repeat steps 3 and 4 until ���)� = 0 and |���)�| ≤
,��-����

The above algorithm illustrates the procedure involved in

computing the root of a nonlinear equation manually using

the Newton Raphson method.

3.1.2. The Secant Method

The Secant Method is an iterative numerical method used

to approximate the root of a real-valued function. It is an

improvement over the Bisection method as it does not require

an initial interval with opposite signs. Instead, it

approximates the root using two initial points on the graph of

the function [9, 11].

Theorem 2: Convergence of the Secant Method

Suppose ���� is a continuous function and ���� is

continuously differentiable in an open interval containing the

root �. If ���� = 0 and the initial approximations �$ and ��

are sufficiently close to �, then the Secant method generates a

sequence .�
/ that converges to � quadratically [19].

Let �
 be the � th approximation obtained from the

Newton-Raphson method

� be the exact root

���� be the error function

For each iteration, the error function ���� is approximated

by its tangent line at �

The secant method aims to find the root of the function

���� by using the secant line that passes through the two

points 0��
1� − ���
1��2 and ��
 , ���
�� on the graph of

����. The equation of the secant line is given by:

� = ���
1�� + �����.����34�

��1��34
. �� − �
1�� (4)

Since we want to find the value of � when � = 0 (i.e. the

� 5������6� 7� �ℎ� ������ 85��� we set � = 0 and solve for

�:

0 = ���
1�� + �����.����34�

��1��34
. �� − �
1�� (5)

Simplifying the above equation gives us the formula for

�
�� which represents the secant method formula

� = �
 + �����.����1��34�

�����1����34�
 (6)

Algorithm

1. Choose two initial approximations �$ and �� such

that�$ ≠ ��.

2. Evaluate the function at the initial

approximations: ���$� and �����.

3. Calculate the next approximation �' using the Secant

method formula:

�' = �� − ���4�.���41�(�

���4�1���(�

4. Set �$ = �� and �� = �'.

5. Repeat steps 2 to 4 until the desired level of accuracy is

achieved.

3.2. Mathematical Tools (Software) Inspired by Artificial

Intelligence (AI)

The study considered three common mathematical

software mostly used for the computation of solutions of

mathematical problems namely; Python, Scilab and Matlab.

The 2023 versions of these software were adopted for the

study. Codes were written for each of the software to solve

the bench mark nonlinear equations questions listed below:

Problem 1: ���� = �9 − � − 1; �$ = 1, �� = 2

Problem 2: ���� = 2�9 − 2� − 5; �$ = 1, �� = 2

Problem 3: ���� = �9 + 2�' + � − 1; �$ = 0, �� = 1

Problem 4: ���� = 2cos ��� − �; �$ = 1, �� = 2

Problem 5: ���� = 2�' cos��� + 5 sin��� + 3; �$ =
−1, �� = 0

3.2.1. Python Code for Newton Raphson Method

import time

def F(x):

 return x**3 - x - 1

def dF(x):

 return 3*x**2 - 1

def newton_raphson(x0, tol=1e-6, max_iter=1000):

 start_time = time.time()

 x_n = x0

 iterations = 0

26 Isaac Azure: An Analysis of Solutions of Nonlinear Equations Using AI Inspired Mathematical Packages

 while abs(F(x_n)) > tol and iterations < max_iter:

 x_n = x_n - F(x_n) / dF(x_n)

 iterations += 1

 end_time = time.time()

 computational_time = end_time - start_time

 if iterations == max_iter:

 print("Newton-Raphson method did not converge

within the maximum number of iterations.")

 return None, None

 else:

 print("Root:", x_n)

 print("Number of Iterations:", iterations)

 print("Computational Time (seconds):",

computational_time)

 return x_n, iterations

if __name__ == "__main__":

 x0 = 1

 x1 = 2

 root, num_iterations = newton_raphson(x0)

3.2.2. Scilab Code for Newton Raphson Method

function y = F(x)

 y = x^3 - x - 1;

endfunction

function dy = dF(x)

 dy = 3*x^2 - 1;

endfunction

function [root, num_iterations] = newton_raphson(x0, tol,

max_iter)

 tic();

 x_n = x0;

 iterations = 0;

 while abs(F(x_n)) > tol & iterations < max_iter

 x_n = x_n - F(x_n) / dF(x_n);

 iterations = iterations + 1;

 end

 computational_time = toc();

 if iterations == max_iter

 disp("Newton-Raphson method did not converge

within the maximum number of iterations.");

 root = NaN;

 else

 disp("Root:");

 disp(x_n);

 disp("Number of Iterations:");

 disp(iterations);

 disp("Computational Time (seconds):");

 disp(computational_time);

 root = x_n;

 end

endfunction

x0 = 1;

tolerance = 1e-6;

max_iterations = 1000;

[root, num_iterations] = newton_raphson(x0, tolerance,

max_iterations);

3.2.3. Python Code for Secant Method

import time

def F(x):

 return x**3 - x - 1

def secant_method(F, x0, x1, tol, max_iter):

 iter_count = 0

 start_time = time.time()

 while abs(x1 - x0) >= tol and iter_count < max_iter:

 x_next = x1 - F(x1) * (x1 - x0) / (F(x1) - F(x0))

 x0 = x1

 x1 = x_next

 iter_count += 1

 elapsed_time = time.time() - start_time

 if abs(x1 - x0) < tol:

 root = x1

 else:

 root = None

 return root, iter_count, elapsed_time

Initial values

x0 = 1

x1 = 2

tolerance = 1e-6

max_iterations = 100

Find the root using the secant method and measure

computational time

root, iter_count, elapsed_time = secant_method(F, x0, x1,

tolerance, max_iterations)

Display the result

if root is not None:

 print(f"Root: {root:.6f}")

 print(f"F(Root): {F(root):.6f}")

 print(f"Number of Iterations: {iter_count}")

 print(f"Computational Time (seconds):

{elapsed_time:.6f}")

else:

 print("Secant method did not converge within the

specified maximum iterations.")

 International Journal of Systems Science and Applied Mathematics 2023; 8(2): 23-30 27

3.2.4. Scilab Code for Secant Mehtod

function y = F(x)

 y = x^3 - x - 1;

endfunction

function [root, iter_count, elapsed_time] =

secant_method(x0, x1, tol, max_iter)

 iter_count = 0;

 tic();

 while abs(x1 - x0) >= tol && iter_count < max_iter

 x_next = x1 - F(x1) * (x1 - x0) / (F(x1) - F(x0));

 x0 = x1;

 x1 = x_next;

 iter_count = iter_count + 1;

 end

 elapsed_time = toc();

 if abs(x1 - x0) < tol

 root = x1;

 else

 root = nan;

 end

endfunction

// Initial values

x0 = 1;

x1 = 2;

tolerance = 1e-6;

max_iterations = 100;

// Find the root using the secant method and measure

computational time

[root, iter_count, elapsed_time] = secant_method(x0, x1,

tolerance, max_iterations);

// Display the result

disp("Root: " + string(root));

disp("F(Root): " + string(F(root)));

disp("Number of Iterations: " + string(iter_count));

disp("Computational Time (seconds): " +

string(elapsed_time));

3.2.5. Matlab Code for Secant Method

% Initial values

x0 = 1;

x1 = 2;

tolerance = 1e-6;

max_iterations = 100;

% Find the root using the secant method and measure

computational time

[root, iter_count, elapsed_time] = secant_method(@F, x0,

x1, tolerance, max_iterations);

% Display the result

fprintf('Root: %.6f\n', root);

fprintf('F(Root): %.6f\n', F(root));

fprintf('Number of Iterations: %d\n', iter_count);

fprintf('Computational Time (seconds): %.6f\n',

elapsed_time);

function y = F(x)

 y = x^3 - x - 1;

end

function [root, iter_count, elapsed_time] =

secant_method(F, x0, x1, tol, max_iter)

 iter_count = 0;

 tic();

 while abs(x1 - x0) >= tol && iter_count < max_iter

 x_next = x1 - F(x1) * (x1 - x0) / (F(x1) - F(x0));

 x0 = x1;

 x1 = x_next;

 iter_count = iter_count + 1;

 end

 elapsed_time = toc();

 if abs(x1 - x0) < tol

 root = x1;

 else

 root = NaN;

 end

end

3.2.6. MATLAB Code for Newton-Raphson Method

function y = F(x)

 y = x^3 - x - 1;

end

function dy = dF(x)

 dy = 3*x^2 - 1;

end

function [root, num_iterations] = newton_raphson(x0, tol,

max_iter)

 tic;

 x_n = x0;

 iterations = 0;

 while abs(F(x_n)) > tol && iterations < max_iter

 x_n = x_n - F(x_n) / dF(x_n);

 iterations = iterations + 1;

 end

 computational_time = toc;

 if iterations == max_iter

28 Isaac Azure: An Analysis of Solutions of Nonlinear Equations Using AI Inspired Mathematical Packages

 disp('Newton-Raphson method did not converge

within the maximum number of iterations.');

 root = NaN;

 else

 disp('Root:');

 disp(x_n);

 disp('Number of Iterations:');

 disp(iterations);

 disp('Computational Time (seconds):');

 disp(computational_time);

 root = x_n;

 end

end

x0 = 1;

tolerance = 1e-6;

max_iterations = 1000;

[root, num_iterations] = newton_raphson(x0, tolerance,

max_iterations);

4. Results and Discussions

The results from this research were obtained using a

computer with the following specification:

1. Processor: Intel® Core™ i5 – 3427U CPU®1.80GHz

2.30GHz

2. Installed RAM: 8.00GB (787 GB usable)

3. System type: 64 – bit operating system, 64 – based

processor

A summary of results is displayed in the tables 1.0 and 2.0

below, with Table 1.0 showing the numerical results of roots

of nonlinear equations using the Secant method with the help

of the Python, Scilab and MATLAB softwares. Included in

the tables are results of manual computations of the same

nonlinear equations, the time required for by each software to

produce answers and the number of iterations needed to

arrive at an approximated solution(root).

The results in Table 1.0 below showed that given the

bench mark problems considered in this study, the Python,

Scilab, MATLAB and manual computation will produce the

same estimated root and number of iterations for each

problem. However, the computational time made the

difference between the three mathematical tools. In Table 1.0

the Secant method was used and the computational time

required to reach solution for the Python software was

approximately zero for all the bench mark problems under

consideration while that of the Scilab and MATLAB varied.

For example, from the table, the Python software produced

result in zero second for Problem 1 while the Scilab amd

MATLAB produced results in 0.0021639 seconds and

0.002297seconds respectively for the same problem.

In the case of Problem 2, the Python software solved it in

zero seconds while MATLAB and Scilab solved the same

problem in 0.000402 seconds and 0.0010286 seconds

respectively. An observation from Table 1.0 shows that the

Scilab software was able to solve problems 1, 3 and 5 with

less computational time compared to MATLAB while

MATLAB on the other hand was able to solve problems 2

and 3 with less computational time compared to Scilab.

Another observation made from the Table 1.0 is that

Problems 1, 2 and 3 which are algebraic in nature where all

solved in seven iterations while that of Problems 4 and 5

which are trigonometric in nature where solved in 4 and 5

iterations respectively.

Table 2.0 is a summary of results when the Newton-

Raphson method was applied to solve the bench mark

problems with the help of Python, Scilab and Matlab

softwares. Data in Table 2.0 showed that all three

mathematical tools where able to solve the bench mark

problems accurately. The Python software recorded the least

number of iterations for Problems 1 and 2 while Scilab and

MATLAB recorded the same number of iterations for all five

problems. The Python softeware had the least computational

time of approximately 0 seconds. MATLAB solved Problems

1, 2 and 4 faster than Scilab while Scilab was able to solve

Problems 3 and 5 faster than MATLAB.

Comparing the results in Table 1.0 and Table 2.0 it is

observed that the Newton-Raphson method solved the bench

mark problems faster than the Secant method.

Table 1. Results of mathematical softwares using the secant method.

Problem Solution Approach Approximated Root Number of Iterations Computational Time Initial Guess Values

Problem 1

Manual Computation 1.32471 7 (1, 2)

Python 1.324718 7 0.000000 (1, 2)

Scilab 1.324718 7 0.0021639 (1, 2)

Matlab 1.324718 7 0.002297 (1, 2)

Problem 2

Manual Computation 1.6006 7 (1, 2)

Python 1.600599 7 0.000000 (1, 2)

Scilab 1.6005985 7 0.0010286 (1, 2)

Matlab 1.600599 7 0.000402 (1, 2)

Problem 3

Manual Computation 0.4655 7 (0, 1)

Python 0.465571 7 0.000000 (0, 1)

Scilab 0.4655712 7 0.0005137 (0, 1)

Matlab 0.465571 7 0.001279 (0, 1)

Problem 4

Manual Computation 1.0299 4 (0, 1)

Python 1.029867 4 0.000000 (1, 2)

Scilab 1.029867 4 0.0014337 (1, 2)

Matlab 1.029867 4 0.000883 (1, 2)

 International Journal of Systems Science and Applied Mathematics 2023; 8(2): 23-30 29

Problem Solution Approach Approximated Root Number of Iterations Computational Time Initial Guess Values

Problem 5

Manual Computation -0.9421 5 (-1, 0)

Python -0.942076 5 0.000000 (-1, 0)

Scilab -0.942076 5 0.0005727 (-1, 0)

Matlab -0.942076 5 0.001345 (-1, 0)

Table 2. Results of mathematical softwares using the newton raphson method.

Problem Solution Approach Approximated Root Number of Iterations Computational Time Initial Guess Value

Problem 1

Manual Computation 1.3247 4 1.5

Python 1.324718 3 0.000000 1.5

Scilab 1.324718 4 0.0050916 1.5

Matlab 1.324718 4 0.002314 1.5

Problem 2

Manual Computation 1.6006 4 1.5

Python 1.600599 3 0.000000 1.5

Scilab 1.600599 5 0.0004007 1.5

Matlab 1.600599 5 0.000156 1.5

Problem 3

Manual Computation 0.4656 3 0.5

Python 0.465571 3 0.000000 0.5

Scilab 0.465571 3 0.0006141 0.5

Matlab 0.465571 3 0.003154 0.5

Problem 4

Manual Computation 1.0299 4 0.5

Python 1.029867 4 0.0000000 0.5

Scilab 1.029867 4 0.0007773 0.5

Matlab 1.029867 4 0.000312 0.5

Problem 5

Manual Computation -0.9421 3 -0.5

Python -0.942076 3 0.000000 -0.5

Scilab -0.942076 3 0.0004461 -0.5

Matlab -0.942076 3 0.001140 -0.5

5. Conclusion and Recommendations

From the results obtained in this research, it can be

concluded that the three mathematical tools namely; Python,

Scilab and MATLAB gave an accurate estimation of the

roots of the nonlinear equations. The algorithms for both the

Secant and Newton-Raphson methods considered in this

study worked perfectly well using the mathematical tools,

with the Newton-Raphson method recording the least number

of iterations and the least computational time. This is indeed

an indication that the Newton-Raphson method is more

robust compared to the Secant method.

Another interesting discovery in this research is that

Python, Scilab and MATLAB are able to solve algebraic

nonlinear equations faster than that of trigonometric

nonlinear equations.

A comparison of the three mathematical tools showed

that the Python software required approximately zero

seconds to solve any of the bench mark problems using

either the Secant or Newton Raphson methods. Though all

the three mathematical tools solved problems with the same

number of iterations, Python was able to solve Problem 1

and Problem 2 with the least number of iterations which

signifies its ability solve nonlinear equations with the least

computational time and number of iterations. It can

therefore be concluded that based on the bench mark

problems considered in this research, the Python software is

the most recommended for the estimation of the roots of

nonlinear equations.

References

[1] Ahmad, A. G. (2015). Comparative Study of Bisection and
Newton-Raphson Methods of Root-Finding Problems.
International Journal of Mathematics Trends and Technology,
19 (2).

[2] Azure, I., Aloliga, G., & Doabil, L. (2019). Comparative
Study of Numerical Methods for Solving Non-linear
Equations Using Manual Computation. Mathematics Letters, 5
(4), 41-46. doi: 10.11648/j.ml.20190504.11.

[3] Biswa, N. D. (2012). Lecture Notes on Numerical Solution of
Root-Finding Problems MATH 435.

[4] Downey, A. B. (2015). Think Python: How to Think Like a
Computer Scientist. Green Tea Press. Available online:
http://greenteapress.com/thinkpython2/html/index.html

[5] Ebelechukwu, O. C., Johnson, B. O., Michael, A. I., & Fidelis,
A. T. (2018). Comparison of Some Iterative Methods of
Solving Nonlinear Equations. International Journal of
Theoretical and Applied Mathematics, 4 (2), 22.

[6] Ehiwario, J. C., & Aghamie, S. O. (2014). Comparative Study of
Bisection, Newton-Raphson and Secant Methods of Root-Finding
Problems. IOSR Journal of Engineering (IOSRJEN), 4 (04).

[7] Hanselman, D. C., & Littlefield, B. L. (2018). The Art of
MATLAB. Cambridge University Press.

[8] Hahn, B., & Valentine, D. T. (2020). Essential MATLAB for
Engineers and Scientists. Academic Press.

30 Isaac Azure: An Analysis of Solutions of Nonlinear Equations Using AI Inspired Mathematical Packages

[9] Kazemi, M., Deep, A., & Nieto, J. (2023). An existence result
with numerical solution of nonlinear fractional integral
equations. Mathematical Methods in the Applied Sciences.

[10] King, A. P., & Aljabar, P. (2017). MATLAB Programming for
Biomedical Engineers and Scientists. Academic Press.

[11] Mahdy, A. M. S. (2022). A numerical method for solving the
nonlinear equations of Emden-Fowler models. Journal of
Ocean Engineering and Science.

[12] Mikac, M., Logožar, R., & Horvatić, M. (2022). Performance
Comparison of Open Source and Commercial Computing
Tools in Educational and Other Use—Scilab vs. MATLAB.
Tehnički glasnik, 16 (4), 509-518.

[13] Nagar, S. (2021). Introduction to Scilab. Notion Press.

[14] Python Software Foundation. (2021). Python 3.10.0
Documentation. Retrieved from https://docs.python.org/3/

[15] RASHEED, M., Rashid, A., Rashid, T., Hamed, S. H. A., &
AL-Farttoosi, O. A. A. (2021). Application of Numerical
Analysis for Solving Nonlinear Equation. Journal of Al-

Qadisiyah for computer science and mathematics, 13 (3),
Page-70.

[16] RASHEED, M., SHIHAB, S., Rashid, A., Rashid, T., Hamed,
S. H. A., & Aldulaimi, M. A. H. (2021). An Iterative Method
to Solve Nonlinear Equation. Journal of Al-Qadisiyah for
Computer Science and Mathematics, 13 (2), Page-87.

[17] Sheth, T. (2018). Scilab: A Practical Introduction to
Programming and Problem Solving. CRC Press.

[18] Sizemore, J., & Mueller, J. P. (2019). MATLAB For Dummies.
Wiley.

[19] Srivastava, R. B., & Srivastava, S. (2011). Comparison of
Numerical Rate of Convergence of Bisection, Newton-
Raphson's and Secant Methods. Journal of Chemical,
Biological and Physical Sciences (JCBPS), 2 (1), 472.

[20] Vishwanatha, J. S., Swamy, R. S., Mahesh, G., & Gouda, H.
V. (2023). A toolkit for computational fluid dynamics using
spectral element method in Scilab. Materials Today:
Proceedings.

