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Abstract: In the era of Artificial Intelligence (AI), achieving precise solutions for nonlinear equations has been considerably 

streamlined, thanks to the advancement of various mathematical tools designed for numerical computations. However, as the 

utilization of these mathematical software continues to rise, researchers are keen to ascertain the optimal choice among these 

tools based on their outcome when applied to solving nonlinear equations. This study addresses this question by undertaking a 

comparative analysis of three prominent mathematical software packages Python, Scilab, and MATLAB using two numerical 

approaches: Newton-Raphson and Secant. By employing the Newton-Raphson and Secant methods to solve five benchmark 

problems, this paper assesses the performance of the aforementioned mathematical tools. Notably, the outcomes underscore the 

competence of all three software options in yielding suitable approximations of the problem's root solutions. In particular, 

Python stands out for its ability to achieve this while utilizing the fewest iterations and minimizing computational time. As a 

result, among the three tools investigated, Python emerges as the most favorable choice, considering its efficiency and 

accuracy. Furthermore, this research validates the robustness of the Newton-Raphson approach over the Secant method, given 

its capability to efficiently converge to the solutions with the minimal iteration count across the benchmark problems. This 

finding highlights the superiority of the Newton-Raphson method as a more efficient and reliable technique for solving the 

considered benchmark problems. 

Keywords: Nonlinear Equations, Artificial Intelligence (AI), MATLAB, SCILAB, Python, Secant Method,  

Newton Raphson Method 

 

1. Introduction 

Finding solutions to mathematical problems necessitates 

the use of the most accurate and robust methods, and now, 

with the presence of Artificial Intelligence (IA), there are 

several software tools capable of solving these mathematics 

problems with ease provided the appropriate code is designed 

for the tool in question. The following are some of the most 

important considerations when using mathematical software 

to solve a mathematical problem: 

1. How well is the software able to give the right answer 

to the problem under consideration? 

2. In the case of numerical methods, the interest will be to 

know how many iterations are needed to arrive at a 

solution using the given mathematical software? 

3. What is the computational time required to reach 

solution using a given method with the help of the 

mathematical software? 

The difficulties of mathematics are simply due to the wide 

number of problems that may be modeled into mathematical 

problems, each of which requires a different strategy to solve. 

A linear equation, a nonlinear equation, a system of linear 

equations, or a system of nonlinear equations will invariably 

come from the equations formulated as a result of modeling a 

real-life problem [2, 6]. To solve, each of these equations 

will necessitate the use of the most appropriate mathematical 

approach and instrument. 

The nonlinear equation was the focus of this study. 

Nonlinear equations are mathematical equations that have at 

least one nonlinear term, making them more difficult to solve 

than linear equations. When solving nonlinear equations, 

which can be highly complicated, numerical methods are 

used, which normally require an initial guess [3, 16]. 

A related study examined five numerical approaches for 
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solving non-linear equations after their answers were 

manually obtained. The Bisection method, Newton Raphson 

method, Regula-Falsi method, Secant method, and Fixed-

Point Iteration method were all compared. The researchers 

created a manual computing algorithm for each method and 

used it to solve a root-finding problem manually using a TI-

inspire instrument. All methods converged to an exact 

solution, but the Bisection method converged at the 14th 

iteration, the Fixed Point Iterative Method at the 7th iteration, 

the Secant method at the 5th iteration, and the Regula Falsi 

and Newton Raphson methods at the 2nd iteration [2, 16]. 

In another related study, the problem of finding roots of 

nonlinear equations, which arose in a variety of practical 

applications in science and engineering, was thoroughly 

examined. The method of locating a root is known as root-

finding, and the value of x that fulfills f(x) = 0 is known as a 

root of f(x) = 0. The research compared the rate of 

convergence of two common root-finding methods, Bisection 

and Newton-Rhapson. The authors utilized MATLAB 

software to locate the root of a particular function and 

compare the results of the two methods. The article 

concludes that Newton's approach is more successful than the 

Bisection method [1]. 

Another study presented four numerical methods which 

were applied to solve nonlinear equations and the Newton 

Raphson method was recommended as the best method for 

solving the nonlinear equations of the form ���� = 0 

because of its high rate of convergence [5]. 

In all of the above researches carried out, the MATLAB 

software was used to estimate the root of nonlinear equations. 

This research aimed at comparing the solutions of nonlinear 

equations using the Python, Scilab and MATLAB software. 

According to Downey, A. B., Python is a widely-used 

high-level programming language known for its simplicity, 

readability, and versatility [4]. It was created by Guido van 

Rossum and first released in 1991. Over the years, Python 

has evolved into a powerful language with a large and active 

community of developers. Python's origin can be traced back 

to the late 1980s when Guido van Rossum began working on 

a new programming language during Christmas holidays in 

December 1989. He named it "Python" after the British 

comedy series "Monty Python's Flying Circus" [14]. With the 

many literature around the Python software, it was prudent to 

find out how well this software can perform compared to 

others such as MATLAB and Scilab. 

On the other hand, Scilab is an open-source numerical 

computing software package that provides a powerful 

environment for scientific and engineering computations [17]. 

It is often used for tasks such as mathematical modeling, 

simulation, data analysis, and visualization [20]. Scilab was 

developed to provide a free and open alternative to 

commercial numerical computing environments like 

MATLAB [13, 17]. Though the Scilab is an open-source 

mathematical software, many researchers prefer using other 

software and this research sought to find out how accurate it 

is in computing the roots of a nonlinear equation. 

Unlike the Python software, the MATLAB and Scilab 

software have a lot of similarities in their features. MATrix 

LABoratory, commonly known as MATLAB is a powerful 

and widely used high-level programming language and 

numerical computing environment [10]. It was initially 

developed in the late 1970s by Cleve Moler, a professor of 

mathematics, as a tool to help his students access 

mathematical and matrix computations more easily. Since 

then, MATLAB has evolved into an indispensable tool for 

engineers, scientists, researchers, and educators across 

various disciplines. MATLAB is designed to facilitate 

numerical computations and data analysis. It excels in 

handling matrix operations, linear algebra, optimization, 

statistics, and other mathematical tasks, making it 

particularly valuable for solving complex mathematical 

problems [7, 8, 18]. 

As this study seek to compare the performance of Python, 

Scilab and MATLAB with respect to solving the roots of 

nonlinear equations, a related paper compared the 

performance and features of the two high-level numerical 

computing and modeling software environments: the 

commercial MATLAB and the freeware Scilab. The 

motivation for the work was to compare these tools for 

educational use at the college and university level, but with a 

perspective to their professional and scientific use as well. 

The paper aimed to provide an objective performance 

comparison of the two tools and help the reader to choose 

between them. The paper also provided a benchmarking 

methodology and original benchmarks to compare the 

performances of both calculation tools [12]. 

2. Objectives of the Study 

i. To compare the solutions of nonlinear equations using 

different mathematical tools (software). 

ii. To assess the speed with which the selected 

mathematical tools produce results. 

3. Methodology 

Two key things were at the core of this research; firstly, 

the numerical methods under consideration and secondly the 

mathematical tool(s) were used for the computation. This 

section gives an overview of numerical methods and 

mathematical tools that were adopted for this study. 

3.1. Numerical Methods 

For the purpose of this study, the Secant method and 

Newton Raphson method were adopted for find the roots of 

the bench mark nonlinear equations using different 

mathematical tools. 

3.1.1. Newton Raphson Method 

The Newton-Raphson method is an iterative numerical 

technique used to find the roots of a real-valued function. It is 

based on the idea of approximating the function by its 

tangent line at an initial guess and then finding the x-

intercept of that tangent line as an improved approximation 
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of the root [11, 15]. 

Theorem 1: Convergence of the Newton-Raphson Method 

Suppose ����  is a continuous function and �����  is 

continuously differentiable in an open interval containing the 

root �. If ���� = 0 and ����� ≠ 0, then the Newton-Raphson 

method converges to � quadratically [19]. 

Let �
  be the � th approximation obtained from the 

Newton-Raphson method 

� be the exact root 

���� be the error function 

For each iteration, the error function ���� is approximated 

by its tangent line at �
 

That is; 

� = ���
� + ����
�. �� − �
�              (1) 

At �  intercept of the tangent line, � = 0, ℎ���� ��� � =
�
�� 

⇒ 0 = ���
� + ����
�. ��
�� − �
�         (2) 

Solving for �
�� in equation (2) above gives the formula 

for the Newton Raphson method 

�
�� = �
 − �����

������
                    (3) 

Algorithm 

Step 1: Find points � ���   such that � <   and 

����. �� � < 0 

Step 2: Take the initial [�,  ] and find the next �$ = %�&

'
 

Step 3: Find ���$� and ����$� 

�� = �$ − ���(�

���(�
  

Step 4: If ����� = 0 then ��is an exact root else �$ = �� 

Step 5: Repeat steps 3 and 4 until ���)� = 0 and |���)�| ≤
,��-���� 

The above algorithm illustrates the procedure involved in 

computing the root of a nonlinear equation manually using 

the Newton Raphson method. 

3.1.2. The Secant Method 

The Secant Method is an iterative numerical method used 

to approximate the root of a real-valued function. It is an 

improvement over the Bisection method as it does not require 

an initial interval with opposite signs. Instead, it 

approximates the root using two initial points on the graph of 

the function [9, 11]. 

Theorem 2: Convergence of the Secant Method 

Suppose ����  is a continuous function and ����  is 

continuously differentiable in an open interval containing the 

root �. If ���� = 0 and the initial approximations �$  and �� 

are sufficiently close to �, then the Secant method generates a 

sequence .�
/ that converges to � quadratically [19]. 

Let �
  be the � th approximation obtained from the 

Newton-Raphson method 

� be the exact root 

���� be the error function 

For each iteration, the error function ���� is approximated 

by its tangent line at �
 

The secant method aims to find the root of the function 

���� by using the secant line that passes through the two 

points 0��
1� − ���
1��2  and ��
 , ���
��  on the graph of 

����. The equation of the secant line is given by: 

� = ���
1�� + �����.����34�

��1��34
. �� − �
1��          (4) 

Since we want to find the value of � when � = 0 (i.e. the 

� 5������6� 7� �ℎ� ������ 85��� we set � = 0 and solve for 

�: 

0 = ���
1�� + �����.����34�

��1��34
. �� − �
1��             (5) 

Simplifying the above equation gives us the formula for 

�
�� which represents the secant method formula 

� = �
 + �����.����1��34�

�����1����34�
                      (6) 

Algorithm 

1. Choose two initial approximations �$  and ��  such 

that�$ ≠ ��. 

2. Evaluate the function at the initial 

approximations: ���$� and �����. 

3. Calculate the next approximation �'  using the Secant 

method formula: 

�' = �� − ���4�.���41�(�

���4�1���(�
  

4. Set �$ = �� and �� = �'. 

5. Repeat steps 2 to 4 until the desired level of accuracy is 

achieved. 

3.2. Mathematical Tools (Software) Inspired by Artificial 

Intelligence (AI) 

The study considered three common mathematical 

software mostly used for the computation of solutions of 

mathematical problems namely; Python, Scilab and Matlab. 

The 2023 versions of these software were adopted for the 

study. Codes were written for each of the software to solve 

the bench mark nonlinear equations questions listed below: 

Problem 1: ���� = �9 − � − 1; �$ = 1, �� = 2 

Problem 2: ���� = 2�9 − 2� − 5; �$ = 1, �� = 2 

Problem 3: ���� = �9 + 2�' + � − 1; �$ = 0, �� = 1 

Problem 4: ���� = 2cos ��� − �; �$ = 1, �� = 2 

Problem 5: ���� = 2�' cos��� + 5 sin��� + 3; �$ =
−1, �� = 0 

3.2.1. Python Code for Newton Raphson Method 

import time 

def F(x): 

    return x**3 - x - 1 

def dF(x): 

    return 3*x**2 - 1 

def newton_raphson(x0, tol=1e-6, max_iter=1000): 

    start_time = time.time() 

     

    x_n = x0 

    iterations = 0 
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    while abs(F(x_n)) > tol and iterations < max_iter: 

        x_n = x_n - F(x_n) / dF(x_n) 

        iterations += 1 

     

    end_time = time.time() 

    computational_time = end_time - start_time 

     

    if iterations == max_iter: 

        print("Newton-Raphson method did not converge 

within the maximum number of iterations.") 

        return None, None 

    else: 

        print("Root:", x_n) 

        print("Number of Iterations:", iterations) 

        print("Computational Time (seconds):", 

computational_time) 

        return x_n, iterations 

 

if __name__ == "__main__": 

    x0 = 1 

    x1 = 2 

    root, num_iterations = newton_raphson(x0) 

3.2.2. Scilab Code for Newton Raphson Method 

function y = F(x) 

    y = x^3 - x - 1; 

endfunction 

 

function dy = dF(x) 

    dy = 3*x^2 - 1; 

endfunction 

 

function [root, num_iterations] = newton_raphson(x0, tol, 

max_iter) 

    tic(); 

     

    x_n = x0; 

    iterations = 0; 

     

    while abs(F(x_n)) > tol & iterations < max_iter 

        x_n = x_n - F(x_n) / dF(x_n); 

        iterations = iterations + 1; 

    end 

     

    computational_time = toc(); 

     

    if iterations == max_iter 

        disp("Newton-Raphson method did not converge 

within the maximum number of iterations."); 

        root = NaN; 

    else 

        disp("Root:"); 

        disp(x_n); 

        disp("Number of Iterations:"); 

        disp(iterations); 

        disp("Computational Time (seconds):"); 

        disp(computational_time); 

        root = x_n; 

    end 

endfunction 

 

x0 = 1; 

tolerance = 1e-6; 

max_iterations = 1000; 

 

[root, num_iterations] = newton_raphson(x0, tolerance, 

max_iterations); 

3.2.3. Python Code for Secant Method 

import time 

def F(x): 

    return x**3 - x - 1 

def secant_method(F, x0, x1, tol, max_iter): 

    iter_count = 0 

    start_time = time.time() 

 

    while abs(x1 - x0) >= tol and iter_count < max_iter: 

        x_next = x1 - F(x1) * (x1 - x0) / (F(x1) - F(x0)) 

        x0 = x1 

        x1 = x_next 

        iter_count += 1 

 

    elapsed_time = time.time() - start_time 

 

    if abs(x1 - x0) < tol: 

        root = x1 

    else: 

        root = None 

 

    return root, iter_count, elapsed_time 

 

# Initial values 

x0 = 1 

x1 = 2 

tolerance = 1e-6 

max_iterations = 100 

 

# Find the root using the secant method and measure 

computational time 

root, iter_count, elapsed_time = secant_method(F, x0, x1, 

tolerance, max_iterations) 

 

# Display the result 

if root is not None: 

    print(f"Root: {root:.6f}") 

    print(f"F(Root): {F(root):.6f}") 

    print(f"Number of Iterations: {iter_count}") 

    print(f"Computational Time (seconds): 

{elapsed_time:.6f}") 

else: 

    print("Secant method did not converge within the 

specified maximum iterations.") 
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3.2.4. Scilab Code for Secant Mehtod 

 

function y = F(x) 

    y = x^3 - x - 1; 

endfunction 

 

function [root, iter_count, elapsed_time] = 

secant_method(x0, x1, tol, max_iter) 

    iter_count = 0; 

    tic(); 

 

    while abs(x1 - x0) >= tol && iter_count < max_iter 

        x_next = x1 - F(x1) * (x1 - x0) / (F(x1) - F(x0)); 

        x0 = x1; 

        x1 = x_next; 

        iter_count = iter_count + 1; 

    end 

 

    elapsed_time = toc(); 

 

    if abs(x1 - x0) < tol 

        root = x1; 

    else 

        root = nan; 

    end 

endfunction 

 

// Initial values 

x0 = 1; 

x1 = 2; 

tolerance = 1e-6; 

max_iterations = 100; 

 

// Find the root using the secant method and measure 

computational time 

[root, iter_count, elapsed_time] = secant_method(x0, x1, 

tolerance, max_iterations); 

 

// Display the result 

disp("Root: " + string(root)); 

disp("F(Root): " + string(F(root))); 

disp("Number of Iterations: " + string(iter_count)); 

disp("Computational Time (seconds): " + 

string(elapsed_time)); 

3.2.5. Matlab Code for Secant Method 

% Initial values 

x0 = 1; 

x1 = 2; 

tolerance = 1e-6; 

max_iterations = 100; 

  

% Find the root using the secant method and measure 

computational time 

[root, iter_count, elapsed_time] = secant_method(@F, x0, 

x1, tolerance, max_iterations); 

  

% Display the result 

fprintf('Root: %.6f\n', root); 

fprintf('F(Root): %.6f\n', F(root)); 

fprintf('Number of Iterations: %d\n', iter_count); 

fprintf('Computational Time (seconds): %.6f\n', 

elapsed_time); 

  

  

function y = F(x) 

    y = x^3 - x - 1; 

end 

  

function [root, iter_count, elapsed_time] = 

secant_method(F, x0, x1, tol, max_iter) 

    iter_count = 0; 

    tic(); 

  

    while abs(x1 - x0) >= tol && iter_count < max_iter 

        x_next = x1 - F(x1) * (x1 - x0) / (F(x1) - F(x0)); 

        x0 = x1; 

        x1 = x_next; 

        iter_count = iter_count + 1; 

    end 

  

    elapsed_time = toc(); 

  

    if abs(x1 - x0) < tol 

        root = x1; 

    else 

        root = NaN; 

    end 

end 

3.2.6. MATLAB Code for Newton-Raphson Method 

function y = F(x) 

    y = x^3 - x - 1; 

end 

  

function dy = dF(x) 

    dy = 3*x^2 - 1; 

end 

  

function [root, num_iterations] = newton_raphson(x0, tol, 

max_iter) 

    tic; 

     

    x_n = x0; 

    iterations = 0; 

     

    while abs(F(x_n)) > tol && iterations < max_iter 

        x_n = x_n - F(x_n) / dF(x_n); 

        iterations = iterations + 1; 

    end 

     

    computational_time = toc; 

     

    if iterations == max_iter 
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        disp('Newton-Raphson method did not converge 

within the maximum number of iterations.'); 

        root = NaN; 

    else 

        disp('Root:'); 

        disp(x_n); 

        disp('Number of Iterations:'); 

        disp(iterations); 

        disp('Computational Time (seconds):'); 

        disp(computational_time); 

        root = x_n; 

    end 

end 

  

x0 = 1; 

tolerance = 1e-6; 

max_iterations = 1000; 

  

[root, num_iterations] = newton_raphson(x0, tolerance, 

max_iterations); 

4. Results and Discussions 

The results from this research were obtained using a 

computer with the following specification: 

1. Processor: Intel® Core™ i5 – 3427U CPU®1.80GHz 

2.30GHz 

2. Installed RAM: 8.00GB (787 GB usable) 

3. System type: 64 – bit operating system, 64 – based 

processor 

A summary of results is displayed in the tables 1.0 and 2.0 

below, with Table 1.0 showing the numerical results of roots 

of nonlinear equations using the Secant method with the help 

of the Python, Scilab and MATLAB softwares. Included in 

the tables are results of manual computations of the same 

nonlinear equations, the time required for by each software to 

produce answers and the number of iterations needed to 

arrive at an approximated solution(root). 

The results in Table 1.0 below showed that given the 

bench mark problems considered in this study, the Python, 

Scilab, MATLAB and manual computation will produce the 

same estimated root and number of iterations for each 

problem. However, the computational time made the 

difference between the three mathematical tools. In Table 1.0 

the Secant method was used and the computational time 

required to reach solution for the Python software was 

approximately zero for all the bench mark problems under 

consideration while that of the Scilab and MATLAB varied. 

For example, from the table, the Python software produced 

result in zero second for Problem 1 while the Scilab amd 

MATLAB produced results in 0.0021639 seconds and 

0.002297seconds respectively for the same problem. 

In the case of Problem 2, the Python software solved it in 

zero seconds while MATLAB and Scilab solved the same 

problem in 0.000402 seconds and 0.0010286 seconds 

respectively. An observation from Table 1.0 shows that the 

Scilab software was able to solve problems 1, 3 and 5 with 

less computational time compared to MATLAB while 

MATLAB on the other hand was able to solve problems 2 

and 3 with less computational time compared to Scilab. 

Another observation made from the Table 1.0 is that 

Problems 1, 2 and 3 which are algebraic in nature where all 

solved in seven iterations while that of Problems 4 and 5 

which are trigonometric in nature where solved in 4 and 5 

iterations respectively. 

Table 2.0 is a summary of results when the Newton-

Raphson method was applied to solve the bench mark 

problems with the help of Python, Scilab and Matlab 

softwares. Data in Table 2.0 showed that all three 

mathematical tools where able to solve the bench mark 

problems accurately. The Python software recorded the least 

number of iterations for Problems 1 and 2 while Scilab and 

MATLAB recorded the same number of iterations for all five 

problems. The Python softeware had the least computational 

time of approximately 0 seconds. MATLAB solved Problems 

1, 2 and 4 faster than Scilab while Scilab was able to solve 

Problems 3 and 5 faster than MATLAB. 

Comparing the results in Table 1.0 and Table 2.0 it is 

observed that the Newton-Raphson method solved the bench 

mark problems faster than the Secant method. 

Table 1. Results of mathematical softwares using the secant method. 

Problem Solution Approach Approximated Root Number of Iterations Computational Time Initial Guess Values 

Problem 1 

Manual Computation 1.32471 7  (1, 2) 

Python 1.324718 7 0.000000 (1, 2) 

Scilab 1.324718 7 0.0021639 (1, 2) 

Matlab 1.324718 7 0.002297 (1, 2) 

Problem 2 

Manual Computation 1.6006 7  (1, 2) 

Python 1.600599 7 0.000000 (1, 2) 

Scilab 1.6005985 7 0.0010286 (1, 2) 

Matlab 1.600599 7 0.000402 (1, 2) 

Problem 3 

Manual Computation 0.4655 7  (0, 1) 

Python 0.465571 7 0.000000 (0, 1) 

Scilab 0.4655712 7 0.0005137 (0, 1) 

Matlab 0.465571 7 0.001279 (0, 1) 

Problem 4 

Manual Computation 1.0299 4  (0, 1) 

Python 1.029867 4 0.000000 (1, 2) 

Scilab 1.029867 4 0.0014337 (1, 2) 

Matlab 1.029867 4 0.000883 (1, 2) 
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Problem Solution Approach Approximated Root Number of Iterations Computational Time Initial Guess Values 

Problem 5 

Manual Computation -0.9421 5  (-1, 0) 

Python -0.942076 5 0.000000 (-1, 0) 

Scilab -0.942076 5 0.0005727 (-1, 0) 

Matlab -0.942076 5 0.001345 (-1, 0) 

Table 2. Results of mathematical softwares using the newton raphson method. 

Problem Solution Approach Approximated Root Number of Iterations Computational Time Initial Guess Value 

Problem 1 

Manual Computation 1.3247 4  1.5 

Python 1.324718 3 0.000000 1.5 

Scilab 1.324718 4 0.0050916 1.5 

Matlab 1.324718 4 0.002314 1.5 

Problem 2 

Manual Computation 1.6006 4  1.5 

Python 1.600599 3 0.000000 1.5 

Scilab 1.600599 5 0.0004007 1.5 

Matlab 1.600599 5 0.000156 1.5 

Problem 3 

Manual Computation 0.4656 3  0.5 

Python 0.465571 3 0.000000 0.5 

Scilab 0.465571 3 0.0006141 0.5 

Matlab 0.465571 3 0.003154 0.5 

Problem 4 

Manual Computation 1.0299 4  0.5 

Python 1.029867 4 0.0000000 0.5 

Scilab 1.029867 4 0.0007773 0.5 

Matlab 1.029867 4 0.000312 0.5 

Problem 5 

Manual Computation -0.9421 3  -0.5 

Python -0.942076 3 0.000000 -0.5 

Scilab -0.942076 3 0.0004461 -0.5 

Matlab -0.942076 3 0.001140 -0.5 

 

5. Conclusion and Recommendations 

From the results obtained in this research, it can be 

concluded that the three mathematical tools namely; Python, 

Scilab and MATLAB gave an accurate estimation of the 

roots of the nonlinear equations. The algorithms for both the 

Secant and Newton-Raphson methods considered in this 

study worked perfectly well using the mathematical tools, 

with the Newton-Raphson method recording the least number 

of iterations and the least computational time. This is indeed 

an indication that the Newton-Raphson method is more 

robust compared to the Secant method. 

Another interesting discovery in this research is that 

Python, Scilab and MATLAB are able to solve algebraic 

nonlinear equations faster than that of trigonometric 

nonlinear equations. 

A comparison of the three mathematical tools showed 

that the Python software required approximately zero 

seconds to solve any of the bench mark problems using 

either the Secant or Newton Raphson methods. Though all 

the three mathematical tools solved problems with the same 

number of iterations, Python was able to solve Problem 1 

and Problem 2 with the least number of iterations which 

signifies its ability solve nonlinear equations with the least 

computational time and number of iterations. It can 

therefore be concluded that based on the bench mark 

problems considered in this research, the Python software is 

the most recommended for the estimation of the roots of 

nonlinear equations. 
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