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Abstract: More realistic human-mosquito mathematical model in which re-infected asymptomatic humans are considered is 

presented. The Next Generation Matrix technique is used to construct epidemiological threshold known as the reproduction 

number. Locally and globally asymptotically stable disease-free equilibrium conditions for the model are established. Possible 

time-scale of events for model transition from non-endemic to endemic is analyzed. Results show that the buildup of the latent 

asymptomatic humans at steady state is the main dynamics of malaria in the endemic region. 
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1. Introduction 

Malaria is one of the most serious health problems in the 

world. In 2015, the World health organization reported that 1.2 

billion people worldwide were at high risk of malaria with 214 

million cases and 438,000 deaths [1]. Typical indicators of 

malaria infections range from cyclical fevers to coma and death. 

The period of cyclical fever lasts several days with symptoms 

such as vague, anemia, blood stools, convulsion, myalgia, 

diarrhea, nausea, and vomiting very common [2]. During this 

period, a high probability of deaths and abortions have been 

observed among children under five years of age and pregnant 

women, respectively, in the endemic regions [2, 3]. Sub-Saharan 

Africa carries a disproportionately high rate of malaria cases 

(88%) and deaths (90%). Therefore, more insight and better 

intervention programs needed to be established to control and 

possibly eradicate the disease. 

The etiological agent of malaria is a eukaryotic protozoan 

parasite of the genus Plasmodium belonging to the 

apicomplexan family. Parasites are transmitted to humans by 

Anopheles mosquitos’ bites. The parasite life cycle is divided 

into two parts: one is within the host (human) body while the 

other is within the vector (mosquito) body as shown in Fig 1. 

The struggle to combat malaria has been focused on reducing 

1) high density of Anopheles mosquitoes, 2) high density of 

human infections, and 3) large rate of transmission of malaria 

parasite between humans and mosquitoes. Methods such as 

pesticide spraying, use of bed nets, mosquito-repellents have 

been used to reduce the high density of mosquitoes and the large 

rate of malaria parasite transmission between humans and 

mosquitoes in endemic regions. In addition, drugs such as 

Chloroquine, Quinuine, Primaquine, and combinations of 

Sulfadoxine and Pyrimethamine have been effectively used to 

treat the infectious population [7]. Despite these adequate 

antimalarial treatments, it remains one of the commonest disease 

in Sub-Saharan Africa [8, 9]. 

The complexity of malaria and the tendency for its patients to 

become resistant to malaria drugs make it very challenging to 

control or eradicate the disease. Mono-therapies have been 

identified as one of the main contributors to drug resistance, thus, 

making many malaria patients temporarily asymptomatic 

parasite carriage [10, 11]. The issue of asymptomatic parasite 

carriage is crucial in the transmission of malaria. Ogutu et al. 

reported that a large proportion of P. falciparum infections are 

asymptomatic with microscopy-detection level as high as 39 

percent on children under 10 years old in endemic regions. 

Based on their findings they hypothesized without testing that a 

significant reduction of the malaria parasite pool could be 

obtained through the treatment of the asymptomatic class in 

endemic population [12]. 
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Fig. 1. Human infection starts from a blood meal of an infectious female mosquito. The parasites enter the bloodstream of the human though mosquito bites 

migrate to the liver. Within minutes after entering in the human body, it infect hepatocytes, and multiply asexually and asymptomatically for a period of 5-30 

[4, 5]. These merozoites rupture their host cells undetectably by wrapping themselves in the membrane of infected liver cells and then escape into the 

bloodstream to infect red blood cells. Within the red blood cells, a proportion of parasites keep multiplying asexually and periodically break out of infected old 

red blood cells to invade fresh red blood cells. Such amplification cycles may cause the symptom of waves of fever. The rest parasites follow sexual maturation 

and produce male (micro-) and female (macro-) gametocytes which may be taken up by bites of female mosquitoes. When an uninfected female mosquito bites 

infectious human, it ingests the human’s blood cells with gametocytes. In the mosquito gut, exflagellated micro-gametocytes enter macro-gametocytes after 

released from the human’s red blood cells, and further form diploid zygotes, which develop into active ookinetes. Ookinetes burrow into the mosquito midgut 

and become oocysts. The growth and division of each oocyst produces thousands of active haploid forms called sporozoites. After 8 - 15 days, the oocyst bursts 

and releases sporozoites into the body cavity of the mosquito, from where sporozoites travel to and invade the mosquito salivary glands. Then the malaria 

parasites once more undergoes a cycle of human infection when the mosquito takes a blood meal from another human [6]. 

In this paper, we derive a mathematical model to elucidate 

the risks of partial immunity caused by mono-therapies or 

inadequate clearance of malaria patients in endemic regions. 

The patients who have recovered from the worst malaria 

symptoms, the partially immune humans (asymptomatic) and 

the re-infected asymptomatic incubating class, could still 

transmit the disease and therefore included in our model. The 

Next Generation Matrix method is used to construct the 

threshold parameter 
0

R . The model is then analyzed to 

adduce a sufficient condition that the disease free state is 

locally and globally asymptotically stable if 
0

1R <  and 

unstable for 
0

1R > . Finally, a time scale analysis is 

conducted to demonstrate the existence of the endemic state 

and to provide more insight into malaria transmission. 

The organization of this paper is as follows: Model 

formulation is developed in section 2. Existence and stability 

analysis for equilibrium state in section 3. Time scale 

analysis in section 4 and the conclusion in section 5. 

2. Model Formulation 

2.1. Variables Description 

A population of humans in a region is susceptible to 

malaria infection if the environmental conditions in that 

region favor the breeding of the anopheles mosquitos. Once 

an infectious female anopheles mosquito injects malaria 

parasites into a human at the site of bite, these parasites 

undergo developmental stages within the host. These stages 

partition the host into a waiting state to disease manifestation, 

or disease state or non-disease state in the presence of the 

parasites. In order to set the necessary mathematical 

framework, we divide the human population into classes of 

susceptible (
h

S ), latent (
h

L ), latent asymptomatic (
A

L ), 

symptomatic (
s

I ) and asymptomatic ( A ) carriers. Also, 
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mosquito population is subdivided into susceptible (
m

T ), 

latent (
m

L ) and infectious (
m

I ) classes. Detailed state 

variables are given in Table 1 and the movement between 

compartments summarized in Fig 2. 

 

Fig. 2. Compartmental model depicting human-mosquito malaria parasite interactions. The rectangles indicate state variables and actions within humans and 

mosquitoes, while the circles depict actions between species. 

Table 1. Description of State Variables. 

N  Total human population 

h
S  

Susceptible human population, who initially do not have malaria 

parasites but have natural non-specific immunity, 

h
L  

Incubating human population who have received infectious bites and 

are within the laver and early erythrocyte stage infection. 

A
L  

Number of latent asymptomatic infectious humans in the erythrocyte 

stage that have developed both disease symptoms and gametocytes. 

s
I  

Number of symptomatic infectious humans who require treatment 

since they know that they are infected. 

A  

Number of asymptomatic infectious humans who no longer have 

symptoms of the disease that warrant medical attention but are still 

infectious to mosquitoes. 

m
T  Total female anopheles (mosquitoes) population. 

m
S  Number of susceptible mosquitoes. 

m
L  Number of incubating (latent) mosquitoes. 

m
I  Number of infectious mosquitoes. 

Clarify A
L  is the individuals in the A  class being bitten 

by infectious mosquitoes. Since they carry both gametocytes 

and asexual parasites, loss of immunity may cause their 

immediate transition into the s
I  class instead of the h

S  

class. Also, a mosquito is in the m
L  class as soon as it 

ingest gametocytes from an infectious human but before the 

sporazoites migrate to the salivary gland. Finally, the 

, , and
A s

L I A  classes are infectious to the m
S  class while 

the m
I  class infects and

h
S A  classes. 

2.2. Model Assumptions 

1) Malaria is transmitted when a susceptible human is 

bitten by an infected anopheline mosquito and each mosquito 

has the same biting behavior. 

2) The rate at which a susceptible individual becomes 

infected is a function of contact rate with infective 

mosquitoes and the level of host susceptibility. 

3) Mosquito biting vectors are equally susceptible and 
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human infectiousness to mosquitoes is determined mainly by 

the gametocyte density or the density of infection in the 

human host. 

4) The recruitment of human into the susceptible 

population occurs at a constant per capita birth rate 
h

λ  and 

apart from asymptomatic individual, no human in the latent 

and symptomatic infectious classes would be affected by a 

bite from an infectious mosquito. 

5) Plasmodium parasite reduces the life span of infectious 

mosquitoes. 

6) We focus on an endemic area and year time scale, where 

the total population change is negligible in the absence of the 

disease 

7) We consider a small perturbation of the disease 

free-state and assume that growth and decay is faster than 

population change. 

2.3. Model Description 

The susceptible humans get infected at rate 
h m h
eI S Nβ  

where 
m

eI  is the rate at which infected mosquitoes bite, e  

is a constant value of the biting rate per human per unit time, 

h
S N  is the probability that the human bitten is susceptible, 

and 
h

β  is the number of human infections per bite. 

Similarly, the rate of infection of an asymptomatic individual 

is 
h m
eI A Nβ . The rate at which uninfected mosquitoes 

obtain the plasmodium parasite from human carriers is 

( ) m

s s a a A

S
e I A L

N
β β β+ +  where 

a
β  is the probability that a 

bite from a susceptible mosquito on an asymptomatic 

infectious human transfers the infection to the mosquito, and 

s
β  is the probability that a susceptible mosquito gets 

infected after biting a symptomatic infectious human. 

Susceptible mosquitoes are recruited into the mosquito 

population through a constant birth rate m
λ . Applying 

assumption 4, there will be a total of m
eT  bites by 

mosquitoes on humans. However, only h
S N  of these bites 

will be made on susceptible humans. The proportion that a 

bite is made by an infectious mosquito is m m
I T . Since h

β  

assumes that not all bites by an infectious mosquito on a 

susceptible human can lead to infection, the parameter 

[ ]0,1hβ ∈  is the proportion of bites by an infectious 

mosquito that leads to infection. Here 1
h

β =  implies all 

bites transmit the disease. The cross infection rate h m
eI Nβ  

between the human and mosquito population depends on the 

average number of mosquito bites per unit time and the 

transmission probability of the human population. 

Based on assumption 4, the individuals in the h
L  class 

are already in the process of transition into the s
I  class and 

are entitled to treatment. Thus, the incubating humans 

become infectious after a mean latency time 1
h

η . All 

humans who die naturally have a per capita rate of 1
h

µ , 

while some individuals in the s
I  class die at rate h s

Iα  

from the disease. In addition, those who survives receive 

treatment and are either recover with complete clearance to 

join the susceptible class at a rate s s
r I  (treatment period 

14-days), or only recover from symptoms (after a 3-day 

monotherapy) without parasite clearance to join the A  class 

at a rate a s
r I . The post symptomatic class A  still can carry 

merozoites and produce gametocytes. So, they can infect 

biting mosquitoes. [22] have shown that a human can be in 

this state for several weeks or months and hence can play an 

important role in sustaining the epidemic. Thus, we consider 

a putative treatment which removes individual from A  and 

A
L  classes into h

S  and h
L , respectively, with the effect of 

the treatment parameter being h
ψθ , where ψ  are those 

being treated. 

Thus, the system of equations for the human compartments 

are, 

,h m

h s s a h h h h h

dS I
N r I l A e S S A

dt N
λ β µ ψθ= + + − − +

 
  (1) 

,h m

h h h h h h h A

dL I
e S L L L

dt N
β η µ ψθ= − − +      (2) 

,mA

h h A h A h A

IdL
e A L L L

dt N
β η µ ψθ= − − −      (3) 

,s

h h h A h S S S a S h S

dI
L L I r I r I I

dt
η η α µ= + − − − −    (4) 

,m

a S h a h h

IdA
r I e A l A A A

dt N
β µ ψθ= − − − −      (5) 

where the total human population is 

.h h S h

dN
N I N

dt
λ α µ= − −  

Similarly, the susceptible mosquitoes get infected through 

infectious human contact at a rate ( ) m

a S a a A

S
e I A L

N
β β β+ +  

and proceed to the incubating class. Applying assumption 6, 

we state that mosquitoes in the incubating class die naturally 

at a rate 
m m

Lµ  and the rest get infected at a rate 
m m

Lη  to 

join the infectious class which they remain until their death 

either normally, or are killed by the parasites at rate 
m m

Iα . 

Thus, the system of equations for the mosquito classes are 

,m S A

m m S m a m a m m m

dS I LA
I e S e S e S S

dt N N N
λ β β β µ= − − − −  (6) 

,m S A
S m a m a m m m m m

dL I LA
e S e S e S L L

dt N N N
β β β η µ= + + − −  (7) 

,m

m m m m m m

dI
L I I

dt
η α µ= − −            (8) 

with the total mosquito population as 

.m

m m m m m m

dT
T I T

dt
λ α µ= − −  Here, the initial conditions for 
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humans-mosquitoes are 
000, , m mt N N T T= = = and their parameter values defined in Table 2. 

2.4. Model Parameterization 

Table 2. Model Parameterization. 

Parameter Description Value Source 

hλ  Per capita human birth rate 0.000104/ day [13] 

al  Rate of immunity loss by asymptomatic infectious humans 0.006061/day [14] 

e  Average number of bites each mosquito gives to human per unit time 0.44/day [15] 

hβ  Probability that a bite by an infectious mosquito infects a susceptible human. 0.086 [16] 

hµ  Per capita human death rate. 0.0000356/day [13] 

hη  Transition rate of incubating humans into symptomatic infectious per unit time. 0.067013/day [17], [18] 

hα  Per capita death rate of humans due to disease influence. 0.0006061/day  

sr  Drug recovery rate of symptomatic infectious humans per unit time value 0.07/day [19] 

ar  
Transmission rate of symptomatic infectious humans to asymptomatic infectious 
class per unit time. 

0.33/ day [19] 

mλ  Per capita mosquito birth rate. 0.13/day [20] 

mη  Transition rate of incubating mosquitoes into infectious class per unit time. 0.0830/day [21] 

sβ  Susceptible mosquito gets infected after biting a symptomatic infectious human. 0.1  

aβ  
The probability that a bite by a susceptible mosquito on an asymptomatic infectious 

human transfers the infection to the mosquito. 
0.53  

mα  Per capita death rate of mosquitoes due to gametocyte carriage per unit time. 0.03152 /day  

hθ  Recovery rate of asymptomatic infectious humans due to treatment per unit time.   

ψ  Fraction of post malaria treatment.   

Introduce new variables as follows, 

* * * * * * * *
, L , , , , , , ,h

h h s m m mA

h A S m m m

m m m

S L I S L IL A
S L I A S L I

N N N N N T T T
= = = = = = = =  

such that * * * * * * * *1 and 1h h A s s m mS L L I A I L I+ + + + = + + = , we define the dimensionless parameters (stated below) with their 

values defined in Table 3 

(0)
, , , , , ,

(0)

, , , , , , .

h m s a h h h h

a a a a a a a

s a h m m m m

a a a a a a a

eT e e
b d

l N l l l l l l

r r
f q g h

l l l l l l l

β β β η µ λ αβ η µ λ α

ψθ η λ µ αγ ρ θ

= = = = = = =

= = = = = = =
 

Based on assumption 6, we scale the time with 

asymptomatic susceptible transmission parameter 
a

l , and 

rewrite * *

at t l=  where 
*

1t =  is about 165 days, (Since 

time scale for asymptomatic clearance is approximately 6 

months). So, rescaling initial humans and mosquitoes 

populations, we have, respectively, *(0)N N N=  and 

*(0)m m mT T T= . Consequently, the dimensionless model 

equations (1)-(8) becomes: 

h m

S m h h h S

dS T
I A I S S S I A

dt N
λ γ β λ α θ= + + − − + +    (9) 

h m

m h h h h S A

dl T
I S L L L I L

dt N
β η λ α θ= − − + +      (10) 

mA

m A A A S A

TdL
I A L L L I L

dt N
β η λ α θ= − − + −      (11) 

2
( )s

h A S S

dI
L L I I

dt
η η α γ ρ λ α= + − + + + +       (12) 

(1 )m

S m S

TdA
I I I A

dt N
ρ β λ α θ= − + + − +       (13) 

(1 )m

m S m m A m m m

dS
q S bI S dAS dL S hI S

dt
= − − − − +   (14) 

( )m

S m m A m m m m

dL
bI S dAS dL S f g L hI L

dt
= + + − + +  (15) 

2
( )m

m m m

dI
fL h q I hI

dt
= − + +          (16) 

( )S

dN
I N N

dt
α λ µ= − + −         (17) 
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( )m

m m m

dT
hI T q g T

dt
= − + −            (18) 

Table 3. Dimensionless parameters and their values. 

Dimensional Dimensionless Value Value in ε  

(0) (0)h m aeT l Nβ  β  62.43 ( )2ε −Ο  

h alη  η  11.1 1ε −  

h alµ  µ
 0.0056 ( )2εΟ  

s ae lβ  b  7.2 ( )1ε −Ο  

a ae lβ  d  38.2 ( )1ε −Ο  

h alλ  λ  0.017 ( )1ε −Ο  

h alα  α  0.01 ( )2εΟ  

r l
s a

 γ  11.5 ( )1ε −Ο  

a ar l  ρ  54.45 ( )2ε −Ο  

h alψθ  θ    

m alη  f  14 ( )1ε −Ο  

m alλ  q  21.45 ( )1ε −Ο  

m alµ  g  20.62 ( )1ε −Ο  

m alα  h  1.45 (1)Ο  

By definition, ε  is the ratio of the proportion of time for 

the latency period (
h

η ) compared to the mean asymptomatic 

state timescale (
a

l ). For 1,ε ≪  it means that asymptomatic 

humans remain infectious for a longer time compared to the 

latency period of humans. 

3. Existence and Stability of Equilibrium 

Analysis 

The points at which the differential equations (9)-(18) 

equal to zero are referred to as equilibrium points or 

steady-state solutions. As shown in Annan and Fisher (2013), 

[23], it is important to note that there is no trivial equilibrium 

points as long as and
h m

S S  are not zero. The implication is 

that ( , , , , , , , , )
h h A s m m m m

S L L I A T S L I  (0,0,0,0,0,0,0,0,0)≠  

and the population is not extinct. 

3.1. Model Linearization and Reproduction Number 

We adapt the Next Generation Matrix (NGM) method 

derived for infection disease models in [23] to determine the 

basic reproduction number, 
0

R . The NGM operator 

approach approximates the number of secondary infections 

produced by one infected individual and expresses 
0

R  as 

the product of the expected duration of the infectious period 

and the secondary rate infectious. We denote Fℓ  as the 

emergence of new infection, V ℓ  as the transition of the new 

infections between components, and ℓ  as the infection 

domain. Thus, the linearized system is of the form 

( ) , where and
d

F V
dt

′ ′= − = ℓ
ℓ ℓ ℓ  

1

0

2

3

4

5

0 0 0 00 0 0 0 0

0 0 0 0 00 0 0 0 0 0

0 0 00 0 0 0 0 0
, , .

0 0 0 00 0 0 0 0 0

0 0 0 0 00 0 0

0 0 0 00 0 0 0 0 0

h

A

s

m

m

La

La

a I
F V

a A

ad b d L

f a I

θβ

η η
ρ

−    
    
    
     − −

= = =     −    
    
      −        

ℓ

 (19) 

Here, the constants '

ia s  are expressed as: 

0 1 2 3

4 5

, , ,

1 , , .

a a a a

a f q a h q

η γ θ η γ α γ ρ λ
λ θ

= + + = + = + + +
= + + = + = +

  (20) 

Accordingly, computing the non-negative matrix 
1

FV
−

 

gives 

1

1

0

1 2 3 4 4

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 01
, where

0 0 0 0 0 0

0

0 0 0 0 0 0

b

FV
b

f f f f a

β βν

−

 
 
 
 

=  
 
 
  
 

 (21) 

0 0 1 2 3 4 5 1 0 1 2 3 0 1 2 3 4 2 0 3 4 5 3 0 4 5

4 1 2 3 4 5 5 1 3 4 5 6 1 4 5 7 0 1 3 4 5 8 0 1 4 5

9 0 1 2 4 5 1 2 3 2 4 5 6 3 7 8 4 9

, , , , ,

, , , , ,

, , , , .

b a a a a a a b fa a a a a a a a a b a a a a b a a a

b a a a a a b a a a a b a a a b a a a a a b a a a a

b a a a a a f bb db f db bb db f bb db f db

ν η ηρ
η ηρ ρ

= = = = =
= = = = =
= = + = + + = + =

 

Thus, the NGM defined by the product 
1

FV
−

 guarantees a unique dominant positive real eigenvalue of the matrix called 

the reproduction number, 
0

R , expressed as 

2 3 1

0 2

0

( ) ( (1 ) )
.

( )( )( )(1 )( )

bb db b f b d
R

f q h qb

β βη λ θ ρ
η λ λ θ α γ ρ λ

+ + + += =
+ + + + + + + +                 (22) 

Consider the domain of biological interest for equations (9)-(18) of the form 
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{ }10( , , , , , , , , , N) | they are 0 for all 0 .
h h A s m m m m

S L L I A T S L I t+Ω = ∈ ≥ >ℝ  

Then, the disease-free state 

( , , , , , , , , ) (1,0,0,0,0,0,1,0,0)
h h A s m m m m

S L L I A T S L I =  is 

locally and globally asymptotically stable when 
0

1R <  and 

unstable when 
0

1R > . Since normally 
0

1R ≫  and the ratio 

of the asymptomatic infectious humans to mosquitoes is 

significantly large, a possible treatment is to reduce the 

infectivity of asymptomatic humans, ,d and that of 

symptomatic humans, b  by increasing the parameters 

andθ λ . 

3.2. Stability Analysis of Disease-free Equilibrium 

We establish the global stability of the disease-free 

equilibrium in domain Ω  by deriving the Jacobian matrix 

(23) for equations (9)-(16) about the disease-free equilibrium. 

Here, '

ia s  are defined for
6

0 ( 5) andi a α γ≤ ∈ ≤ = +ℤ . 

Thus, the characteristic equation with eigenvalues Ż  is 

obtained in equation (24) were, 

1 1 2 3 4 5

2 1 2 1 3 1 4 1 5 2 3 2 4 2 5 3 4 3 5 4 5

3 1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5

,

,

,

a a a a a

a a a a a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a

Π = + + + +
Π = + + + + + + + + +
Π = + + + + + + + + +

 

4 1 2 3 4 1 2 3 5 1 2 4 5 1 3 4 5 2 3 4 5

5 1 2 3 4 5 3

a ,

( ).

a a a a a a a a a a a a a a a a a a a bf

a a a a a f ba d

βη
βη ρ

Π = + + + + −
Π = − +

 

6

1

0

2

3

4

5

10 0 0 0

000 0 0

0 000 0 0 0

0 00 0 0
.

00 0 0 0 0

0 0 0

00 0 0

0 0 0 00 0

a

a

a

a
J

a

hd qb d

d ab d

af

θ βλ
βθ

η η
ρ

+ −− 
 − 
 −
 − =
 −
 

− −− − 
 −
 

−  

     (23) 

5 4 3 2

0 1 2 3 4 5( )( )( )( ) 0,a q λ+ + + + Π + Π + Π + Π + Π =Ż Ż Ż Ż Ż Ż Ż Ż  (24) 

Lemma 1: The malaria-free equilibrium is locally 

asymptotically stable if 
0

1R <  and unstable if 
0

1R > . 

Proof: Further operation of 
5

Π  in terms of the 

reproduction number, 
0
,R gives 

3

0

1 2 3 4 5

( )
.

f ba d
R

a a a a a

βη ρ+
=  

For 
0

1R < , we have 
1 2 3 4 5 3

( )a a a a a f ba dβη ρ> + . So, 

the coefficients of equation (24) are all positive and non-zero. 

Therefore applying the Descartes’ rule of signs, there are no 

positive real eigenvalues for equation (24). In addition, using 

the Routh Hurwitz stability conditions for fifth order 

polynomial cited in [25], we have 
2 2 2 2

1 2 3 3 1 4 1 2 3 3 1 4 0ξΠ Π Π > Π + Π Π ⇒ = Π Π Π − Π − Π Π >  

and 
2 2 2 2

1 4 5 1 2 3 3 1 4 5 1 2 3 1 5( )( ) ( ) ,Π Π − Π Π Π Π − Π − Π Π > Π Π Π − Π + Π Π
 which implies that

2 2

1 4 5 5 1 2 3 1 5( ) ( ) 0ϑ ξ= Π Π − Π − Π Π Π − Π − Π Π > . In terms 

of the model parameters, since 
1 2 3 4 5

a a a a a fdβηρ>  and 

1 2 4 5
a a a a bf βη>  it follows that 0ϑ > . However, if 

0 1 2 3 4 5 3
1, ( )R a a a a a f ba dβη ρ> < +  where the coefficients 

1 2 3
, ,Π Π Π  are positive and 

5
Π  is negative. Thus, by the 

Descartes’ rule of signs, there is exactly one sign change in 

the sequence 
1 2 3 4 5

1, , , , ,Π Π Π Π Π  of coefficients of 

equation (24). So, there is one eigenvalue with positive real 

part and the disease-free equilibrium is unstable. 

Lemma 2: The malaria-free equilibrium is globally 

asymptotically stable in Ω  if 

( )
( ), , and .

bf fd
h q

f q f q

βη λ θ η λλ γ
η λ η λ

+ +≤ + ≤ + ≤
+ + + +

 (25) 

Proof: Consider 

{ }( , , , , , , ) | S , 0 , whereh A s m m m h mS L I A S L I Sφ = ∈Ω > →ℝ  

(1 ) ( ) (1 ) )
.h A h m m

S L S A f S qI

f q

η λφ
η λ

− + + + − +
= +

+ +
  (26) 

Equation (26) is positive and is continuously differentiable 

on the interior of Ω . The derivative of φ  along solutions 

of the system of equations is 

( )

( ) ( )

( ) (1 )

( )

1 1
( ) ) .

m s

h
A A s m s h

s A m s m s A m m

bf df
q I I A

f q f q

Ldf
L L I A I I S

f q

bfI df A L hqI I L bfI dfA dfL hqS I
f q f q

βηφ λ γ λ θ
η λ

λλ η θ λ βη α
η λ η λ η λ

    ′ = − + − + + − + +    + + +     

   + ++ − − + + − +   + + + +  

− + + + − + + +
+ +

 

Clearly, for 

( , , , , ) (0,0,0,0,0), 0 and ( , , , , )
A s m m A s m m

L I A L I L I A L Iφ ′= ≤
 is the largest positively invariance subset in the interior of 

Ω . Thus, by LaSalle’s invariant principle [24], 

( , , , , ) (0,0,0,0,0) as ,
A s m m

L I A L I t→ → ∞  while 

( , ) (1,1)
h m

S S →  on the boundary of Ω . Also, whenever the 

inequalities in equation (25) are true, we have 0.φ ′ ≤  

We now show that if the equations in (25) are true, then 

0
1R < . The numerator for equation (22) is 

( (1 ) ) ( (1 ) ).f b d fb f dβη λ θ ρ βη λ θ ρ+ + + ⇒ + + +  (27) 
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Rearranging the denominator of equation (22), we have 

( )( ){( )(1 )( ) { (1 )( )

(1 )( )}}

h q f q f q

f q

η λ λ γ λ θ ρ λ θ
α λ θ

+ + + + + + + + + +
+ + + +

 (28) 

Comparing equations (27) and (28), we observe 

( )( )h qβη η λ≤ + +  and ( )( ).bf f qλ γ≤ + +  Implying 

(1 ) ( )( )(1 ).fd f qθ λ γ λ θ λ+ + ≤ + + + +  Since 

( )
1 ,

λ η θ λθ λ
η λ
+ ++ + >
+

 it follows that 

( )( )
.

f q
df

θ η λ
η λ

+ + +≤
+

 Thus, the numerator of equation 

(22) is less than the denominator, meaning 
0

1R < . Implying 

that if conditions in equation (25) are true, then the 

malaria-free state is globally stable. 

4. Time Scale Analysis 

The asymptotic analysis on and
m

N T  equations depict 

that 
m

T  changes on the time scale ( )εΟ  while N  changes 

on ( )2ε −Ο . Therefore, we assume that 
m

T N  is constant 

over the time scale of the model analysis. Thus, setting 0θ = , 

the time scale analysis of our model in dimensionless form is: 

2 4 2 4 4
,h

S m h h h S

dS
I A I S S S I

dt
ε ε λ εγ ε β ε λ ε α= + + − − +

⌢ ⌢ ⌢⌢
 (29) 

2 4 4
,h

m h h h h S

dl
I S L L L I

dt
ε β εη ε λ ε α= − − +

⌢ ⌢⌢ ⌢
    (30) 

2 4 4
,A

m A A A S

dL
I A L L L I

dt
ε β εη ε λ ε α= − − +

⌢ ⌢⌢ ⌢
    (31) 

2 4 4 4 2( ) ,s

h A S S

dI
L L I I

dt
ε εη εη ε α εγ ρ ε λ ε α= + − + + + +

⌢⌢ ⌢ ⌢ ⌢ ⌢ ⌢   (32) 

2 2 4 4
( ) ,S m S

dA
I I I A

dt
ε ρ ε β ε λ ε α= − + + −

⌢ ⌢⌢ ⌢
      (33) 

(1 ) ,m

m S m m A m m m

dS
q S bI S dAS dL S hI S

dt
ε ε= − − − − +

⌢ ⌢ ⌢ ⌢⌢
  (34) 

( ) ,m

S m m A m m m m

dL
bI S dAS dL S f g L hI L

dt
ε ε= + + − + +

⌢ ⌢ ⌢ ⌢ ⌢⌢
 (35) 

2
( ) ,m

m m m

dI
fL h q I hI

dt
ε ε ε= − + +

⌢ ⌢ ⌢⌢
       (36) 

with initial conditions 

0 0 0

(0) 1, (0) 0, (0) 0, (0) 0, A(0) 0,

(0) , (0) 1 , (0) 0, 1, ,

h h A s

m m m

S L L I

L l S l I lε ε
= = = = =
= = − = ≪ ≪

 

and the parameters expressed in terms of their size as powers 

of ε  as follows, 

2 2

2

2

2

, , , , , ,

, , , , , , .

b d
b d

f q g
f q g h h

β ηβ η µ ε µ λ ε λ
ε ε εε
γ ρα ε α γ ρ
ε ε ε εε

= = = = = =

= = = = = = =

⌢ ⌢⌢ ⌢
⌢⌢

⌢⌢ ⌢ ⌢ ⌢
⌢⌢

 

The left hand side of equations (29)-(36) suggest an initial 

guess of two time scales: 2( )εΟ  and ( )εΟ . Using singular 

perturbation method and setting the time scale 
2

,t tε=
⌢

 we 

assume that for a small amount 
0

l  of infected mosquitoes 

introduced into the population, only a smaller proportion 
0

lε  

becomes infectious. Thus, the leading order solutions will be 

1 0 0

1 1 0

3 2 2

0 0 0 0 0

2

0 0 0 0 0 0 0

1 , , , ,

A , 1 , , .

h h h A A s s

m m m m m m

S l S L l L L l L I l I

l A S l l S L l l L I l I

ε ε ε ε

ε ε ε ε

+

− + +

⌢ ⌢ ⌢ ⌢
∼ ∼ ∼ ∼

⌢ ⌢ ⌢ ⌢
∼ ∼ ∼ ∼

 (37) 

Substitute (37) into equations (29)-(36), yields the 

following leading order system 

0 0 01

0 0 0 0 0

01 1

0

0

0

, , , ,

, , ( ), .

h A sh

m m m h s

mm m

s

dL dL dIdS
I I A I L I

dt dt dt dt

dIdS dLdA
I q f q f

dt dt dt dt

β β β η ρ

ρ

= − = = = −

= = = − + =

⌢ ⌢ ⌢ ⌢
⌢ ⌢ ⌢ ⌢⌢ ⌢ ⌢ ⌢ ⌢⌢ ⌢

⌢ ⌢ ⌢ ⌢

⌢ ⌢⌢⌢
⌢ ⌢⌢⌢ ⌢ ⌢

⌢ ⌢ ⌢ ⌢

 (38) 

For 
0

1,l ε≪ ≪  and with initial conditions 

1 0 0
(0) 0, (0) 0, (0) 0,h h AS L L= = =

⌢ ⌢ ⌢
 

0
(0) 0,sI =

⌢

1 1 00A (0) 0, (0) 0, (0) 0, (0) 0,m m mL S I= = = =
⌢ ⌢⌢ ⌢

 the following 

leading order solutions are obtained 

1 0 0 0

1 1 0

2 2 2 2 5 2

3

0

1 1 1 1
, , , ,

2 2 30 2

1
, , ( ) , .

6

h h A s

m m m

S f t L f t L f t I f t

A f t S q t L f q t I f t

β β β η βη
ρ

βη

−

− +

⌢ ⌢ ⌢ ⌢⌢ ⌢ ⌢ ⌢ ⌢⌢ ⌢ ⌢⌢ ⌢ ⌢ ⌢⌢ ⌢
∼ ∼ ∼ ∼ ⌢

⌢ ⌢ ⌢⌢ ⌢ ⌢ ⌢ ⌢ ⌢⌢ ⌢ ⌢
∼ ∼ ∼ ∼

 

We note that susceptible humans (
h

S ) and latent 

mosquitoes (
m

L ) are decaying linearly in time from their 

initial values due to i) the latent mosquitoes converting to the 

infectious class and ii) the susceptible becoming infected as a 

result of infectious contact with mosquitoes in the 
m

L  class. 

Setting 
4 3

t tε=
⌢

 and substituting into (29)-(36), we 

observe that all the leading order solutions are the same as 

equation (38) except that and
m m

S L  have an additional term, 

0.dA
⌢⌢

 This introduces a reaction of infection from 

asymptomatic class in the susceptible mosquitoes into the 

susceptible human population. Thus, creating a stability 

between the amount of mosquitoes converting to the 

infectious class and the amount becoming infected by biting 

humans in the asymptomatic infectious class. 

By setting the initial conditions 

1 0 0 0
(0) 0, (0) 0, (0) 0, (0) 0,h h A sS L L I= = = =
⌢ ⌢ ⌢ ⌢

 
10A (0) 0, (0) 0,mL= =

⌢ ⌢

1 0
(0) 0, (0) 0,m mS I= =

⌢ ⌢
 we observe a notable difference in 

the and
m m

S L  with an accelerated rate of mosquitoes 

infection from asymptomatic infectious humans as follows

1

41

24
mS fd t q tβη−

⌢⌢⌢ ⌢ ⌢⌢ ⌢
∼ and 

1

41

24
mL fd t q tβη

⌢⌢⌢ ⌢ ⌢⌢ ⌢
∼ . The inference is 

that the flow of the solution may change direction especially 

when the amount of mosquitoes being infected becomes 
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greater than the inflow of new born mosquitoes. This may 

happen at the point of where 
1mL  becomes 

0
( )lΟ . 

5. Conclusions 

In order to use our model to provide more insight and 

effective control of malaria, we setup and analyzed the 

transition model by presenting sufficient conditions to show 

that malaria free state is locally and globally asymptotically 

stable if 
0

1R <  and unstable for 
0

1R > . Timescale analysis 

is conducted to study the scenario in which 
0

1R >  to 

demonstrate the existence of an endemic state. We notice that 

the buildup of the latent asymptomatic humans at steady state 

is the main dynamics of malaria in the endemic region. This 

become evident in the time scale 
4 3

t tε=
⌢

 and influences 

the mode of infection in our analysis. 
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