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Abstract: In this article, an alternative method of defining the probability density function of Generalized Weibull-exponential
distributions is proposed. Based on the method, the distribution can also be called Weibull exponentiated exponential distribution.
This distribution includes the exponential, Weibull and exponentiated exponential distributions as special cases. Comprehensive
mathematical treatment of the distribution is provided. The quantile function, mode, characteristic function, moment generating
function among other mathematical properties of the distribution were derived. The parameters of the distribution were estimated
by applying the Maximum Likelihood Procedure.The elements of the Fisher Information Matrix is also provided. Finally, a data
set is fitted to the model and its sub-models. It is observed that the new distribution is more flexible and can be used quiet
effectively in analysing real life data in place of exponential, Weibull and exponentiated exponential distributions.

Keywords: T-X Family, Exponentiated Exponential Distribution, Order Statistics,
Shannon Entropy and Likelihood Ratio Test

1. Introduction
The knowledge of appropriate distributional assumptions in

parametric statistical inferences and modeling is of paramount
important [1]. Several existing distributions have been used in
different areas of environmental sciences, actuarial sciences,
engineering, medical sciences, survival analysis, computer
science, economics and social sciences in modeling lifetime
data and making inferences [1, 2, 3]. However, most of data
generated from these areas are characterized by exhibiting
a non-monotonic failure rate and varied degree of skewness
and kurtosis [1, 2]. Hence, modeling data with the existing
distributions may produce an inappropriate parametric fit.

To overcome these problems, distributions with heavy
tails, tractable cumulative distribution function that will ease
simulation, monotonic and non-monotonic failure rates and
can modeled data with varied degree of skewness and kurtosis
should be used in modeling data and making inferences.

Hence, the statistical literature have been flooded with barrage
of methods for developing new distributions that can be used
in modeling lifetime data from different areas and that will
provide greater flexibility and efficiency. These include the
Beta generalized exponential distribution by [4], Beta Burr
type V distribution by [5], the Weibull Burr type X distribution
by [6], Weibull Burr III distribution by [7] to mention but a few.

A four parameter distribution called the generalized
Weibull exponential distribution was developed by [8]. This
distribution was developed using the Exponentiated T −
X family of distribution developed by [9] and taking
exponential distribution as the baseline distribution. This
study aim at using the T − X family proposed by [10]
and taking the exponentiated exponential distribution as the
baseline distribution in order to re-derive the pdf and cdf
of the Generalized Weibull-Exponential distribution (GWE)
proposed by [9]. However, following [10], we will prefer
to call this distribution Weibull-exponentiated exponential
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distribution. The study also aimed at providing useful
expansion of the pdf and extensively studying some statistical
properties of the distribution such as mode, characteristic
function, moment generating function, moments, order
statistics and Shannon entropy. Furthermore, confidence
interval and hypothesis testing on the parameters of the
distribution were discussed. Finally, a data set was fitted to
the distribution and its performance was compared with that of
its sub-models.

Ref [11] introduced and studied the exponentiated
exponential distribution. Studies have shown that this
distribution can serve as an alternative to the two parameter
Weibull and two parameter Gamma distributions in many
situations (see [4, 12], for more details). The cumulative
distribution function of the exponentiated exponential
distribution along side with its probability density function
(pdf) are respectively given by:

G (x) = (1− exp (−bx))
a (1)

and

g (x) = ab exp (−bx) (1− exp (−bx))
a−1 (2)

where a, b > 0 are the shape and scale parameters
respectively. The exponentiated exponential distribution
similar to the gamma and Weibull distributions extends
the exponential distribution when the shape parameter of
the distributions takes the value one but in different ways.
Hence, it serves as an alternative to the gamma and Weibull
distributions [4, 12]. Unlike the exponential distribution that
has a constant failure rate, the exponentiated exponential
distribution have a non-decreasing failure rate when the shape
parameter is greater than one and a non-increasing failure
rate when its shape parameter is less than one, while it is
constant when it takes the value one. The exponentiated
exponential distribution has a unique mode when its shape
parameter takes the value of at least one. The distribution
has received a great attention by researchers. For example,
various properties and comparison with other distributions
have been provided by different researchers such as: [13],
[12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25] and
[26] to mention but a few. Also, this distribution have been
extended by different researcher. Few of these extensions
include: Bivariate generalized exponential distribution by
[27], the beta generalized exponential distribution by [4],
transmuted exponentiated exponential distribution by [28],
Bivariate discrete generalized exponential distribution by [29],

Odds generalized exponential-exponential distribution by [30],
bivariate generalized exponential distribution based on copula
functions by [31], exponentiated generalized exponential
distribution by [32].

The rest of the paper is organized as follows. In Section 2
the pdf of Weibull Exponentiated Exponentiated distribution
was define using T − X family and taking exponentiated
exponential distribution as baseline distribution. An outline
of some special cases of the distribution, the graphs of
probability density function (pdf ), cumulative distribution
function (cdf ), survival and hazard functions of the distribution
are also given in this section. In section 3, useful expansion
and some mathematical properties such as quantile function,
mode, skewness and kurtosis, characteristic function, moment
generating function, order statistics and Shannon entropy were
derived. Estimation of the unknown parameters by method of
maximum likelihood and information criterion are given in
section 4. Analysis of a data set to show the effectiveness of
the model over its sub-models is given in section 5 and we
conclude in section 6.

2. The Weibull Exponentiated
Exponential Distribution

Ref [10] proposed a family of distributions called
transformed-transformer (T −X) family of distributions. This
family of distribution is an extension of the beta-G family of
distribution developed by [2]. The cdf and pdf of the T − X
family are respectively given by:

F (x) =

−log(G(x))∫
0

q (t) dt = Q
[
−log

(
G (x)

)]
and

f (x) =
g (x)

G (x)
q
(
−log

(
G (x)

))
= h (x) q

(
−log

(
G (x)

))
where Q (t) is the cdf of the random variable T , h (x) is the
hazard function for random variable X with cdf G (x) and
G (x) = 1−G (x)

If the random variable T follows the Weibull distribution
with parameters θ and φ, then q (t) = θφtθ−1 exp

(
−φtθ

)
and hence, the cdf and pdf of the Weibull X-family are
respectively given by:

F (x) = 1− exp
(
−φ
[
−logG (x)

]θ)
(3)

and

f (x) =
φθg (x)

G (x)

[
−logG (x)

]θ−1
exp

(
−φ
[
−logG (x)

]θ)
(4)

where G (x) and g (x) are the cdf and pdf of any baseline distribution, θ and φ are additional and scale shape parameters
respectively. Substituting equations (1) and (2) in (3) and (4) yields the cdf and pdf of the WEE distribution given by:

F (x; a, b, θ, φ) = 1− exp
[
−φ (−`n {1− (1− exp (−bx))

a})θ
]

(5)
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and

f (x; a, b, θ, φ) =
abθφ exp (−bx)

1− (1− exp (−bx))
a [−`n {1− (1− exp (−bx))

a}]θ−1
(1− exp (−bx))

a−1

exp
[
−φ (−`n {1− (1− exp (−bx))

a})θ
]

(6)

respectively. Where x > 0, a > 0, b > 0, θ > 0 and φ > 0, θ and b are scale parameters and θ and a are shape parameters.
The Weibull Exponentiated Exponential (WEE) distribution extends the Weibull distribution, as well as the exponentiated
exponential and exponential distributions. The survival function, hazard function, cumulative hazard function and reverse hazard
rate function of the WEE distribution are respectively given by:

S (t) = exp
[
−φ (−`n {1− (1− exp (−bt))a})θ

]
h (t) =

abθφ exp (−bx) (1− exp (−bx))a−1

1− (1− exp (−bt))a [−`n {1− (1− exp (−bx))a}]θ−1

H (t) = φ (−`n {1− (1− exp (−bt))a})θ

and

r (t) =
abθφ exp (−bt) (1− exp (−bt))a−1 [−`n {1− (1− exp (−bt))a}]θ−1

1− (1− exp (−bt))a
exp

[
−φ (−`n {1− (1− exp (−bt))a})θ

]
1− exp

[
−φ (−`n {1− (1− exp (−bt))a})θ

]
Theorem 1:

∞∫
0

f (x) dx = 1

Proof

∞∫
0

abθφ (1− exp (−bx))
a−1

1− (1− exp (−bx))
a [−`n {1− (1− exp (−bx))

a}]θ−1
exp (−bx) exp

[
−φ (−`n {1− (1− exp (−bx))

a})θ
]
dx

letting m = φ (−`n {1− (1− exp (−bx))
a})θ gives:

∞∫
0

f (x) dx =

∞∫
0

exp (−m) dm = 1

Theorem 2: lt
x→0

f (x; a, b, θ, φ) = 0 and

lt
x→∞

f (x; a, b, θ, φ) = 0.
Proof
This is straight forward.
Hence, this clearly confirms that the distribution in (6)

has at least a mode since lt
x→0

f (x; a, b, θ, φ) = 0 and

lt
x→∞

f (x; a, b, θ, φ) = 0.
Sub-Models
One good characteristic of the WEE distribution is that it

contains several well known distributions as a special case.
1. when a = 1 or a = b = 1, the pdf in (6) reduces to

Weibull distribution
2. if θ = φ = 1, it reduces to exponentiated exponential

distribution
3. it reduces to exponential distribution when a = θ = 1

and
4. to exponential exponentiated exponential when θ = 1

The shape of the pdf , cdf , survival and hazard functions for
some selected parameter values are illustrated in figures 1a, 1b,
2a and 2b respectively.

3. Mathematical Properties
In this section, some important mathematical properties of

the WEE distribution such as alternative formula for the pdf
of the WEE distribution, Quantile function, Characteristic
function, moment generating function, Moments, kurtosis,
Shannon entropy and order statistics will be studied.

3.1. Useful Expansions

In the following, an alternative formula for the pdf of the
WEE distribution given in equation (6) is obtain using power
series expansion, binomial series expansion and following [33]
and [34]. Using power series, the pdf in equation (6) can be
written as:
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f (x; a, b, θ, φ) =
abθφ exp (−bx) (1− exp (−bx))

a−1

1− (1− exp (−bx))
a

∞∑
r=0

(−1)
r
φr

r!
[−`n {1− (1− exp (−bx))

a}]θr+θ−1

recall that the binomial series expansion of (1− x)
−1

=
∑∞
s=0 x

s. Hence,

[1− (1− exp (−bx))
a
]
−1

=

∞∑
s=0

(1− exp (−bx))
as
,

which makes the pdf to be written as

f (x; a, b, θ, φ) = abθφ exp (−bx)

∞∑
r,s=0

(−1)
r
φr

r!
(1− exp (−bx))

as+a−1
[−`n {1− (1− exp (−bx))

a}]θr+θ−1

following [33] and [34],

[−`n (1− x)]
n

=

∞∑
t=0

t∑
u=0

(−1)
t+u ((t−n)

t

)(
t
u

)
n− u

pu,tx
n+t

where pu,t can recursively be calculated as: pu,t = 1
t

∑t
v=0 [t− v (u+ 1)] cvpu,t−v for t = 1, 2, · · · with pu,0 = 1 and

ct = (−1)t+1

t+1 . Hence, the pdf in (6) is expressed as:

f (x; a, b, θ, φ) = aθφ

∞∑
s,r,t=0

t∑
u=0

Ωsrtug (x/λ, b) (7)

where Ωsrtu = (−1)r+t+uφr

r!(θr+θ−u−1)

(
t+1−θr−θ

t

)(
t
u

)
pu,t

θr−θ−1
a[θ(r+1)+s]+t λ = a [θ (r + 1) + s] + t and g (x/λ, b) is the pdf of the

exponentiated exponential distribution with parameters λ and b. Hence, several mathematical properties of the WEE
distribution can easily be derived from that of the exponentiated exponential distribution.

Figure 1. The pdf and cdf plots of the WEE distribution for some selected values.

3.2. Quantile Function and Simulation

Random realizations from a given distribution are generated using the quantile function. The quantile function of the WEE
distribution is given by:

Q (u) = −1/b`n

1−

1− exp

−(`n (1− u)
−1/φ

)1/θ


1/a
 (8)

where u is a random number generated from uniform distribution. That is u ∼ U (0, 1).
The first, second (median) and third quantiles are obtain by letting u = 0.25, 0.50 and 0.75 respectively. For instance, if we

let u = 0.50, we obtain the median of the WEE distribution given by:
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Figure 2. The survival and hazard functions plots of the WEE distribution for some selected values.

Median = `n

1−

[
1− exp

(
−
(
1/φ`n (2)

)1/θ)]1/a
−1/b

To obtain random realizations from the WEE distribution,
1. Generate a random variable U from U (0, 1).

2. Return X = −1/b`n

1−

1− exp

−(`n (1− u)
−1/φ

)1/θ




1/a
.

3. The numbers obtained are said to follow the WEE distribution.

3.3. Mode

Let X be a random variable with pdf f (x), then the mode of X is defined as:

d

dx
(`n (f (x))) = 0 (9)

Hence, if X ∼ WEE (a, b, θ, φ), then the mode of WEE distribution is obtain by substituting equation (6) in (9) Which
gives:

Mode =
d

dx
[`n (a) + `n (b) + `n (θ) + `n (φ)− bx+ (a− 1) `n

(
1− e−bx

)
− `n

(
1−

(
1− e−bx

)a)
+ (θ − 1) `n

(
−`n

(
1−

(
1− e−bx

)a))− φ(−`n(1−
(
1− e−bx

)a))θ]
and simplifying it gives:

Mode = −b+
b (a− 1) e−bx

1− e−bx
+
abe−bx

(
1− e−bx

)a−1

1− (1− e−bx)
a −

ab (θ − 1) e−bx
(
1− e−bx

)a−1[
1− (1− e−bx)

a]
`n
[
1− (1− e−bx)

a]
−

abθφe−bx
(
1− e−bx

)a−1 [−`n (1− (1− e−bx)a)]θ−1

1− (1− e−bx)
a = 0 (10)

Numerical methods such as bisection or fixed point methods
should be used to solve this equation since obtaining an
explicit solution of (10) is very difficult. However, it is easily
observed that this mode reduces to that of Weibull distribution

with parameters θ and φ when a = b = 1. Also when a = 1,
the mode of the random variable X reduces to that of Weibull
distribution with parameters θ and bθφ. When θ = φ = 1, it
reduces to that of exponentiated exponential distribution.
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3.4. Skewness and Kurtosis

The quantile function of the WEE distribution exist in
a closed form. This make it easy in evaluating Galton’s
coefficient of skewness and Moor’s coefficient of Kurtosis
proposed by [35] and [36] respectively. These coefficients are

defined by:

Sk =
Q
(

3/4

)
+Q

(
3/8

)
+Q

(
1/4

)
− 2Q

(
1/2

)
Q
(

3/4

)
−Q

(
1/4

) (11)

Mu =
Q
(

7/8

)
+Q

(
3/8

)
+Q

(
1/8

)
− 2Q

(
5/8

)
Q
(

3/4

)
−Q

(
1/4

) (12)

Using the quantile function in (8), the coefficient of skewness and kurtosis for the WEE distribution can easily be evaluated.

3.5. Characteristic Function

Let X be a random variable that follows the WEE distribution with pdf given in (6). The characteristic function of X defined
as ϕt (x) = E

(
eitx
)

is obtain as:

ϕt (x) =

∞∫
0

eitx
abθφ exp (−bx) (1− exp (−bx))a−1

1− (1− exp (−bx))a [−`n {1− (1− exp (−bx))a}]θ−1 exp
[
−φ (−`n {1− (1− exp (−bx))a})θ

]
dx

let u = φ (−`n {1− (1− exp (−bx))
a})θ. This gives:

ϕt (x) =

∫ ∞
0

e−u
∞∑
s=0

( it
b + s− 1

s

)(
1− exp

(
−
(
u

φ

) 1
θ

)) s
a

du

applying binomial series expansion to
(

1− exp

(
−
(
u
φ

) 1
θ

)) s
a

gives:

ϕt (x) =

∞∑
s,v=0

(−1)
v ( s

a

)
!(

s
a − v

)
!s!v!

(
it

b

)
s

∫ ∞
0

e−ue−v(
u
φ )

1
θ
du

where
(
it
b

)
s

= it
b

(
it
b + 1

) (
it
b + 2

)
· · ·
(
it
b + s− 1

)
. Hence, the characteristic function is given by:

ϕt (x) =

∞∑
s,v,w=0

(−1)
v+w ( s

a

)
!vwφ−

w
θ(

s
a − v

)
!s!v!w!

Γ
(w
θ

+ 1
)( it

b

)
s

(13)

when power series expansion is applied to e−v(
u
φ )

1
θ

.

3.6. Moment Generating Function

If X is a random variable that follows the WEE distribution with parameters a, b, θ and φ. Then the moment generating
function of X defined by MX (t) = E (etx) is obtain as follows:

MX (t) =

∞∫
0

etx
abθφ exp (−bx) (1− exp (−bx))a−1

1− (1− exp (−bx))a [−`n {1− (1− exp (−bx))a}]θ−1 exp
[
−φ (−`n {1− (1− exp (−bx))a})θ

]
dx

letting u = φ (−`n {1− (1− exp (−bx))
a})θ and following the steps in section (3.5), the moment generating function is

obtain as:

MX (t) =

∞∑
s,v,w=0

(−1)
v+w ( s

a

)
!vwφ−

w
θ(

s
a − v

)
!s!v!w!

Γ
(w
θ

+ 1
)( t

b

)
s

(14)

where
(
t
b

)
s

= t
b

(
t
b + 1

) (
t
b + 2

)
· · ·
(
t
b + s− 1

)
.
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3.7. Moments and Cumulants

The kth moment about the origin denoted by µ′k = E
(
Xk
)

can easily be obtain from the moment generating function.
This is done by differentiating the moment generating function
k-times and letting t = 0. That is µ′k = dk

dtk
(MX (t)) |t=0.

The first and second moments of the WEE distribution are
given by:

µ′1 =

∞∑
s,v,w=0

(−1)
v+w ( s

a

)
!vwφ−

w
θ(

s
a − v

)
!v!w!

Γ
(
w
θ + 1

)
sb

(15)

and

µ′2 = 2

∞∑
s,v,w=0

(−1)
v+w ( s

a

)
!vwφ−

w
θ(

s
a − v

)
!v!w!

Γ
(w
θ

+ 1
) ψ (s)− ψ (1)

sb2
(16)

respectively.where ψ (.) is digamma functions. Digamma
function is referred to as the derivative of the logarithm of
gamma function. The variance of the WEE distribution is

obtain using equations (15) and (16) by using the relation
var (x) = µ′2 − (µ′1)

2. The kth central moments denoted
by µk is related to the kth non-central moments by:

µk =

k∑
y=0

(−1)
y

(
k

y

)
(µ′1)

k
µ′k−y (17)

The kth kumulant denoted by κk is obtain by:

κk = µ′k −
k−1∑
p=0

(
k − 1

p− 1

)
κpµ

′
k−p (18)

The first three cumulants are given by:

κ1 = µ′1 (19)

κ2 = µ′2 − (µ′1)
2 (20)

κ3 = µ′3 − 3µ′2µ
′
1 + (µ′1)

3 (21)

It is important to note that coefficients of skewness and
kurtosis can easily be evaluated from moments about the origin
using appropriate relations.

3.8. Order Statistics

The probability density function (pdf) of the ith order statistics from an independent random sample with cumulative
distribution function (cdf)F (x) and pdff(x) is defined by:

fi:n (x) =
n!

(i− 1)! (n− i)!
f (x) (F (x))

i−1
(1− F (x))

n−i

This can easily be written as:

fi:n (x) =

n−i∑
y=0

(−1)
y

Γ (n+ 1)

Γ (i) Γ (n− i− y + 1)
f (x) (F (x))

y+i−1 (22)

From equation (5),

[F (x)]
y+i−1

=
{

1− exp
[
−φ (−`n {1− (1− exp (−bx))

a})θ
]}y+i−1

=

∞∑
z=0

(−1)
z

Γ (y + 1)

Γ (y + i− z) Γ (z + 1)
exp

{
−zφ [−`n {1− (1− exp (−bx))

a}]θ
}

Substituting this and (6) in (14) gives the ith order statistics for the WEE distribution as:

fi:n (x) =

n−i∑
y=0

∞∑
z=0

(−1)
y+z

Γ (n+ 1) Γ (y + i)

(z + 1) Γ (i) Γ (y + 1) Γ (z + 1) Γ (n− i− y + 1) Γ (y + i− z)
abθλ exp (−bx) (1− exp (−bx))

a−1

1− (1− exp (−bx))
a

[−`n {1− (1− exp (−bx))
a}]θ−1

exp
[
−λ (−`n {1− (1− exp (−bx))

a})θ
]

where λ = (z + 1)φ. Hence, the pdf of the ith order statistics
is given by:

fi:n (x) =

n−i∑
y=0

∞∑
z=0

Ωifi (x) (23)

where Ωi = (−1)y+zΓ(n+1)Γ(y+i)
(z+1)Γ(i)Γ(y+1)Γ(z+1)Γ(n−i−y+1)Γ(y+i−z) and

fi (x) is the pdf of WEE distribution with parameters a, b, θ
and λ. Thus, the density function of the WEE order statistics
is a linear mixture of WEE distribution. Based on equation
(23), some structural properties of the ith order statistics
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such as characteristic function, moment generating function,
moments etc. can be deduced from that of WEE distribution.
For example, the moment generating function of Xi:n can
easily be obtain from the moment generating function in
equation (14) with new parameters a, b, θ and λ.

3.9. Shannon Entropy

The entropy of a random variableX , is defined as a measure
of uncertainty about the outcome of a random experiment.

Different entropies such as Shannon and Rényi entropies have
been studied and discussed by researchers. The Shannon
entropy of a random variable X denoted by ηX is defined by:

ηX = E [−`n (f (x))]

IfX is a random variable that follows theWEE distribution
with parameters a, b, θ and φ. Then, the Shannon entropy is
obtain as follows:

ηX = E (−`n (a))− E (`n (b))− E (`n (θ))− E (`n (φ)) + E (bx)− E
(
(a− 1) `n

(
1− e−bx

))
−

E
(

(θ − 1) `n
(
−`n

(
1−

(
1− e−bx

)a)))
+ E

(
φ
[
−`n

(
1−

(
1− e−bx

)a)]θ)
+
(
`n
(

1−
(
1− e−bx

)a))
We obtain the Shannon entropy as:

ηX = −`n (abθφ) + bµX −
a− 1

a

∞∑
s=1

∞∑
v=0

(−1)
v
sv−1

v!φ
v
θ

Γ
(v
θ

+ 1
)
− θ − 1

θ
(ψ (1)− `n (φ)) +

1

φ
1/θ

Γ
(

1/θ + 1
)

+ 1

since

E
[
`n
(
−`n

(
1−

(
1− e−bx

)a))]
=

1

θ
(ψ (1)− `n (φ)) , E

{[
−`n

(
1−

(
1− e−bx

)a)]θ}
=

1

φ
,

and
E
[
`n
(

1−
(
1− e−bx

)a)]
=

1

φ
1/θ

Γ
(

1/θ + 1
)

4. Estimation of the Parameters of the WEE Distribution

In this section, the unknown parameters of theWEE distribution will be estimated using the Maximum Likelihood Estimation
technique.

Let x1, x2, · · · , xn be a random sample of size n drawn from the WEE distribution with parameters a, b, θ and φ. The
likelihood is defined by:

L (x; a, b, θ, φ) =

n∏
i=1

f (xi; a, b, θ, φ)

=
n∏
i=1

abθφ exp (−bxi) (1− exp (−bxi))a−1

1− (1− exp (−bxi))a
[−`n {1− (1− exp (−bxi))a}]θ−1 exp

[
−φ (−`n {1− (1− exp (−bxi))a})θ

]
(24)

= anbnθnφn exp

(
−b

n∑
i=1

xi

)
exp

[
−φ

n∑
i=1

(−`n {1− (1− exp (−bxi))a})θ
]

n∏
i=1

(1− exp (−bxi))a−1

1− (1− exp (−bxi))a
[−`n {1− (1− exp (−bxi))a}]θ−1

Taking the natural logarithm of (24) yields the log likelihood of WEE distribution given by:

` (x; a, b, θ, φ) = n log (a) + n log (b) + n log (θ) + n log (φ)− b
n∑
i=1

xi − φ
n∑
i=1

(− log {1− (1− exp (−bxi))a})
θ

+ (a− 1)

n∑
i=1

log ((1− exp (−bxi))) + (θ − 1)

n∑
i=1

log [− log {1− (1− exp (−bxi))a}] (25)

−
n∑
i=1

log [1− (1− exp (−bxi))a]

The MLE of the parameters a, b, θ and φ denoted by â, b̂, θ̂ and φ̂ are obtained by differentiating (25) partially with respect to
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a, b, θ and φ. Hence, the normal equations are:

∂`

∂a
=
n

a
− θφ

n∑
i=1

(1− exp (−bxi))a log (1− exp (−bxi))
1− (1− exp (−bxi))a

[− log (1− (1− exp (−bxi))a)]
θ−1

+

n∑
i=1

log (1− exp (−bxi))

+

n∑
i=1

(1− exp (−bxi))a log (1− exp (−bxi))
1− (1− exp (−bxi))a

− (θ − 1)

n∑
i=1

(1− exp (−bxi))a log (1− exp (−bxi))
1− (1− exp (−bxi))a log (1− (1− exp (−bxi))a)

(26)

∂`

∂b
=

n

b
+ a

n∑
i=1

xi exp (−bxi)
1− exp (−bxi)

−
n∑
i=1

xi
1− exp (−bxi)

− aθφ

n∑
i=1

xi exp (−bxi) (1− exp (−bxi))a−1

1− (1− exp (−bxi))a
(− log (1− (1− exp (−bxi))a))

θ−1 (27)

+ a

n∑
i=1

xi exp (−bxi) (1− exp (−bxi))a−1

1− (1− exp (−bxi))a
− a (θ − 1)

n∑
i=1

xi exp (−bxi) (1− exp (−bxi))a−1

[1− (1− exp (−bxi))a] log (1− (1− exp (−bxi))a)

∂`

∂θ
=

n

θ
− φ

n∑
i=1

(− log (1− (1− exp (−bxi))a))
θ

log (1− (1− exp (−bxi))a)

+

n∑
i=1

log [− log (1− (1− exp (−bxi))a)] (28)

and
∂`

∂φ
=
n

φ
−

n∑
i=1

(− log (1− (1− exp (−bxi))a))
θ (29)

From equation (29), the MLE of φ is obtain as a function
of a, b, θ, say φ̂ (a, b, θ), where

φ̂ (a, b, θ) =
n

n∑
i=1

(− log (1− (1− exp (−bxi))a))
θ

Solving equations (26-28) analytically may be intractable.
However, these equations can be solved numerically using
iterative procedures such as Newton Raphson method.
Statistical software can also be used to maximized the
likelihood function. This includes the maxLik package,
Adequacy package, fitdist package all in R. For interval
estimation and hypothesis testing on the parameters a, b, θ and
φ of the model, we obtain the Fisher Information Matrix J (Φ).
where Φ = (a, b, θ, φ)

T and

J (Φ) = −


Vaa Vab

Vbb

Vaθ

Vbθ

Vaφ

Vbφ
Vθθ Vθφ

Vφφ


The diagonal elements are the variances of the

corresponding parameters while the off-diagonals elements
are the covariances. The elements of J (Φ) are given in the
appendix. The asymptotic distribution of

√
n
(

Φ̂− Φ
)

is

multivariate normal N4

(
0, J (Φ)

−1
)

. Confidence interval
for the parameters a, b, θ and φ are constructed using the

asymptotic distribution N4

(
0, J

(
Φ̂
)−1

)
, where J

(
Φ̂
)

is

the total observed information matrix evaluated at Φ̂.
Hence, the asymptotic 100 (1− γ) % confidence interval for

a, b, θ and φ are â ± Zγ/2

√
V ar (â), b̂ ± Zγ/2

√
V ar

(
b̂
)

,

θ̂ ± Zγ/2

√
V ar

(
θ̂
)

and φ̂± Zγ/2

√
V ar

(
φ̂
)

respectively.

where Zγ/2
is the 100 (1− γ) % quantile of the standard

normal distribution.
To test for the goodnesss of fit of theWEE distribution, the

likelihood ratio (LR) statistic can be used. It can also be used
in comparing this distribution with some of its sub-models
such as Weibull , exponentiated exponential distribution and
exponential distribution. In constructing LR statistics for
testing some of the sub-models of the WEE distribution,
the maximum values of the unrestricted and restricted log-
likelihoods are computed. For example, the LR statistics
can be used to check whether the fitted WEE distribution
for a given data set is statistically superior to the fits of its
sub-models. In such a situation, we formulate the hypothesis
H0 : Φ = Φ0 againstH1 : Φ 6= Φ0 using theLR statistics. For
instance, the LR statistics for testing H0 : a = 1 against H1 :
a 6= 1 which is equivalent to compare the Weibull and WEE

distributions is τ = 2
[
l
(
â, b̂, θ̂, φ̂

)
− l
(
ã, b̃, θ̃, φ̃

)]
Where â, b̂, θ̂, φ̂ are the MLEs under H1 and ã, b̃, θ̃, φ̃
are the estimates under H0. The statistic τ is asymptotically
distributed as χ2

p and the null hypothesis is rejected when τ >
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κε where κε is the upper 100ε% point of the χ2
p distribution.

5. Applications
In order to illustrate the flexibility of theWEE distribution,

we fit the WEE distribution and its sub-models (Weibull,
Exponentiated exponential and Exponential distributions) to a
real data set. This data consist of the lifetimes of fifty (50)
devices given by [37]. The data have a bathtube-shaped hazard
function and is given as follows:
0.1, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 6.0, 7.0 ,11.0, 12.0,
18.0, 18.0, 18.0, 18.0, 18.0, 21.0, 32.0, 36.0, 40.0, 45.0, 46.0,

47.0, 50.0, 55.0, 60.0, 63.0, 63.0, 67.0, 67.0, 67.0, 67.0, 72.0,
75.0, 79.0, 82.0, 82.0, 83.0, 84.0, 84.0, 84.0, 85.0, 85.0, 85.0,
85.0, 85.0, 86.0 and 86.0

The MLEs of the model parameters are determined and
some goodness of fit statistics for these distributions are
compared. Model selection is carried out based upon Akaike
Information Criteria (AIC), Bayesian Information Criteria,
Consistent Akaike Information Criteria (CAIC) and Hannan-
Quinn Information Criterion (HQIC) statistics. Model with
smaller values of these statistics is considered to be the best
model.

Table 1. Descriptive statistics for fifty lifetime devices.

Table 2. Maximum Likelihood Estimates, standard error in parenthesis and Information Criteria of the fitted models.

Figure 3. Histogram and the fitted WEE, Weibull, Exponentiated exponential and exponential distributions.

Table 2 gives the estimated values for all the parameters
of the WEE distribution and that of its sub-models. The
estimates of the loglikelihood and the statistics: AIC, CAIC,
BIC and HQIC are also given. The WEE distribution have
the least estimates of these statistics, thus, WEE distribution

provides the best fits to this data and can be consider a very
competitive model to other distributions. This is also evident
from the histogram of the data set and plot of the fitted WEE
density and that of its sub-models as displayed in figure ??.
Hence, WEE distribution could be chosen as the best model
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based on the data set used.
The asymptotic variance covariance matrix for the estimated

parameters is given by:
0.0047 4.930× 10 - 05

2.378× 10 - 07

- 0.0292

- 9.595× 10 - 05

0.0436
0.0007

0.4981 - 0.4925
0.1765


95% confidence interval for the estimates of the parameters
of the WEE distribution a, b, θ and φ are: (0.1670, 0.4365),
(0.0025, 0.0044), (4.1527, 6.9193) and (0.6545, 2.3015)
respectively.

6. Conclusion

The T − X family of distribution proposed by [10]
and exponentiated exponential distribution proposed by [13]
were used in redefining the pdf of Generalized Weibull-
exponential distribution. As mentioned earlier, following [10],
we call the resulting pdf Weibull exponentiated exponential
distribution. Comprehensive mathematical properties of the
distribution were given. Hypothesis testing on the inclusion
of additional parameter was discussed. Finally, we fit a data
set to the distribution and its sub-models so as to ascertain
its performance when compared to the sub-models. It is
observed from the performance measures used that the WEE
distribution gives a better fit than its sub-models.

Appendix
Let

A0 = x2
i e−bxi , A1 =

(
1− e−bxi

)a
, A2 =

(
1− e−bxi

)a−1
, A3 =

(
1− e−bxi

)a−2
, A4 = 1−

(
1− e−bxi

)a
,

B1 =
[
− log

(
1−

(
1− e−bxi

)a)]θ
, B2 =

[
− log

(
1−

(
1− e−bxi

)a)]θ−1

, B3 =
[
− log

(
1−

(
1− e−bxi

)a)]θ−2

,

B4 = log
(
1− e−bxi

)
and B5 = log

(
1−

(
1− e−bxi

)a)
,

then the second order derivatives are given as:

∂2`

∂a2
= − n

a2
− θφ

∑ A1B4B3

A4

[
A1

A4
(θ −B5 − 1)−B5

]
+
∑ A1B

2
4

A2
4

− (θ − 1)
∑ A1B

2
4

A2
4B

2
5

(B5 +A1)

∂2`

∂b2
= − n

b2
− (a− 1)

∑ A0

A
2/a
5

− aθφ
∑ A0A3B3

A4

[
a (θ − 1)A1e

−bxi −
(
ae−bxi − 1

)
B4 −

A1B4

A4

]

+ a
∑ A0A3

A2
4

(
ae−bxi +A1 − 1

)
− a (θ − 1)

∑ A0A3

A2
4B

2
4

((
ae−bxi − 1

)
B4 +A1B4 − aA1e

−bxi
)

∂2`

∂θ2
= − n

θ2
+ φ

∑
(−B5)

θ+1
log (−B5)

∂2`

∂φ2
= − n

φ2

∂2`

∂a∂b
= −φ

∑ A1B4

A4
(−B5)

θ−1
(1 + θ log (−B5))−

∑ A2B4

A4B5

∂2`

∂a∂θ
= −φ

∑ A1B4

A4
B2 [1 + θ log (−B5)]−

∑ A1B4

A4B5

∂2`

∂a∂φ
= −θ

∑ A1B4B2

A4

∂2`

∂b∂θ
= −aφ

∑ xie
−bxiA2B2

A4
(1 + θ log (−B5))− a

∑ xie
−bxiA2

A4B5

∂2`

∂b∂φ
= −θ

∑ xie
−bxiA2B2

A4
,

∂2`

∂θ∂φ
= (−B5)

θ+1
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