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Abstract: Complexity of Genotype by environment interaction (GxEI) in sugarcane multi-environmental trial (MET) 
requires further evaluation for genotypes performance determination. Genotype and genotype by environment (GGE) is one of 
the many statistical techniques for evaluating the interaction with emphasis on genotypes. Many statistical analysis tools for 
GGE exists with usage depending on cost and knowhow. R open source analytical software ensures availability and the 
knowledge on the necessary packages is required thus the objective of the paper on utilization of GGE using R software in the 
evaluation of genotypes with presence GxEI. The application used secondary data of Kenyan Mtwapa series of 96 and 97 
preliminary varietal trial stage 4 established under randomized complete block design (RCBD), consisting of 15 test genotypes 
and three controls in the environments of SONYsugar, Mumias and KibosF9 with the plant crop and ratoon crop cycles as 
seasons. The 2-way GEI data was handled using singular value decomposition (SVD) through the R package; GGEbiplot 
programmed scripts and graphical user interface (GUI) were used in ranking genotypes and environments, determining 
genotypes performance overall and in each environment, determining stabilities and adaptability of the genotypes and 
identifying mega trial environments. GGEbiplot unpacked the GEI through the principle components (PC) 1 and 2 that 
sufficiently explained 85.37% of the variations. 

Keywords: Genotype by Environment Interaction, Genotype and Genotype by Environment,  
Singular Value Decomposition, R-software, GGEBiplot and Sugarcane 

 

1. Introduction 

Stages two-five of sugarcane varieties trials are multi-
environmental trials (MET) that often result in genotype and 
environmental interaction (GEI). The interaction is the non-
uniform change in the performance of the test genotypes 
given the change in test environment. Statistically significant 
GEI makes it difficult in recommending the best performing 
cultivars as it confounds their evaluation, thus the need to 
evaluate the GEI further for better understanding, 
interpretation and recommendation. Literature shows that a 
variety of regression based statistical methods had been used 
in evaluating the GEI, these includes Additive and 
multiplicative interaction (AMMI), Genotype and Genotype 

by Environment (GGE), Regression (SRER) among others. 
Multivariate GGEbiplot is a graphical extension of GGE and 
has been used in evaluating cultivars whenever GEI occurs in 
a number of trials for various crops. Examples includes; 
discriminating nitrogen use efficiency in popcorn lines in 
Brazil [1], determining yield stability of promising hybrid 
rice in Bangladesh [2], analyzing soybean multi-environment 
yield trial data in north western Ethiopia [3] and yield trials 
of rice produced in a temperate climate [4]. In other fields, 
biplot has been used in soya beans breeding [5], pathogen 
study [6], dialed cross table [7] and qualitative trait loci 
(QTL) by Environment [8]. 

Statistical computing made light processing of GEI using 
various statistical techniques and packages by many 
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scientists; Statistical analysis systems (SAS) in evaluating 
GEI [9], Minitab [10], Stata [11], SPSS [12] and various SAS 
products [13]. However, functionalities are often limited and 
results hard to obtain with the exception of STATISTICA 
[14]. Greater functionalities for biplot programs are provided 
by; XLS-Biplot [15], GGEBiplot [16] and BiPlot [17] and 
Genstat package [18]. Tailor made packages for multivariate 
visualization of data exists for specific disciplines such as 
ecology; brodgar [19, 20, 21] and PC-ORD [22, 23, 24]. The 
other alternative is programming using programming 
languages.  

R is a free statistical programming language and 
environment capable of producing high-quality graphics; it is 
an open-source implementation of the S programming 
language, available for download for all the major platforms 
from the R project home page [25]. The R packages for 
Biplot analysis for the GxEI includes GGEBiplot [26], and 
GGE [27], that are better than the previously mentioned as 
they produce high quality biplot graphics. Many researchers 
have also use direct scripting in R [28]. 

Review of GGEBiplot analysis covered its principles and 
GxEI data handling. Biplot analysis solves genotypes 
stability problem in the presence of interaction by matching 
each genotype to specific environment through singular value 
decomposition (SVD) of the GxE matrix [16]. GGE implies 
G+GE, that is G and GE being the two sources of variation 
considered for genotype and test environment evaluation 
while the biplot expresses GE matrix graphically. Biplot 
analyses have mitigated the effect of GE by visualizing 
relationships among genotypes, environments and their 
interaction through SVD [8, 29-33].  

Biplot analysis is applicable to a 2-way (G x E), 3 way (G 
x E x Trait (T)) and even 4 way (Year x E x G x T) 
interaction data. Biplot inner product property, considers 
matrices Gmxr, Erxn and Pmxn of m row, r columns, r rows and 
n columns and m rows and n columns respectively that can 
be displayed as in equation 1 

��� = ����
� + ����

� = 	
��
� = |	�|
��
 cos ���    (1) 

Where (�� , ��) are the coordinates for genotype (row) i and 
(��
�, ��

�) are coordinates for environments (column) j; 	
� 	is the 
vector for genotype (row) i and �
�	 is the length for 
environment (column) j; |	�| is the vector length for row i 

and 
��
 is the vector length for column j. ���  is the angle 
between the vectors of row i and column j. 

Any 2 way GxE interaction table can be analyzed 
graphically as long as it can be sufficiently approximated by 
a rank 2 matrix, thus matrix Pmxn is SVD into matrices Gmxr, 
Drxr and Enxr as in equation 2 

���� = ������������� 	r ≤ min (m, n)         (2) 

Where Gmxr is mxr matrix characterizing m genotypes, Enxr 
is rxn matrix characterizing n environments and Drxr is a 
diagonal matrix of r singular values. Matrix Pmxn is SVD into 
r principle components (PC), each having genotype vector 
(Ԑii), environment vector (ηij) and singular values (λr) 
equation 3 

��� = ∑ Ԑ��λ�η���
� !  (λr ≥ λr+1)                      (3) 

Where r- rank of GxEI 2 way table, it’s the no. of PC 
necessary to fully represent Pmxn. r ≤ min (m, n). When r < m, 
there is a linear relationship among genotypes and that is 
equally true when m>n. When r < n, there are association 
among environments. Environments are independent iff r=n. 
(λr) is the singular value for PCi, λ�" is the eigen value of PTP 
or PPT. G ith columns are eigen vector of PPT corresponding 
to λ�

"  and the ith column of E are the eigen vector of PTP 
corresponding to the λ�

". The SVD requirement is that GTG 
=Irxr =ETE where Irxr – r x r identity matrix  

The goodness of fit for the biplot is given by (λ!" + λ"")/%% 
with SS being the sum of squares of the GxE interaction 
table. Given that (λr > λr+1), biplot PC1 and PC2 captures 
important patterns of P even when goodness of fit is poor. 
Excellent goodness of fit shows the strength of association 
among environments or among genotypes, poor goodness of 
fit is an indication of complex patterns or lack of discerning 
patterns.  

The singular values are partitioned into genotypes and 
environment scores before biplot and then used to construct 
the approximated GxE two way data (equation 4)  

��� = ∑ Ԑ��λ�η���
� ! = ∑ (Ԑ��λ'( )(λ'!)(η��)�

� !  f (0 ≤ f ≤1) (4) 

f (0≤f≤1) provides the ways of partitioning the single 
values; column metric preserving (f=0), row metric 
preserving (f=1) and symmetrical partitioning (f=1/2). 

The dot product and correlations between two columns are 
provided and estimated as ∑ ������� = 
��
�
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In the GGE biplot case the 2 way data is column centered 
and �� = ��� = 0  and thus *�� = ∑ +���.+����./�

� !

/0*1(∑ +���.
"�

� ! ∑ +����.
"
=	∑ ��������

� ! 	/
��

���
�
� !  and 

∑ ��������
� ! 	/
��

���
*��  and *�� = cos 3���  given that 
∑ ��������
� ! = 
	�

��
 cos ���  thus relationship of columns 

centered data becomes equality between cosine and 
correlation. The vector length of the column equals sqrt(m-
1)*sd(column factor across the row); %�/0*1(4 − 1) =
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1.1. Data Centering Prior to SVD 

Let the GxE 2 way table be Y. The value of each cell is the 
mixed effect of grand mean (µ), genotype main effect (αi), 
environment main effect (βj), genotype by environment 
interaction (Øij) and a random effect (Ԑij) thus the model 

6�� = 7 + 3� + 8� + ∅�� + Ԑ��                           (5) 

The GE matrix P can be any part of Yij and could be 
modified to different models ignoring the random term thus 

��� = 6�� = 7 + 3� + 8� + ∅��                         (6) 

��� = 6�� − 7 = 3� + 8� + ∅��                         (7) 
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��� = 6�� − 7 − 3� = 8� + ∅��                         (8) 

��� = 6�� − 7 − 8� = 3� + ∅��                      (9) 

��� = 6�� − 7 − 3� − 8� = ∅��                      (10) 

The biplot models 6, 7, 8, 9 and 10 are interpreted 
differently and depend on the research objective. Model 6 is 
the additive and multiplicative interactive model (AMMI) for 
visualizing the entire dataset, model 10 is for pure GE 
visualization, model 9 is the GGE (G+GE) model for 
genotype evaluation through GGE biplot analysis. 

1.2. Data Scaling Prior to SVD 

The GGE biplot model 9 is modified as  

��� = +6�� − 7 − 8�./%� = +3� + ∅��./%�      (11) 

Where Si is the scaling factor for the column (environment 
or traits j) thus model 9 is the case where Si=1. When Sj is 
the standard deviation (sd) for columns, the data is 
standardized giving all columns the same weight. When Sj is 
standard error (se), the heterogeneity among the 
environments is removed. The axes of the biplots are drawn 
to scale. 

1.3. Biplot Analysis of GE in MET Data 

Statistically significance GEI necessitates examination of 
changes in ranks of genotypes (crossover) in different 
environments resulting in different winners in different 
environments. Lack of recognizable GE patterns indicates 
presence of single mega environment and a model addressing 
random sources of variation is appropriate. GEI necessitates 
determining whether target environment should be divided 
into meaningful mega environments for exploiting /avoiding 
GE, determining the causes of GE interaction, the best test 
environments (representative and discriminating) and 
superior genotypes that are high and stable performers 

The next section of the paper has the materials and 
methods enumerating the SVD of GEI for Environment and 
Genotype score and singular values and using them through 
the combination of GGEBiplot and gge R software packages 
in the production of biplots in the further evaluation of GEI 
in terms of the genotypes and environments adaptability and 
stability.  

2. Materials and Methods 

2.1. Study Environment: Kibos, Sony and Mumias 

Data: The test clones used in the study were; 96_153, 
96_173, 96_50, 97_100, 97_102, 97_131, 97_204, 97_215, 
97_221, 97_224, 97_226, 97_264, 97_317, 97_321, 97_399 
and 4 controls; CO421, CO617, N14 and CO945 of Mtwapa 
series established in 96 and 97. CO617 and CO945 were 
removed from the analysis as they didn’t contribute the 
interaction as they were planted in single sites 

2.2. Statistical Method: Multivariate GGE Biplot 

Multivariate GGE biplot analyses are based on the mean 
yield phenotypic measurement of the test cultivars. The 
model was as shown in equation 12  

6�� − 7 = �� + �� + ���� 	(: = 1,2,⋯ ,17; ? = 1,⋯ ,3) (12) 

Where Yij represents the phenotypic average of genotype i 
in environment j, µ is the grand mean, Gi is the fixed effect of 
genotype i, Ej is the fixed effect of environment j, GEij is the 
random effect of the interaction between genotype i and 
environment j.  

Equation 13 indicates the principle of biplot. It referred to 
as the inner-product property of the biplot allowing 
estimation of elements of matrix P and visualizing them, 
ranking the rows relative to any column, ranking the columns 
relative to any row, comparing any two rows relative to 
individual columns, identifying the rows with largest (or 
smallest) values for each column, or vice versa [29]. 
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� +	����
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 = |	�|
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 cos ��� 	(: =
1,2,⋯ ,17; ? = 1,⋯ ,3)                           (13) 

Where (�� , � ) are the coordinates for genotype i and 
(��

�, ��
�) are coordinates for environments j; 	
� 	is the vector 

for genotype i and �
�	is the length for environment j; |	�| is 

the vector length for genotype i and 
��
 is the vector length 
for environment j. ��� is the angle between the vectors of row 
i and column j. 

SVD 

GGE biplot model keeps the genotype effect (G) and 
genotype x environment (GE) interaction effects together as 
multiplicative terms as expressed by equation 14 

6�� − 7 − 8� = 	!��!� + 	�"�"� + A�� 	(: = 1,2,⋯ ,17; ? =
1,⋯ ,3)                                       (14) 

where Yij is the yield performance expected of genotype i in 
environment j; µ is the overall mean; βj is the main effect of 
environment j; g1i and e1j are the main scores for the ith 
genotype in the jth environment, respectively; gi2 and e2j are 
the secondary scores for the ith genotype in the jth 
environment, respectively; and ɛij is the residual not 
explained by either of the effects (“noise”). 

Thus, construction of the biplot in the GGE model is 
accomplished by the simple dispersion of g1i and gi2 for 
genotypes and e1j and e2j for environments, via singular value 
decomposition (SVD), in accordance with the equation 15 

6�� − 7 − 8� = λ!ξ�!η!� + λ"ξ�"η"� + A�� 	(: = 1,2,⋯ ,17; ? =
1,⋯ ,3)                                     (15) 

where λ1 and λ2 are the largest eigenvalues of the first and 
second principal components; PC1 and PC2, respectively; ξi1 
and ξi2 are the eigenvalues of the ith genotype for PC1 and 
PC2, respectively; and η1j and η2j are the eigenvalues of the 
jth environment for PC1 and PC2, respectively 
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2.3. R GGEbiplotGUI and GGEbiplot Scripting 

The GGE biplot analysis was performed with the aid of R 
software [25]. It includes mixed model analysis the for the 
phenotypic yield data of the genotypes. The workings are as 
follows; 

setwd() # setting working directory 
model <- AMMI(Locality, Genotype, Rep, MKMGHA, 

console=FALSE)model$ANOVA 
install.packages(“GGEBiplotGUI”, dependencies=TRUE) 

#Installing GGEBiplotGUI package 
library(GGEBiplotGUI) #Calling the library 
head(gge) #View top 6 rows of data 
GGEBiplot(Data=gge) # GGE biplot analysis 
R codes for the analysis 

#Biplot analysis in R using GGEBiplot analysis for GxE 
Setwd() 
dtge<-read.csv("G:/GGE Biplot 

analysis/MS97&98SeriesGxE.csv", header=TRUE) 
View(dtge) 
library(agricolae) 
library(GGEBiplotGUI) 
attach(dtge) 
dtge2 <- dtge[,-1] 
rownames(dtge2) <- dtge[,1] 
GGEBiplot(Data=dtge2) 
svd(dtge2) 
as.matrix(svd(dtge2)$d) 
dtge2<-as.matrix(dtge2) 
prcomp(dtge2) #The get the principle components 

standards deviation and variences 
prcomp(dtge2)$sd # standard deviation 
(prcomp(dtge2)$sd)^2 # variances 
#################################### 
dtge<-read.csv("G:/GGE Biplot 

analysis/MS96&97series.csv", header=TRUE) 
View(dtge) 
library(GGEBiplotGUI) 
library(gge)#loading the library gge 
#install. packages("GGEBiplots", dependencies=TRUE)# 

Installing the package GGEBiplots and  
#dependent packages;'farver', 'tweenr', 'ggforce' 
library(GGEBiplots)#Loading the library (GGEBiplot) 
#Creating the two way GxE table of means 
meantab<-stattable (dtge$VARIETY, dtge$Site, 

dtge$TCH, FUN=mean, na. rm=TRUE) 
View(meantab)# Viewing the GxE table of means 
GGE1<-GGEModel(meantab) # GGE modeling of the data 

"meantab"for the GxE data 
CompareGens(GGE1,"N14","96_50")#Comparing two 

genotypes at a time  
DiscRep(GGE1)#Getting the discriminativeness and 

Representativeness 
EnvRelationship(GGE1) #Examining the environments 

relations 
#Examining the Environments 
#mfrow3d(1,3) 

ExamineEnv(GGE1,"Mumias","Sony")#Examining the 
Environment "Mumias" 

ExamineEnv(GGE1,"Sony")#Examining the Environment 
"Sony" 

ExamineEnv(GGE1,"KibosF9")#Examining the 
Environment "KibosF9" 

# Examining the Genotypes  
ExamineGen(GGE1,"96_153"); 

ExamineGen(GGE1,"96_173"); 
ExamineGen(GGE1,"96_50"); 

ExamineGen(GGE1,"97_100"); 
ExamineGen(GGE1,"97_102"); 
ExamineGen(GGE1,"97_131"); 

ExamineGen(GGE1,"97_204"); 
ExamineGen(GGE1,"97_215"); 
ExamineGen(GGE1,"97_221"); 

ExamineGen(GGE1,"97_224"); 
ExamineGen(GGE1,"97_226"); 
ExamineGen(GGE1,"97_264"); 

ExamineGen(GGE1,"97_317"); 
ExamineGen(GGE1,"97_321"); 
ExamineGen(GGE1,"97_399"); 

ExamineGen(GGE1,"CO421"); 
ExamineGen(GGE1,"N14"); 

#General GGE plot 
GGEPlot(GGE1) 
# Specifying the outcome plot outlook 
GGEPlot(GGE1, type = 4, d1 = 1, d2 = 2, selectedE = NA, 

selectedG = NA, selectedG1 = NA, selectedG2 = NA, 
colGen = "forestgreen", colEnv = "blue", colSegment = 
"red", colHull = "black", sizeGen = 4, sizeEnv = 4, largeSize 
= 4.5, axis_expand = 1.2, axislabels = TRUE, axes = TRUE, 
limits = TRUE, titles = TRUE, footnote = TRUE) 

GGEPlot(GGE1, type = 4, d1 = 1, d2 = 2, selectedE = NA, 
selectedG = NA, selectedG1 = NA, selectedG2 = NA, 
colGen = "forestgreen", colEnv = "blue", colSegment = 
"red", colHull = "black", sizeGen = 4, sizeEnv = 4, largeSize 
= 4.5, axis_expand = 1.2, axislabels = TRUE, axes = TRUE, 
limits = TRUE, titles = FALSE, footnote = FALSE) 

#Using the gge package 
GGE2<-gge(as. matrix(meantab)) 
GGEPlot(GGE2) #ploting  
#################### 
MeanStability(GGE1, footnote = FALSE) # Getting the 

means versus stability 
RankEnv(GGE1, footnote = FALSE)# Ranking the 

Environments 
RankGen(GGE1, footnote = FALSE)# Ranking the 

Genotypes 
GGEPlot(GGEModel(meantab)) #GGE plot 
WhichWon(GGE1) # which won where plot 

3. Results and Discussions 

The results and discussions are presented in four sections: 
section one represents the results of analysis of variance and 
testing the GEI significance hypothesis, section two is the 
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SVD of GEI providing genotypes and environment scores 
singular values, variations explained and information ratio, 
section three on genotype performance and stability, 
relationships amongst test environments, which genotypes 
won-where identifying the best genotypes for each 
environment; ranking genotypes and environments, 
discriminativeness and representativeness and stability and 
adaptability. 

3.1. GGEBiplot ANOVA 

ANOVA (table 1) indicates the from the combined analysis 

sugarcane cultivars yields were affected by genotypes 
(9.38%), environment (42.42%) crop class-CC (6.93%) and 
GE interaction (8.09%). G, E and GEI were highly 
significant (P<0.0001, P<.0001, P<.0001 and P=0.0006 
respectively) for sugarcane yield. The highly significant G × 
E effects suggest that genotypes be tested for adaptation to 
specific environments [34-35]. GEI effects show that 
genotypes performed differently to the variations in 
environmental conditions of sugarzones and qualified multi-
location trials. 

Table 1. ANOVA. 

Source DF SS Mean Square F-Value Pr>F Explained SS% 

VARIETY 16 55659.57 3478.7229 5.05 <.0001 9.38 
Site 2 251671.8 125835.8753 182.63 <.0001 42.42 
REP(Site) 6 15093 2515.4992 3.65 0.0018 2.54 
CC 2 41119.65 20559.824 29.84 <.0001 6.93 
Site*VARIETY 32 48015.29 1500.4777 2.18 0.0006 8.09 
Site*VARIETY*CC 49 45308.72 924.6678 1.34 0.0832 7.64 
Error 198 136424.9 689.0145 

  
22.99 

Corrected Total 305 593292.8 
   

 

3.2. Singular Value Decomposition (SVD) of Genotype and Environment Interaction 

SVD of the GEI provides the environmental scores, genotype scores and the singular values as shown in tables 2, 3 and 4 

Table 2. Environmental scores. 

 
[,1] [,2] [,3] 

[1,] -0.42425 0.10430 0.89952 
[2,] -0.55028 0.75921 -0.34756 
[3,] -0.71917 -0.64244 -0.26470 

Environments; 1-KibosF9, 2-Mumias and 3-Sonysugar. 

Table 3. Genotypes scores. 

Genotypes [,1] [,2] [,3] genotypes [,1] [,2] [,3] 

[96_153,] -0.21389 0.222204 0.228274 [97_224,] -0.25347 0.188533 0.457249 
[96_173,] -0.24563 0.115254 -0.1171 [97_226,] -0.26859 -0.03879 0.29493 
[96_50,] -0.22438 -0.15053 -0.04905 [97_264,] -0.2273 -0.29002 -0.29496 
[97_100,] -0.21374 0.103862 -0.16661 [97_317,] -0.27351 -0.37906 0.04373 
[97_102,] -0.22387 0.178234 -0.34435 [97_321,] -0.23048 0.023301 -0.08715 
[97_131,] -0.29254 -0.01848 0.022013 [97_399,] -0.19884 0.312403 0.239912 
[97_204,] -0.23006 -0.03426 0.03436 [CO421,] -0.26641 0.04307 -0.19717 
[97_215,] -0.23208 0.526887 -0.13988 [N14,] -0.26478 -0.4451 0.367712 
[97_221,] -0.24247 -0.17335 -0.37416     

 
Singular value, explained variation, cumulative 

proportion, and variances for the principal components 

(PCs) of the GGE biplot analysis. 

Table 4. Singular values, variations and variances. 

PC Singular Values Explained% Cumulative% Variances 

1 988.0726 65.48 65.48 707.16 
2 66.51622 19.89 85.37 214.82 
3 54.04387 14.63 100.00 158.02 

Principal components one and two accounted for 
85.37% of the total variation hence GGEbiplot method 
explaining a bigger proportion of the sum of G+GE. 
14.63% could be attributed to PC3 or noise. PC with an IR 
value more than one shows that it accounts for more 

information and variation unlike that with lesser than one as 
indicated by PC1 and thus making biplot analysis appropriate 
in explaining patterns related to GE interaction 

3.3. Genotype Performance and Stability 

Productive performance: genotypes allocated on the vertex 
of the polygon are farther from the origin than the other 
genotypes within the sector bounded by them and the most 
responsive. They show better or worse performance in some 
or in all of the environments and therefore they can be used 
to identify possible mega-environments. Genotypes located 
within the polygon are the least responsive to the stimuli of 
the environments  
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Figure 1. General GGE biplot. 

3.4. Relationships Amongst Test Environments 

Interrelationships among the three test environments are 
shown figure 2. Lines connecting the biplot origin and 
environments markers are environment vectors while the 
angle between the vectors of two environments provides the 
correlation coefficient between them; the cosine of the angle 
between the vectors of two environments estimates 
correlation coefficient between them [36-37]. Based on the 
cosine the environments were grouped into two; one being 
KibosF9 and Mumias and two being Sonysugar as shown by 
the distance between those environments. Nonetheless the 
angles between all the three environments are acute hence all 
were positively correlated hence the GE was moderately low 
and no crossover. The distance between environments 
measure their dissimilarity in discriminating genotypes and 
helps in grouping environments. Similarity (covariance) 
between two environments is determined by both length of 
their vector and cosine of angle between them. Closer 
association between KibosF9 and Mumias shows that the 
same information about genotypes could be obtained from 
either of the two and hence reduction in testing costs. 

 

Figure 2. Relationships among environments. 
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3.5. Genotype Best Performance with Reference to 

Environment (Which Won Where) 

GGE polygon (figure 3) views 15 sugarcane genotypes and 
two controls tested in the three environments. It identifies 
winning genotypes in different environments by visualizing 
GEI [29] in MET and help in estimating possible existence of 
different mega environments [5, 8, 38]. The vertex genotypes 
were 97_264, 97_317, 97_131, 97_224, 97_215, 97_39 and 
97_100 having the largest distance from the origin. They are 
the best or poorest in some or all environments given they are 
farthest from the origin of biplot [29], and thus were more 
responsive to environmental change and are considered as 
specially adapted genotypes. The biplot is divided into seven 
sections by the seven rays with genotypes falling in all 
sections while the environments falling in three areas. The 
97_131 and 97_224 cultivars are in vertices of the polygon in 
which the KibosF9 and Mumias environments are contained; 
thus, they are the most productive in those two environments 
in terms of yield. Cultivar 97_317 was in the vertex that had 
Sonysugar environment thus it’s the best performer for yield 
in Sonysugar. The other genotypes on the vertices of the 
polygon not contain any of three environments are 
unfavorable in the three test environments and showed low 
responsiveness and yields. Test environments fell in to two 
sectors while five of the sectors in the polygon had no test 
environment. The best performing genotype in yield was 
97_399 being the furthest to the right  

 

Figure 3. Genotypes adaptability and performance to environment. 

3.6. Ranking the Genotypes and Environments 

Figure 4 ranks 15 genotypes and two controls by mean 
yield and stability. Line passing through biplot origin from 
lower right to upper left is the average environment axis 
(AEA) as defined by the first two PCs of the environments 
scores. The furthest from the arrow is the genotype with the 
highest yield 

 

Figure 4. Genotypes ranks. 

Ranking genotypes in a particular environment; the 
environment axis through the origin and that specific 
environment, genotypes closer to the environment along the 
axis are high yielding and vice versa. Thus 97_317 and N14 
are ranked best on Sony, 97_224 in Mumias, 97_131, 97_226 
and 97_224 in Kibos. Genotype axis through the biplot origin 
and that genotype, along that axis are the rankings of the 
environments. Genotypes located closer to the ideal genotype 
are more desirable than others. Figure 5 ranks the test 
environments, KibosF9 and Sony allocated to the third and 
fourth and second concentric circles are the closest to ideal in 
terms of yields and phenotypic stability. Kibos was ranked 1st 
at was closer to the middle of the concentric cycles followed 
by Sony and Mumias. 

 

Figure 5. Environments ranking. 
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3.7. Discriminativeness and Representativeness 

The circle indicated by the arrow represents the average 
environment. If the angle formed between the test 
environment and the line passing through the average 
environment is small, it means that this test environment is 
representative, and the larger the vector for each 
environment, the greater the discrimination capability [8]. 
Thus Sony was best at discriminating the genotypes followed 
by KibosF9 and Mumias in that order.  

The average environment is at the point where the arrow is 
and the line being average environment axis (AEA). A test 
environment that has a smaller angle with the AEA is more 
representative of other test environments. Thus, KibosF9 was 
most representative as compared to Mumias and Sony. None 
of the zones was best in both discrimitiveness and 
representativeness as none felt on the AEA line. 
Discriminating but non-representative test environments such 
as SONY and Mumias are good for selecting specifically 
adapted genotypes if they can divided into mega-
environments. Discriminating but non-representative test 
environments like Sony could be useful for culling unstable 
genotypes given that it was a single mega-environment. 
Mumias and Kibos could have been a mega environment 
given that they were close with an acute angle between them 
as shown in figure 6 

 

Figure 6. Genotypes and environments discriminativeness and 

representativeness. 

3.8. Genotypes Mean and Stability 

Genotypes yields and stability evaluation are based on the 
average environment coordination (AEC). An ideal 
environment is given by the mean score of principal 
components 1 and 2 (PC1 and PC2) for all test environments. 
Genotypes that showed higher yield than the overall mean 
were 97_224, 97_226, 97_131, 97_317 and N14. Genotypes 

96_173, 97_221 and CO421 yields were similar to the overall 
mean yield. The others genotypes showed a lower yield than 
the overall mean (Figure 7). 

 

Figure 7. Mean and stability. 

Comparing all the genotypes, the genotype metric 
preserved is used with the Euclidian distance between them 
measuring their overall dissimilarity. Genotype vector gives 
its contribution to the G+GE, thus the longest vector the large 
contribution to either G or GE or both (G+GE). Angle 
between genotype vector and AEA partitions the vector 
length into G and GE components. Right angle between them 
implies contribution to GE only, obtuse  

angle implies contribution to mainly G giving lower than 
average performance and an acute angle implies contribution 
is mainly to G leading to higher than average mean 
performance. Angle between genotypes indicates similarity 
in response to the environment; an acute angle indicate they 
respond similarly to an environment, an obtuse angle implies 
they perform inversely (differently) to the environment; if 
one performs well then the other performs poorly. The right 
angle implies they perform independently to the 
environment. 

4. Conclusion 

GGEbiplot analyses simplified the unknown content of 
the GE interaction and enhance the evaluation of the test 
genotypes. 85.37% of the GEI patterns were accounted for 
the PC1 (65.48%) and PC2 (18.89%). The three trial 
environments were grouped into two mega trial 
environments; one being KibosF9 and Mumias and the 
second being Sonysugar. The genotypes 97_131 and 
97_224 in the vertices of the polygon were most 
productive KibosF9 and Mumias environments while 
97_317 was in Sonysugar environment. Genotypes 97_317 
and N14 are ranked best on Sonysugar, 97_224 in Mumias 
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and 97_131, 97_226 and 97_224 in KibosF9. Genotypes 
that showed higher yield than the overall mean were 
97_224, 97_226, 97_131, 97_317 and N14. Sony was best 
at discriminating the genotypes followed by KibosF9 and 
Mumias in that order. Genotypes 96_173, 97_221 and 
CO421 yields were similar to the overall mean yield. The 
others genotypes showed a lower yield than the overall 
mean. GGEbiplot as a as tool for evaluating GxEI through 
visualization is very good and accurate, it is easy to 
understand and show stable genotypes in the face of GxEI. 
The biplot itself allows flexibility on whether one desires 
an additive and interactive models or just interactive 
model. The graphics need to be accompanied with 
statistical test to make it more powerful. Combined with 
other statistical estimation methods it strongly 
complements visual aspect. 
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