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Abstract: In this paper, the equivalence of the sample pth quantile of a distribution and the kth order statistic of a random 

sample obtained from the distribution is reviewed. Based on the review, a new corollary on the almost sure convergence of the kth 

order statistic to the pth quantile was obtained without proof. Through an extensive Monte Carlo simulation, the extreme as well 

as the central kth order statistics of five different continuous distributions were obtained at different sample sizes and the 

asymptotic normality of the order statistics were investigated with the use of the Anderson – Darling (AD) statistic for normality 

test. The result showed among other things that asymptotic normality holds only for the central order statistics. 

Keywords: Asymptotic Normality, Inverse Distribution Function, kth Order Statistic, Monte Carlo Simulation, pth Quantile, 

Test for Normality 

1. Introduction 

Let 1 2, , . . ., nx x x  be a set of n observations obtained from a 

known distribution ( )F x . In the probability plot of this set of 

observations, emphasis is always made on the orderedness of the 

set in comparison with their corresponding expected ordered 

observations. These expected ordered observations (usually 

called expected order statistics) are obtained as the population pth 

quantiles of the distribution; (0, 1)p ∈ . The pth quantile of a 

distribution, ( )F x , also known as the inverse distribution 

function, ( )1
F p

−  (Jones [1]), is denoted by pξ  and defined by 

( ) { }1
inf : ( ) ; (0, 1)

p
F p x F x p pξ −= = ≥ ∈        (1) 

It exists for both discrete and continuous distributions. If 

( )F x  is continuous, 
p

ξ  can be simplified by 

( ) { }1
inf : ( ) ; (0, 1)p F p x F x p pξ −= = = ∈        (2) 

Xu and Miao [2] state that the pth quantile of a distribution, pξ , 

can be estimated by either the sample pth quantile of the 

distribution or the appropriate kth order statistic of a sample drawn 

from the distribution. This amounts to estimating a population 

parameter by either of two statistics which are of different concepts. 

The sample pth quantile of a distribution, ( )F x , denoted by ˆ
np

ξ , is 

obtained as the inverse of the sample distribution function, denoted 

by ( )
n

F x , which is also called empirical distribution function 

(EDF). That is, precisely for (0, 1)p ∈ , 

( ) { }1ˆ inf : ( )
np n n

F p x F x pξ −= = ≥              (3) 

For a random variable X with a distribution function ( )F x , 

the sample distribution function ( )nF x  which is also known 

as the EDF is given as 

( )1

1

( )

n

n j

j

F x n I X x
−

=

= ≤∑               (4) 

where ( )
j

I X x≤  is an indicator function given by 

( )
0

1

j

j

j

if X x
I X x

if X x

>
≤ =

≤





. Let ( )
1

n

j

j

I X x

=

≤∑  which is the number of 

observations in the random sample that are less than or equal 

to x be k. Then ( )
n

F x  = k/n. Hence, (0, 1)p ∈  can be 

approximated by k/n such that the sample pth quantile of a 

distribution can be given as 

{ }1ˆ inf : ( )
np n n

k k
F x F x

n n
ξ −= = ≥ 

 
 

             (5) 
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Also, suppose the random sample of n independent 

observations, 1 2, , . . ., nx x x , from a distribution ( )F x  whose 

density function is ( )f x is arranged in an increasing order of 

magnitude 
(1) (2) ( )

. . .
n

X X X≤ ≤ ≤  such that 
( )k

X ; 1, 2, . . .,k n=  

is the kth smallest observation in the sample. In its simplest sense, 

( )kX  is known as the kth order statistic of the distribution 

obtained from the random sample that is drawn from the 

distribution. Severini [3] classified these kth order statistics, 

1, 2, . . .,k n=  into two, namely: central order statistics and 

extreme order statistics. The extreme order statistics are those kth 

order statistics such as the minimum and the maximum (i.e. 
(1)

X  

and 
( )n

X  respectively) while the central order statistics are those 

other than the extremes, such as the median. 

One area that has extensively employed the use of the 

population pth quantile as the expected value of either the kth 

order statistic or the sample pth quantile of a distribution is the 

probability plots class of tests for multivariate normality 

(MVN). This class includes the graphical procedures for 

assessing MVN such as Healy [4], Small [5], Scrucca [6] and 

the correlation and regression procedures for assessing MVN 

such as Ahn [7], Singh [8], and Hwu et al [9]. 

Again, the asymptotic normality of the kth order statistic 

( )
; 1, 2, ...,

k
X k n=  (or the sample pth quantile of a distribution, 

where 0
k

n p

n

− → 
 
 

) has been discussed in the literature, 

especially by Bahadur [10], and Severini [3]. This suggests 

being true for all kth order statistics (including extreme and 

central order statistics). In this paper, we shall investigate 

empirically the asymptotic normality of the kth order statistic 

of a sample obtained from a distribution. This shall be 

preceded however by a review of the equivalence of the 

sample pth quantile of a distribution and the kth order statistic 

of a sample obtained from the distribution. 

2. Sample pth Quantile of a Distribution 

and the kth Order Statistic 

Equivalence of the kth order statistic and the sample pth 

quantile of a distribution, where 
k

p
n

→  as n → ∞  has been 

discussed in the literature, especially by Bahadur 10]. Suppose 

a continuous distribution function, ( )F x  is at least twice 

differentiable in some neighbourhood
p

ξ with 

( ) ( ) 0
p p

F fξ ξ′ = > . Bahadur [10] showed that the sample pth 

quantile, ˆ
np

ξ  of the distribution is 

( )
( )

ˆ n p

np p n

p

p F
R

f

ξ
ξ ξ

ξ

−
= + +            (6) 

where ( )3/ 4
log

n
R O n n

−=  as n → ∞ . He also showed that for 

( )1/ 2
logk np o n n= + as n → ∞ , the kth order statistic, 

( )k
X , is 

( )
( )( )

/
n p

k p n

p

k n F
X R

f

ξ
ξ

ξ

−
= + +              (7) 

where
n

R  is as defined in (6). These results in (6) and (7) show 

that the kth order statistic of a sample of size n observations, 

taken from a distribution ( )F x  with density function ( )f x , 

which is given as 
( )k

X , is equivalent to the sample pth quantile 

of the distribution, obtained from the sample, provided 
k

p
n

→  

as n → ∞ . Notice that 
k

p
n

→  implies that k np→ . But k is 

an integer. Hence, [ ] n
k np δ= +  where [ ]np  is the integral 

part of np  such that 0
n

δ → . Using the results of Bahadur [10] 

given in (6) and (7), Serfling [11] states, as a corollary, that the 

equivalence of 
( )k

X and ˆ
np

ξ , obtained from the same sample, 

depends on the rate of convergence of 
k

n
 to p . His corollary 

is as follows: 

Corollary (Serfling [11]): Assume a continuous distribution 

function, ( )F x  to be at least twice differentiable in some 

neighbourhood
p

ξ  with ( ) ( ) 0
p p

F fξ ξ′ = > and suppose that  

1k r
p o

n n n
= + +

 
 
 

as n → ∞           (8) 

Where r is a constant determined by the rate of convergence of 

k

n
 to p . Then 

( ) . .

( )
ˆ

( )

a s

k np

p

r
n X

f
ξ

ξ
− →           (9) 

and 

( )( ) 2

(1 )
;

( ) ( )
k p

p p

r p p
n X N

f f
ξ

ξ ξ

−
−

 
  
 

�      (10) 

The result in (9) is true because from (6) and (7), 

( )
( )

( )
( )( )

/
ˆ n p n p

k np

p p

k n F p F
X

f f

ξ ξ
ξ

ξ ξ

− −
− = − ( )

1

p

k
p

f nξ
= − 

 
 

 (11) 

Using the expression for 
k

n
 in (8) and upon simplification, 

(11) reduces to (9). 

From the foregoing results, we have the following 

corollary: 

Corollary 2.1. Suppose a random variable X  has a 

distribution function ( )F x  whose pth quantile is , (0, 1)
p

pξ ∈ . 

Let 
( )k

X  be the kth order statistic of the random sample 

1 2
, , . . .,

n
x x x  drawn from the distribution. Assume that ( )F x

has a continuous density function ( )f x  in the neighbourhood 
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of 
p

ξ and ( ) 0f x > . Suppose further that 0
k

n p
n

− → 
 
 

 as 

n → ∞  and that the convergence is very fast. Then, 

1
;

k r
p o

n n n
= + +

 
 
 

n → ∞ is said to become

1
;

k
p o n

n n
= + → ∞

 
 
 

 such that  

. .

( )
ˆ 0

a s

k np
X ξ− →            (12) 

Also, Xu and Miao [2] state that the kth order statistic in a 

sample of size n converges in probability to the population pth 

quantile, , (0, 1)
p

pξ ∈ , as 
k

n
 tends to p . This statement is 

true and is in line with Serfling [11] who stated the following 

theorem: 

Theorem (Serfling [11]): Let 0 1p< < , if 
p

ξ  is the unique 

solution of x of ( ) ( )F x p F x− ≤ ≤ , then for every 0ε > , 

( ) 2
2ˆ 2

n

np p
P e εδξ ξ ε −− ≥ ≤            (13) 

where ( ) ( ){ }min ;
p p

F p p Fεδ ξ ε ξ ε= + − − − . 

Applying the equivalence between 
( )k

X  and ˆ
np

ξ  which has 

so far been established, (13) can be written as 

( ) 2
2

( )
2

n

k p
P X e εδξ ε −− ≥ ≤            (14) 

Convergence in probability of 
( )k

X to
p

ξ  implies that for 

every 0ε > as n → ∞ , ( )( )k p
P X ξ ε− ≥  = 0. Hence as 

n → ∞ , ( ) 2
2

( )
2 0

n

k p
P X e εδξ ε −− ≥ ≤ → . This is because 

( )
2

2

( )
2 0lim lim

n

k p

n n

P X e ε
δξ ε −

→ ∞ → ∞

− ≥ ≤ =      (15) 

3. Asymptotic Normality of the kth Order 

Statistics 

Suppose 
1 2
, , . . .,

n
x x x  is a random sample of size n from a 

distribution ( )F x  whose density is ( )f x . If ( )F x  is 

continuous at , (0, 1)
p

pξ ∈  and n is large, Bahadur [10], Babu 

[12], Miao et al [13], and Mood et al [14] have stated that 

( )( ) 2

(1 )
0;

( )
k p

p

p p
n X N

f
ξ

ξ

−
−

 
  
 

� . This implies that 

( ) ( )( )
( ) 0; 1

(1 )

k p

p

X
n f N

p p

ξ
ξ

−

−
�          (16) 

The statistic in (16) has 
p

ξ  as the expected value of the kth 

order statistic, usually denoted by 
( )

( )
k

E X . That is, ( )
( )

E X
k

 is 

the inverse distribution function at (0, 1)p ∈ . However, 

(0, 1)p ∈  cannot be determined explicitly. David and Nagaraja 

[15] state that for sufficiently large n, an approximation to the 

expected kth order statistic is given as 

1

( )
( )

1

( )
1

k k

n

k
E X F

n
ξ−

+

= =
+

 
 
 

           (17) 

Since ( ) 0f x >  is continuous, it is well known that its point 

wise probability approaches zero. However, van der Vaart [16] 

states that the empirical quantile function is related to the 

order statistic of a sample through 
1

( )
( )

n k
F p X

− = for 

( 1

,

k k

p

n n

−
∈ 


. The asymptotic distribution in (16) can 

therefore be obtained with ( )f x  evaluated in the interval 

( )( 1) ( )
( ), ( )

k k
E X E X− . A good number of authors have 

investigated the asymptotic normality of functions of order 

statistics. Such authors include Pagurova [17], Dembiraska 

[18] and Jasinski [19].  

3.1. Empirical Studies 

In this subsection, the asymptotic normality of the kth order 

statistic through an extensive simulation studies shall be 

investigate empirically. Here, we simulated 10000 samples of the 

same size, in each trial, from some randomly selected continuous 

distributions. The distributions selected for this investigation 

include the standard normal distribution, the beta distribution 

(first kind) with parameters 0.5 and 1, the beta distribution (first 

kind) with parameters 2 and 1, the chi square distribution with 2 

degrees of freedom, the student's t distribution with 20 degrees of 

freedom and the uniform distribution in the interval (0, 1). The 

parameters of these distributions were arbitrarily chosen and each 

distribution was studied at sample sizes 10, 20, 30, 50 and 100. In 

each case, the kth order statistic, 1, 2, . . .,k n= , is obtained for 

each sample together with their corresponding approximate 

expected order statistics. The statistic in (16) is evaluated for each 

kth order statistic with 
0.5k

p
n

−
= , which may be seen as the 

mean value of the interval 
1

,
k k

p
n n

−
∈  
  

. The result of this 

evaluation on each kth order statistic obtained from each sample 

gives rise to a transformation of the ordered set of data in each 

sample to a supposed standard normal order statistics if the null 

distribution is true. From the standardized set of data in each 

sample, we selected five data points corresponding to the first 

order statistic (the minimum), the sample 0.25th quantile (the 

first quartile), 0.5th quantile (the median), 0.75th quantile (the 

third quartile) and the nth order statistic (the maximum). The 

sample quantiles were obtained from the transformed data set by 

taking the appropriate weighted averages since, for instance, all 

the sample sizes considered were even numbers and as a result, 

no specific observation in the data could be said to be a median. 

They are denoted in this work as Min, Q0.25, Median, Q0.75 and 

Max respectively. 
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Table 1. p-values of the Tests for Normality of Some Standardized Order Statistics Obtained from 10000 Simulated Samples from Some Selected Continuous 

Distributions at Sample Sizes n = 10, 20, 30, 50 and 100. 

Sample size Selected order statistics B(0.5, 1) B(2, 1) Chi-square(2) N(0, 1) t(20) U(0, 1) 

10 

Min <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

Q0.25 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

Median <0.005 <0.005 <0.005 0.2310* 0.5130* <0.005 

Q0.75 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

Max <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

20 

Min <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

Q0.25 <0.005 <0.005 <0.005 0.0050 <0.005 <0.005 

Median <0.005 <0.005 <0.005 0.8520* 0.3030* 0.0500* 

Q0.75 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

Max <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

30 

Min <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

Q0.25 <0.005 0.0130* <0.005 <0.005 <0.005 <0.005 

Median <0.005 <0.005 <0.005 0.0440* 0.8210* 0.2680* 

Q0.75 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

Max <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

50 

Min <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

Q0.25 <0.005 0.1580* <0.005 <0.005 <0.005 <0.005 

Median <0.005 <0.005 <0.005 0.2460* 0.7940* 0.6770* 

Q0.75 <0.005 <0.005 <0.005 0.1890* <0.005 <0.005 

Max <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

100 

Min <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

Q0.25 <0.005 0.2060* <0.005 0.2120* 0.2090* <0.005 

Median <0.005 <0.005 <0.005 0.9260* 0.5190* 0.1990* 

Q0.75 0.1130* <0.005 <0.005 0.1610* 0.0850* <0.005 

Max <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

Note: * implies normal at 1% level of significance. 

Table 2. Computed Values of the Test statistic from the Tests for Normality of Some Standardized Order Statistics Obtained from 10000 Simulated Samples from 

Some Selected Continuous Distributions at Sample Sizes n = 10, 20, 30, 50 and 100. 

Sample size Selected order statistics B(0.5, 1) B(2, 1) Chi-Square(2) N(0, 1) t(20) U(0, 1) 

10 

Min 1301.303 30.293 474.143 17.597 48.129 369.537 

Q0.25 382.329 2.083 158.067 3.741 4.230 57.664 

Median 63.659 18.455 85.594 0.482 0.331 5.538 

Q0.75 18.193 88.616 72.273 3.108 6.740 58.314 

Max 290.283 404.42 141.526 20.030 50.749 364.622 

20 

Min 1432.735 44.895 443.424 32.140 60.946 424.700 

Q0.25 251.245 1.203 87.266 1.145 1.797 29.793 

Median 38.718 13.324 50.248 0.214 0.433 0.753 

Q0.75 9.488 53.100 38.199 1.684 2.174 31.257 

Max 366.792 429.990 131.717 24.621 61.918 414.228 

30 

Min 1490.988 43.773 456.014 25.510 78.864 432.428 

Q0.25 189.137 0.993 58.097 1.599 1.794 17.658 

Median 36.978 11.715 31.193 0.774 0.225 0.456 

Q0.75 3.431 38.209 20.102 1.558 3.077 20.366 

Max 388.917 419.722 126.663 35.381 69.508 413.096 

50 

Min 1527.952 55.830 475.230 45.251 75.240 435.736 

Q0.25 115.018 0.548 30.593 1.273 1.164 11.944 

Median 19.761 3.197 19.250 0.471 0.234 0.270 

Q0.75 1.858 20.618 18.211 0.518 1.166 11.956 

Max 411.105 442.653 143.623 42.951 81.141 426.268 

100 

Min 1585.250 60.897 473.796 41.634 89.031 455.694 

Q0.25 58.018 0.503 19.706 0.497 0.500 7.015 

Median 10.622 2.784 9.860 0.174 0.327 0.508 

Q0.75 0.609 11.088 10.838 0.545 0.660 4.968 

Max 443.556 494.474 132.899 46.146 82.358 471.731 

 

From the foregoing, it is expected that each of these 

standardized order statistics in a sample is a standard normal 

observation. We tested for normality of the 10000 

standardized observations for each selected sample quantile 

per sample size. There are several powerful tests for univariate 

normality in the literature. Our study here is based on one of 

them, known as the Anderson - Darling test. It is denoted here 

by AD and its statistic is given as 

{ }1

1

(2 1) ln( ) ln(1 )

n

k n k

k

k Z Z

AD n
n

− +

=

− + −

= − −
∑       (18) 
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where 
( )k

k

X

X X
Z

s

−
= Φ

 
 
 

. We therefore test this standard 

normality for the 5 selected quantiles for sample sizes, n = 10, 

20, 30, 50 and n = 100. For each sample size, 10000 samples 

were used to test the normality of the standardized sample 

quantiles. This was done for the selected distribution of the 

original sample data. The results of the normality tests are 

presented in Tables 1 and 2. 

3.2. Discussion of Results 

The normality tests conducted on the selected order 

statistics show some interesting results. Firstly from Table 1, 

the chi square distribution has all the selected order statistics 

(both extreme and central order statistics) in all the considered 

sample sizes as non-normal at 0.01 level of significance. This 

is because all the p-values obtained for the distribution were 

significantly less than 0.01. In the case of the beta distribution 

with parameters 0.5 and 1, only the sample 0.75th quantile 

was normal at only the sample size of 100. Also, the beta (2, 1) 

distribution has only the sample 0.25th quantile to be normal 

only at the sample sizes 30, 50 and 100. In the case of the 

standard normal distribution, only the median was normal for 

all the sample sizes at 1% level of significance. In addition, the 

sample 0.75th quantile was normal for a sample size of 50 

while the sample 0.25
th

 quantile was normal for only sample 

size of 100. This means that all the central order statistics 

considered were normal when the sample size was 100. The 

student's t distribution has the median to be normal in all the 

sample sizes considered with the sample 0.25th and 0.75th 

quantiles in addition only in the sample size 100. The uniform 

distribution showed that only the median in sample sizes 20, 

30, 50 and 100 was normally distributed. 

Secondly, the Anderson-Darling statistic which we 

employed in this study lacks evidence for rejection of 

normality of a set of data when the computed value of the 

statistic is very small. This can be seen clearly when the 

computed values of the statistic presented in Table 2 are 

compared with their corresponding p-values as contained in 

Table 1. From the two tables, the higher the value of the test 

statistic (Table 2), the closer p-value is to zero (Table 1). 

Having this in mind, Table 2 shows that the values of the test 

statistic in (18) for all the central order statistics considered in 

this study generally decreased progressively with increasing 

sample size among all the considered distributions. The 

import of this development is that as the sample size increased 

beyond 100, all the central order statistics in all the various 

distributions, at different points, would be expected to tend to 

normal normal. This is not so with the values of the test 

statistic obtained for the extreme order statistics (minimum 

and maximum). These values for all the sample sizes 

considered among all the distributions were very high leading 

to the rejection of their normality. Most importantly, there is 

an observed general increase in the values of the test statistic 

with increase in the sample size among all the distributions 

considered here. This clearly suggests an unlikelihood of any 

of the extreme order statistics becoming normal at any sample 

size beyond 100. 

4. Conclusion 

The equivalence of the sample pth quantile and the kth order 

statistic of a random sample from a distribution has been 

reviewed in this paper. Although they represent two different 

concepts in statistics, they can be used interchangeably 

especially in their applications such as in probability plots 

tests for multinormality, provided 
k

p
n

→ . As a result of the 

equivalence property which holds for the sample pth quantile 

and the kth order statistic, asymptotic normality of kth order 

statistic implies asymptotic normality of the sample pth 

quantile provided 
k

p
n

→ . Also, the asymptotic normality of 

the kth order statistic holds only for the central order statistics 

(i.e. non extreme order statistics). From our empirical study, 

we also conclude that the sample size from which the 

asymptotic normal distribution of the central order statistics 

holds depends on the centeredness of p as well as the parent 

continuous distribution. 
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