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Abstract: The hydrometallurgical method of zinc production involves leaching zinc from ore and then separating the solid 
residue from the liquid solution by pressure filtration. This separation process is very important since the solid residue contains 
some moisture that can reduce the amount of zinc recovered. This study modeled the pressure filtration process through Random 
Forest (RF) and Support Vector Machine (SVM). The models take continuous variables (extracted features) from the lab samples 
as inputs. Thus, regression models namely Random Forest Regression (RFR) and Support Vector Regression (SVR) were chosen. 
A total dataset was obtained during the pressure filtration process in two conditions: 1) Polypropylene (S1) and 2) Polyester 
fabrics (S2). To predict the cake moisture, solids concentration (0.2 and 0.38), temperature (35 and 65°C), pH (2, 3.5, and 5), 
pressure, cake thickness (14, 20, 26, and 34 mm), air-blow time (2, 10 and 15 min) and filtration time were applied as input 
variables. The models' predictive accuracy was evaluated by the coefficient of determination (called R2) parameter that obtained 
0.991, 0.987 by RFR and 0.48 via SVR for S1 and S2, in turn. The results revealed that the RFR model is superior to the SVR 
model for cake moisture prediction. 
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1. Introduction 

Metal production and processing require balancing 
economic benefits, resource efficiency, and environmental 
impacts [1]. More than 85% of zinc nowadays is produced by 
hydrometallurgical processes [2]. Figure 1 shows the flow 
sheet of the zinc hydrometallurgical process used in Iran, 
which differs from other methods in the purification steps of 
nickel, cobalt, and cadmium due to environmental limitations 
[3]. The zinc plant feed contains impurities such as iron, nickel, 
cobalt, and cadmium, which are removed in different stages of 
the process (Figure 1). The residues also contain moisture with 
cations and anions, leading to metal losses. Zinc Leaching 
Plant Residue (ZPR) is the most abundant residue and 
by-product of zinc production. Its amount varies with the feed 

grade and is approximately 3 to 6 times the zinc output [4]. 
Zinc production from Zinc Plant Residue (ZPR) has been 

investigated by various researchers. E. Vahidi et al. [5] 
reported that Di-2-EthylHexyl Phosphoric Acid (D2EHPA) 
was an effective zinc extraction and separation solvent. 
Yunpeng Du et al. [6] evaluated the environmental impact of 
zinc recovery from ZPR and the toxicity of the residues using 
the Toxicity Characteristic Leaching Procedure (TCLP). E. 
Guler et al. [7] studied the influence of sulfating roasting 
conditions on zinc's metal solubility and extraction efficiency 
from ZPR. Several studies have also reported high zinc 
recovery rates from ZPR. M. Deniz et al. [8] achieved 86% 
zinc recovery by using a hydrometallurgical process. Huan et 
al. [9] combined reduction roasting, acid leaching, and 
magnetic separation to obtain 61.38% zinc recovery. The main 
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challenges for zinc recovery from ZPR are the undissolved 
zinc, the hydroxide precipitation, and the moisture content in 
the residue. These factors depend on the process and 
equipment parameters used in zinc production. Zinc losses in 
ZPR can occur due to non-dissolution, precipitation, or 
moisture. Non-dissolution is affected by the comminution, 
degree of freedom of zinc, and leaching conditions of the zinc 
minerals. Precipitation and moisture are related to the neutral 
leaching and filtration stages of the process. The filtrate of 
ZPR contains 100-150 g/L of zinc, which means that the 
residue has a high zinc content in its moisture. To enhance 
zinc recovery, it is essential to optimize the reduction of the 
moisture content in the residue. However, previous studies 
have not tested the optimal filtration conditions of ZPR on a 
pilot scale. 

 

Figure 1. Zinc plant flowsheet [3]. 

Researchers have used various mathematical tools for data 
processing and computer modeling. However, Artificial 
Intelligence (AI) based prediction models have recently 
become an important tool for forecasting in many areas. This 

process involves three steps: data collection and data 
preparation, creating Machine Learning (ML) algorithms to 
support advanced analytics, and using these algorithms to 
predict outcomes. A clear objective of this process is to build a 
model that can analyze the output accurately and reliably. 
Therefore, adequate and reliable data are essential for this 
purpose. 

Modeling is the process of selecting relevant algorithms, 
training them from training data, and obtaining accurate 
predictions. Machine learning can be expansively divided into 
three categories: supervised learning, unsupervised learning, 
and reinforcement learning [10-14]. In supervised learning, 
the training data have a definite output and a corresponding 
label. In unsupervised learning, the training data have no 
specific output or no label. In reinforcement learning, the 
algorithm learns from its experience to map the situation to 
action, and in consequence, maximizes a numerical reward 
signal. This means that the algorithm receives feedback from 
its actions and adjusts its behavior accordingly. 

Machine learning is fully transforming many industries into 
automation. Also, it has many applications in the field of 
material science, especially in modeling and optimization. For 
example, Jiayang Dai et al. (2020) [15] implemented a 
spatiotemporal model based on KL-MS-LLSSVM to control 
the ferrous ion concentration in the goethite process during 
iron removal. Moreover, the results demonstrated that the 
model could reduce the consumption of oxygen and zinc oxide. 
This is important because the electro-winning processes 
consume a lot of energy and need to be more efficient. Since 
the consumption of energy during electro-winning processes 
is substantial and must be reduced, Xiongtao Shi et al. (2020) 
[16] proposed a Deep Deterministic Policy Gradient (DDPG) 
learning controller. Similarly, XIONG Jie et al. (2020) [17] 
provided another approach that used random forest regression 
to predict the mechanical properties of structural materials. 

A different approach is the Back Propagation (BP) neural 
network model that utilizes iron powder smelting temperature, 
calcium oxide, sodium carbonate, and coke as input variables 
to limit the discharges of pollutants from the secondary lead 
smelting industry [18]. Another reliable method is the 
feed-forward back-propagation ANN that obtained the effect 
of solid concentration, initial pH, time, and inoculum percent 
on the dissolution of Cu, Mo, and Re from mineral 
molybdenite via meso-acidophilic bioleaching [19]. 

In the current work, the genetic algorithm caused an 
optimum combination of the operational parameters for 
attaining the maximum recoveries of Cu, Mo, and Re by the 
neural network [20]. Another application of machine learning 
in material science is the protection and prediction of the 
thickening and filtration processes. For example, Hui Li et al. 
(2016) [21] used a Bayesian network to protect against the 
abnormality that occurs in the thickening process of gold 
hydrometallurgy. As a result, the safe control was fully 
automated and the abnormality was eliminated. Avalos et al. 
(2020) [26] studied several predictive methods: polynomial 
regression, k-nearest neighbor, support vector machine, 
multilayer perceptron, long short-term memory, and gated 
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recurrent units. They concluded that the workflow has the 
potential to be extended to any other temporal and 
multivariate mineral processing datasets. 

This research aims to use machine learning to reduce the 
moisture content of ZPR. For this purpose, we conducted pilot 
scale experiments to develop support vector machine and 
random forest models for pressure filtration of the zinc 
process. Then, we presented feasible solutions for predicting 
cake moisture and evaluated the relative importance of the 
selected variables, such as pressure, time, and temperature. 
Finally, we compared the forecasting performance of the two 
models and developed the conclusions of the work. 

2. Methods 

In this section, we will review the machine learning 
methods used in this research, namely random forest and 
support vector machine. First, we will explain what machine 
learning is and how it works. Machine learning is a 
time-saving way that learns automatically from data and 
predicts based on data [22, 23]. It can be divided into three 
broad categories: supervised, unsupervised, and reinforcement 
learning [24]. Second, we will focus on the supervised 
learning algorithms that are the most widespread method of 
machine learning in material science. These algorithms use 
labeled data to train and test the models. Third, we will 
introduce random forest and support vector machine as two of 
the AI tools that are used to predict the moisture of leaching 
filter cake. These tools are appropriate for modeling and 
simulation in materials science for the design and 
development of processes. 

2.1. Random Forest 

In this section, we will explain the random forest algorithm. 
It is a supervised machine-learning algorithm that constructs 
decisions for classification and regression problems. Random 
Forest Regression (RFR), which is a variant of RF that is used 
for regression problems, where the goal is to predict a 
continuous value instead of a discrete class. It has been shown 
that random forest has better regression accuracy than other 
models. In other words, a random forest creates numerous 
decision trees in the training phase and takes the average 
output value of all individual trees as the outcome. Moreover, 
random forest is a reliable method for quantifying the 
significant variables of the class. 

The main concept of the random forest model is to combine 
multiple classification regression trees with weaker 
performance as a forest using specific rules and predicting 
results by voting among all decision trees in the forest [25]. 
The random forest model f is composed of decision trees and 
is defined as Eq. (1). 

{h (X, θk), k = 1, 2, ⋯, n}          (1) 

where X and θk describe the input and random vector, in turn. 
Distribution of θk occurred independently within the k-th 
decision tree. The input vector X includes up to Y categories. 

Considering the input vector X and output vector Y, the edge 
function is calculated by Eq. (2). 

K (X, Y) = akI [h (X, θk) = Y] –
max�� 	

j ≠ Y	 I[h(X,θk)=j]  (2) 

where j is a type of training set and ak is the average function. 
A higher edge function corresponds closely to the 
classification correctness. The generalization error of the RF 
model is formulated as follows in Eq. (3). 

E* = PX, Y (K (X, Y) < 0)          (3) 

The RF model convinces the following theorems if there is 
a high number of decision trees in the forest: 

Theorem 1. By increasing the number of trees for each θk, 
converging the error of the RF model (E*) to zero is more 
probable which is expressed as Eq. (4). 

PX, Y (Pθ (h 
max��	

j ≠ Y	
 (X, θ) = Y) –(h (X, θ) = j) < 0) →0  (4) 

Based on the first theorem, despite increasing the number of 
trees, overfitting does not happen as the generalization error of 
an RF model. Nevertheless, it does not tend to have a 
particular value. 

Theorem 2. To calculate the upper bound on the RF model 
generalization error, the represented formula is used by Eq. (5) 

E∗ 	≤ 	
��(����)

��
               (5) 

where ρ is the average correlation coefficient and s defines the 
average strength of the tree. The theorem explains that 
reducing the tree correlation and increasing the strength of a 
single tree is the reason for declining the upper bound on the 
generalization error to be effectively controlled. Practically, 
just the two parameters, the number three and the split 
characteristic number mtry have to be included in forecasting, 
since it is the number of them selected per tree that affects 
forecasting performance. 

2.2. Support Vector Machine 

Support Vector Machine (SVM) is another supervised 
learning method that we used in this research. It is a machine 
learning algorithm based on statistical learning theory [10] 
that performs regression and classification analysis. By 
introducing Vapnik’s ε-insensitive loss function, SVM has 
been widened to resolve the regression problems, which is 
called Support Vector Regression (SVR). Statistical and 
mathematical learning theory has shown that the SVR method 
approximates an unknown function by mapping input data 
into a high-dimensional feature space via a nonlinear mapping 
function. Then, a linear problem is formed in this feature 
space. 

The SVR aims to discover a functional relationship (�) 
between input data �� and output data �� at most � deviation as 
flat as possible by the presumption of the joint distribution � 
of (�, �) is completely unknown. The application of 
kernel-trick is to model nonlinear relationships, furthermore, 
to convert the complicated nonlinear problem into a simple 
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linear problem a mapping � is introduced. The primary 
concepts of the standard SVR algorithm with ε-insensitive 

loss function are explained below. 

 

Figure 2. Configuration of ZPR production experiments. 

A sample set � = {(��, ��)} is assumed where �� ∈ � is the 
input values and �� ∈ � are the related output values for � = 1, 
2, …, � where � is the samples number. Therefore, the whole 
problem can be formulated as the convex optimization 
problem represented in Eq. (6). 

minimize	 �$ ‖&$‖ ' (	 ∑ �ξ+ ' ξ+∗��+,�        (6) 

subject to 

-. &. Φ�x� 1 '2 3 �+ � 4 ' ξ+�+3. &. Φ�x� 1 32 � 4 ' ξ+∗ξ+. ξ+∗ 5 0   

where ( is a constant which is known as the penalty factor to 
take control of the tradeoff between the smoothness of 7(�) 
and the tolerance to errors over the �, and the slack variables 8�, ξ+∗ term is the indication of the amount of difference between 
the estimated value and the target value. 

3. Experimental Method 

Zinc concentrate that satisfies the needs of the leaching 
process for this study was obtained from Calcimin company, 
Zanjan, Iran, with 25% moisture. To prepare the concentrate 
for the leaching process, the zinc concentrate was crushed by a 
jaw crusher in the Material and Engineering Department at 
Zanjan University. Figure 2 shows the filtration stage that 
produced the Zinc Plant Residual (ZPR). 

The moisture of the filter cake with 25% moisture was 
determined by the filtration of the leaching process. A plate 
filter press performed 288 experiments (144 with 
polypropylene and 144 with polyester fabric) at different levels 
of solid concentration (SC), temperature (Tem), pH, air-blow 
time (ABT), cake thickness (CT), and filtration time (FT). 

Table 1. Input parameter ranges for the filtration process. 

Parameter 
Level 

1 2 3 4 

Solid concentration (g/L) 0.2 0.38 - - 
Temperature (°C) 35 65 - - 
pH 2 3.5 5 - 
Air-blow time (min) 2 10 15 - 
Cake thickness (mm) 14 20 26 34 

First, the ball mill crushed the zinc concentrate to a powder. 

Then, a 200L tank with a mechanical stirrer and a controller unit 
leached 37.5 Kg samples of zinc concentrate in 125 and 62.5 L 
water at a solid: liquid ratio of 0.2 and 0.38 g/L, respectively. 

The leach solution was heated at two temperatures (35°C 
and 65°C) and the pH was regulated by H2SO4 (98%) and lime. 
Next, the solution was filtered from the solid material. Four 
sizes of plate filter presses (14, 20, 26, and 34 mm) were used 
to vary the cake thickness, as shown in Figure 3. The air was 
blown in for 2, 10 and 15 minutes, respectively. Then, the 
known weight of ZPR was dried at 110-120°C for 8h in the 
oven to measure the filter cake's moisture. Table 1 shows the 
ranges of these parameters. 

4. Development, Training, and Testing 

Models 

The goal of this section is to test the prediction accuracy of 
the proposed models using various experiments. Two datasets 
are used to evaluate the performance of the proposed 
forecasting model; they are obtained from pressure filtration 
experiments with different types of fabric, namely 
polypropylene, and polyester. The first dataset (S1) has 144 
data points from polypropylene fabric and the second dataset 
(S2) has 144 data points from polyester fabric. 

The datasets consist of seven input parameters: solids 
concentration, temperature, pH, pressure, filtration time, 
air-blow time, and cake thickness. 

 

Figure 3. Schematic of the cake thickness. 

The output parameter is considered the moisture of the filter 
cake. The Support Vector Regression (SVR) and Random 
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Forest Regression (RFR) models are used to predict the cake 
moisture of the filter cake. The datasets are split into training 
and validation sets randomly, with 70% (100 data points) for 
training and 30% (44 data points) for validation. Feature 
selection is performed on the datasets to find the optimal RBF 
kernel for the SVR models based on experience. 
Normalization is applied to the training dataset to avoid 
numerical issues; the data are scaled to the range [0, 1]. Table 
2 and Table 3 show the descriptive statistics for S1 and S2, 
respectively. 

To examine the prediction performance of the SVR and 
RFR model, their forecasting errors in terms of Coefficient of 

determination (R2), Mean Squared Error (MSE), and Mean 
Absolute Error (MAE) are obtained which is defined as given 
by Equation (6), (7), and (8), respectively. 

MSE = 
�9 	∑ �: 3 :;�$9+,�           (7) 

MAE = 
�9 	∑ |: 3 :;|9+,�            (8) 

where y represents an actual value, :; is the predicted value, 
and n is the number of selected forecasting points. 

Table 2. Summary of descriptive statistics for the experimental data (S1). 

 
Solids 

Concentration, % 
Temperature, °C pH 

Pressure, 

kPa 

Air-blow 

Time min 

Cake 

Thickness, mm 

Filtration 

Time min 

Cake 

Moisture, % 

Minimum 0.20 32.00 2.09 150 2.00 14.00 7.34 26.09 
1st Quartile 0.20 35 2.11 150 2.00 15.50 9.25 31.94 
Median 0.29 49.50 3.52 150 10.00 23.50 12.00 33.11 
Mean 0.29 50.00 3.57 150 9.00 23.00 11.82 33.17 
3rd Quartile 0.38 63.75 4.91 150 15.00 32.00 14 34.47 
Maximum 0.38 68.00 5.67 150 15.00 34.00 16.00 39.76 

Table 3. Summary of descriptive statistics for the experimental data (S2). 

 
Solids 

Concentration, % 

Temperature, 

°C 
pH 

Pressure, 

kPa 

Air-blow 

Time min 

Cake Thickness, 

mm 

Filtration 

Time min 

Cake 

Moisture, % 

Minimum 0.20 32.00 2.00 150 2.00 14.00 6.50 24.45 
1st Quartile 0.20 33.25 2.10 150 2.00 15.50 10.00 31.73 
Median 0.29 50.00 3.45 150 10.00 23.00 10.00 33.47 
Mean 0.29 49.42 3.47 150 9.00 23.50 9.96 33.57 
3rd Quartile 0.38 64.75 4.74 150 15.00 32.00 10.38 35.24 
Maximum 0.38 67.00 5.10 150 15.00 34.00 11.50 40.94 

 

5. Results and Discussion 

In this study, Support Vector Regression (SVR) and 
Random Forest Regression (RFR) have been employed to 
predict the cake moisture of zinc slurry. 

5.1. Comparison of Machine Learning Models 

The performance of the support vector regression and 
random forest regression models was assessed on 288 datasets 
of cake moisture from the pressure filtration process using two 
types of fabric: polypropylene (S1) and polyester (S2). The 
datasets were randomly split into training and validation sets, 

with 100 and 44 data points each. 
Figure 4 illustrates the predicted cake moisture versus the 

actual cake moisture by the RFR model for both S1 and S2 
data, respectively. As can be seen in Figure 4, the 
experimental data are on the x-axis, while the predicted values 
obtained from the RFR model are on the y-axis. Each point on 
the scatter plot corresponds to a sample and its coordinates are 
the actual and predicted values of the output variable. For 
example, sample #44 has an actual value is 0.41 and the 
predicted value is 0.38, the point will be at (0.41, 0.38) on the 
plot. Therefore, it shows a good fit between the actual and 
predicted values using the RFR model. 

 

Figure 4. Comparison of actual cake moisture with the predicted cake moisture for RFR model: (a) S1; (b) S2. 
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The graphs in Figure 5 compare the performance of the 
SVR model in predicting the target values from the 
experimental data. In Figure 5, the x-axis and y-axis represent 
the same variables as the RFR model, but using the SVR 

model. There is a considerable deviation from the predicted 
values from the actual values using the SVR model in Figure 5. 
To reduce the error rates of both models, the data points 
should be closer to the line of equality (y=x). 

  

Figure 5. Comparison of actual cake moisture with the predicted cake moisture for the SVR model: (a) S1; (b) S2. 

Table 4 shows the statistical evaluation parameters of the 
RFR model for predicting the values of S1 and S2. The RFR 
model had a high prediction accuracy, as indicated by the 
coefficient of determination (R2) of 0.991 and 0.987 for S1 
and S2, respectively. The RFR model also had low forecasting 
errors, as indicated by the Mean Squared Error (MSE) of 
4.398×10-08 and 8.636×10-08 and the Mean Absolute Error 
(MAE) of 0.00015 and 0.00022 for S1 and S2, respectively. 

However, the SVR model performed poorly on both S1 and 
S2 datasets, as shown by its low R2 value of 0.48 and its high 
MSE (0.16 and 0.12) and MAE (0.039) values. On the other 
hand, the RFR model achieved a much higher R2 value than 
the SVR model, as shown in Table 5. 

Table 4. The statistical evaluation parameters of the RFR-based model. 

 S1 S2 

R2 0.991 0.987 
MSE 4.398=10-08 8.636=10-08 
MAE 0.00015 0.00022 

The SVR and RFR models were applied to predict the cake 
moisture of zinc slurry based on data from pressure filtration. 
The line y=x represents a perfect fit, where the model predicts 
the same value as the actual one for every sample. The model 
performance is better when the points are closer to this line 
and worse when the points are farther from this line. The RFR 
model showed a high degree of fit between the actual and 
forecasted values, as illustrated in Figure 4. The forecasted 
values closely followed the actual values, and its forecasting 
errors in terms of the MSE and MAE values were very low, 
indicating the high accuracy of the RFR model. In contrast, the 
SVR model produced forecasts that deviated significantly 
from the actual values, as shown in Figure 5. The SVR model 
also had the highest MSE and MAE values among the models. 

Moreover, Figure 4 shows that the RFR model had a better 
alignment with the y=x line than the SVR model, which means 
that the RFR model had fewer prediction errors and better 
generalization ability. These results confirmed the superior 
performance of the random forest model over the support 
vector model in predicting cake moisture, based on the 
statistical evaluation parameters. Therefore, the RFR model 
was the most suitable model for this task. 

Table 5. The statistical evaluation parameters of the SVR-based model. 

 S1 S2 

R2 0.48 0.48 
MSE 0.16 0.12 
MAE 0.039 0.039 

5.2. Relative Importance of Input Variables 

This research used support vector regression and random 
forest regression to evaluate the influence of different 
parameters on the pressure filtration of zinc slurry. The input 
variables were ranked by their importance to the prediction 
model. Selecting the most relevant variables can reduce the 
problem of high dimensionality. 

The relative importance of the variables obtained by the 
RFR model is shown in Figure 6. Furthermore, pH and 
temperature are the least important variables for both S1 and 
S2 according to the RFR model, while filtration time has 
opposite effects for S1 and S2, respectively. 

Figure 7 shows how important each variable is for the SVR 
model. In Figure 7 (a), pH and temperature have positive 
effects, while solid concentration has a negative effect on S1. 

In addition, temperature is the most influential variable for 
S2, and filtration time is a minor factor as shown in Figure 7 
(b). 
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Figure 6. Relative importance of input variables from RFR model: (a) S1, (b) S2. 

5.3. Cake Moisture Prediction Using Machine Learning 

Models 

The cake moisture is a key factor that affects the leaching 
process of zinc production. Zinc can be either dissolved or 
undissolved in the cake, which may cause losses of valuable 
metal and have high zinc content and potential value for zinc 
recovery [27]. Therefore, it is essential to reduce the cake 
moisture in the first step of filtration. Hydrometallurgy is a 
widely used method for zinc production, which involves 
pressure filtration of zinc slurry. In this study, we propose two 
machine learning models, support vector regression (SVR) 
and random forest regression (RFR), to predict the cake 
moisture of zinc slurry. We use two cases of pressure filtration 
experiments to evaluate the performance of the proposed 
models. The results show that RFR outperforms SVR in terms 
of prediction accuracy, generalization ability, and 
computational efficiency. Thus, RFR can be a useful tool for 
optimizing the pressure filtration of hydrometallurgy 
processes. 

As can be seen in Figure 4, a strong positive correlation 
between the predicted and actual cake moisture values by the 
RFR model for both S1 and S2 data and Figure 5 shows a fair 
positive correlation between the predicted and actual values 
by the SVR model for both S1 and S2 data. The superior 
performance of the RFR model can be attributed to its ability 
to capture the nonlinear and complex relationships between 
the input variables (such as pressure, time, and temperature) 
and the output variable (cake moisture). The RFR model can 
also handle noisy and missing data, as well as outliers, better 
than SVR. Moreover, the RFR model is faster and easier to 
train and tune than SVR, which requires careful selection of 
kernel functions and regularization parameters. 

Our study has several implications for the field of 
hydrometallurgy and machine learning. First, it demonstrates 
the feasibility and effectiveness of using machine learning 
models to predict the cake moisture of zinc slurry, which is a 
crucial parameter for optimizing the pressure filtration process. 
Second, it provides a novel and practical application of RFR, 
which is a powerful and versatile machine learning technique, 

to a complex and challenging engineering problem. Third, it 
contributes to the development and improvement of the 
hydrometallurgy processes, which are widely used for zinc 
production and other metal extraction. Our findings are 
consistent with previous studies that have applied machine 
learning methods to predict various materials science 
problems, such as predicting the cake moisture of ceramic 
production [28], forecasting the immune responses and lung 
burden of nanoparticles [29] and estimating materials 
properties, design de novo materials, and discover new 
mechanisms [30]. These studies have also reported that 
machine learning can be a powerful tool for advancing 
materials science and engineering. 

However, our study also has some limitations and 
challenges that need to be addressed in future research. One of 
the limitations of our study is the data, which may affect the 
performance and generalization of our models. Our data 
obtained from pressure filtration experiments with different 
types of fabric, namely polypropylene, and polyester. The first 
dataset (S1) has 144 data points from polypropylene fabric 
and the second dataset (S2) has 144 data points from polyester 
fabric, and consist of seven input parameters: solids 
concentration, temperature, pH, pressure, filtration time, 
air-blow time, and cake thickness, which may not be 
representative or sufficient for the whole range of soil types, 
filter cake types, fabrics types, or metal types that are involved 
in the pressure filtration process of hydrometallurgy. Our data 
also had some variability, noise, or missing values, which may 
introduce some errors or uncertainties in our models. Another 
limitation of our study is the methods, which may require 
some modifications or improvements for different types of 
filter cake, fabrics, or metals. Our methods used RFR and 
SVR, which are relatively simple and basic machine learning 
techniques, and which may not be able to capture the complex 
and nonlinear relationships between the input variables and 
the output variable, or to handle the high-dimensional and 
heterogeneous data, that are involved in the pressure filtration 
process of hydrometallurgy. Therefore, future research should 
use more advanced and robust machine learning techniques, 
such as deep learning or reinforcement learning, or use more 
diverse and reliable data sources, such as sensors, fabrics, or 
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filter presses, to improve the accuracy, speed, and ease of use 
of the machine learning models for predicting cake moisture 

in the pressure filtration process of hydrometallurgy. 

 

Figure 7. Relative importance of input variables from the SVR model: (a) S1, (b) S2. 

6. Conclusion 

In this study, we developed two machine learning models, 
Support Vector Regression (SVR) and Random Forest 
Regression (RFR), to forecast the cake moisture of zinc slurry. 
We used two different scenarios, S1 and S2, to train and test 
our models on real-world data. We evaluated the performance 
of our models using three metrics: Mean Squared Error (MSE), 
Mean Absolute Error (MAE), and Coefficient of 
determination (R2). The results showed that RFR 
outperformed SVR in all metrics and scenarios. The MSEs for 
prediction of cake moisture by RFR and SVR models in the 
testing (validation) stage were 6.636×10-08 and 8.636×10-08, 
0.16, and 0.12 for S1 and S2, respectively. Also, MAEs for 
cake moisture prediction were obtained as 0.00015 and 
0.00022, 0.039 and 0.039 for S1 and S2, respectively by above 
mentioned models. Furthermore, the R2 values between the 
experimentally measured and calculated values of cake 
moisture using RFR were higher than those using SVR, 
indicating a better fit and agreement. In conclusion, according 
to the evaluation parameters, the comparison results of RFR 
with the SVR model verify that the random forest regression 
model is an excellent model than the support vector regression 
model in terms of prediction performance, accuracy, and 
generalization ability. Consequently, RFR can be a very 
powerful tool in pressure filtration of hydrometallurgy 
processes. 
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