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Abstract: Breast cancer is the leading cause of cancer death among women. By the following research we report on a 

morphological study of 30 cases as seen in mammograms, trying to discriminate among benign and malignant tumors in order 

to develop new tools investigation in cancer diagnosis. From the contour of each mass, we computed the fractal dimension 

using box-counting algorithm and for each mammogram texture we computed the lacunarity. We found that the fractal 

dimension value is not sufficient to differentiate among benign and malignant cases, but it was really effective when it was 

combined with lacunarity. In conclusion, the results obtained showed that the fractal measure is an important tool for the 

diagnosis of breast cancer. 
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1. Introduction 

In most developed countries breast cancer is the leading 

cause of death among all cancers developed by 

middle-aged women. Any diagnosis tool helping to 

improve the sensitivity or the specificity of breast cancer 

would be highly valued. The usefulness of mammography 

in the symptomatic patient is undisputed; mammography is 

primarily used to demonstrate the presence of breast cancer 

and, specifically, to indicate the size and location of tumor 

[1]. 

There is also considerable evidence indicating the ability 

of mammography to detect cancer. In addition, randomized 

controlled trials of screening mammography have 

demonstrated a significant decline in breast cancer 

mortality among screened women of 50 years and older. In 

this sense, many automatic and semiautomatic techniques 

for cancer detection have been studied in the last years 

including topics such as segmentation, description, and 

classification.  

Normal breasts have a wide variation in mammographic 

appearance. The pattern exhibited by a breast which is 

predominantly composed of fat can often be called normal 

if no disturbing pattern is found. There is not a qualitative 

or quantitative definition of what normality is, though most 

normal mammograms appear with regular and undisturbed 

ductal patterns. 

Breast cancers usually appear with disturbed ductal 

structures. There are three major types of breast cancer: 

circumscribed/oval masses, spiculated lesions and 

microcalcifications. Malignant lesions generally have a 

more irregular shape than benign lesions. Circumscribed 

masses are compact and roughly elliptical. Radiolucent 

lesions with a halo or encapsulate are usually benign. High 

radiopaque lesion with irregular or ill-defined boundary 

should be considered with a high degree of suspicion. 

Spiculated lesions have a central tumor mass that is 

surrounded by a radiating pattern of linear spicules. Most 

spiculated lesions are malignant. 

Microcalcifications appear as bright dot-spots on 

screening mammograms, usually in the form of clusters. 

These are calcium deposits from cell secretion and necrotic 

cellular debris. The shape and distribution of breast 

calcifications indicate malignancy. Benign 

microcalcifications are often smooth and sharply outlined 

and have high uniform density. Malignant 

microcalcifications usually appear in irregular shape and 

variably distributed [2]. 

The automated diagnosis in breast cancer holds great 

promise for large-scale use in the advanced cancer 
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treatment, but it is not a straightforward task because a 

number of challenges have to be overcome. These 

challenges appear due to the complex nature of the breast 

tumors images (i.e., its variation in textural behavior and to 

the noise existence). Therefore the concern about the 

selection of efficient and enough features set to represent a 

certain tissue in the task of tissue-level property 

quantification was the target of many research efforts spent 

in the last two decades.  

Several researchers have shown the potential of fractal 

analysis as a morphometric measure of the tumor's irregular 

structures, taking into consideration that: 

1. Fractal geometry provides a general framework for the 

study of irregular sets, and has become popular in modeling 

these properties in texture image analysis and processing. 

2. All the breast tissues structures have a statistical 

quality of roughness and statistical self-similarity at 

different scales. 

3. The fractal dimension (FD) is an accurate measure of 

the roughness of a texture surface. Somehow, fractal 

dimension captures the notion of “how large a set is”, it 

measures the rate of addition of structural detail with 

increasing magnification, scale or resolution. 

4. The concept of multi-fractal has been used extensively 

for graphical simulation of natural phenomena, study of 

image textures and study of material surfaces. 

Evidence of a breast tumor is usually indicated by the 

presence of a dense mass and/or a change in the texture or 

distortion in the mammogram. Consequently, the focus 

during diagnosis is on identifying such abnormal regions, 

as well as on classifying the type of mass or tumor that 

caused the abnormality. A typical benign mass is round and 

smooth with a well-defined (well-circumscribed) boundary, 

whereas a typical malignant tumor is spiculated and rough 

with a blurry boundary [3]. 

The breast is composed of a mixture of epithelial and 

fibro-glandular tissue together with fatty tissue, called 

parenchymal pattern. Fat is lucent and appears dark on the 

XRay image, while fibroglandular tissue appears to be 

dense and brighter. Mammographic parenchymal patterns 

are being increasingly used as intermediate markers in the 

studies investigating the etiology of breast cancer. During 

the last few years the researchers tried to develop a 

quantitative measure that might indicate the change of the 

tissue pattern or of the density in mammograms. This 

includes techniques of image texture analysis such as 

statistics of gray level distribution [4], Laws Energy [5], 

Wavelet [6], Gabor [7] and Fractal measures. Fractal 

measures are most frequently used in mammogram image 

analysis in application to mass detection [8, 9], tissue 

classification [10], microcalcification [11]. 

The main aim of this paper is to develop new 

investigation tools based on fractal analysis and lacunarity 

in order to increase the diagnosis accuracy in breast cancer, 

with no further investigation being needed. 

 

2. Related Works 

Numerous papers, starting with the seminal work of 

Landini and Rippin [12], have shown for the last 20 years 

that fractal geometry can be useful in the process of 

describing the pathological architecture of tumors. Fractal 

geometry has been known as a mathematical concept for 

many years and was introduced by B. Mandelbrot [13]. Its 

tools were successfully applied to characterize irregularly 

shaped and complex figures by a mathematical value 

wherever Euclidean geometry fails. One of the advantages 

of fractal analysis is the ability to quantify the irregularity 

and complexity of objects with a measurable value which is 

called the fractal dimension. In the past few years it has 

gained increasing attention in the frame of medical sciences, 

particularly in cardiology, pathology and radiology [14, 15], 

and has been applied in health conditions as well as in 

certain pathological conditions [16, 17]. During the past 

years fractal analysis has been applied also in tumor 

pathology to characterize irregular boundaries of tumors 

and their nuclei [18, 19]. The fractal dimension is a measure 

of the complexity of a structure (a shape or a contour). In 

some sense, it is a measure of how complicated a structure is. 

All these studies emphasize the usefulness of fractal 

parameters in tumor pathology. 

Fractal geometry has been intensively used in 

mammography for the diagnosis of breast cancer. In 

particular, the application of fractal geometry showed 

interesting results. There are many reports on the use of this 

geometry in mammography images [20-22]. 

In this field, the applicability of the fractal geometry is 

justified by the fact that micro-calcifications usually appear 

as a cluster of bright spots with variant size and shape 

embedded in an inhomogeneous background of breast 

tissue. The inhomogeneous background also exhibits the 

self-similarity property of typical fractal images such that a 

region of interest in digital mammograms containing the 

micro-calcifications clusters can be viewed as a fractal 

normal background superimposed by a non-fractal 

foreground (i.e. the micro-calcifications clusters) [23, 24]. 

Histopathology is the microscopic examination of body 

tissues and it is widely used for cancer diagnosis. In a 

traditional histopathologic investigation, pathologists 

visually examine body tissues using an optical or digital 

microscope and assess the deviations in the cell structures 

and/or the change in the distribution of the cells across the 

tissue under examination in order to determine the 

malignancy of tissues. Tumors are graded depending on the 

degree of malignancy. The grading of cancer is a significant 

challenge for pathologists because of uneven tumor growth 

and of their similar structural appearances within the grades. 

However, this judgment is subjective and often leads to 

considerable variability [25]. Computational image 

interpretation and classification methods may partially 

circumvent these limitations and improve the reliability of 

decisions resulting from pathologists diagnoses. 
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Based on feature-extraction techniques histopathological 

image classification systems can be categorized into three 

classes: 

(i) Class I: extracts the morphological features of cellular or 

subcellular components such as nuclei, lumen, and 

cytoplasm. 

(ii) Class II: extracts the textural features by using feature 

descriptors such as filter banks, LBP, Haralick operator, 

fractal computation. 

(iii) Class III: extracts both morphological and textural 

features. 

Each method has different advantages and disadvantages. 

For example, the performance of class I methods is based 

on the segmentation accuracy of desired cellular or 

sub-cellular components. On the contrary, class II methods 

may overcome the limitation by observing the 

characteristics of the entire texture. However they may 

extract some undesired texture regions such as muscles or 

fiber. 

The multifractal analysis-based classification and 

retrieval method was proposed by [26] to classify tissues of 

different body organs. They investigated the dissimilarities 

of the patterns of multifractal spectrums of three body 

organs, including the liver, lung, and artery. The authors 

argued that the distribution patterns of the multifractal 

spectrum can be utilized to distinguish between the tissue 

images of different body organs. 

The use of fractal geometry to describe the texture of 

histopathological images can be found in [14, 27]. The 

fractal dimension of an object is a non-integer exponent 

that can be used to describe the complexity of a self similar 

structure. Multifractal analysis is a generalization of fractal 

analysis and it aims to describe natural structures (or 

images) as a spectrum of fractal dimensions. The method 

transforms a given texture from a gray-scale domain into a 

high-dimensional feature space by utilizing multifractal 

computation. A particular vector in the feature space 

contains the local behavior of the corresponding point in 

the gray-image and the information pertaining to its spatial 

distribution over the entire image. 

3. Materials and Methods 

3.1. Patients 

Standard imaging protocols for mammary tumor have 

been used for this study. A set of 30 images from Fundeni 

Clinical Institute of Bucharest, collected between 

September 2006 and October 2008, was investigated, 

respectively 18 images showing benign tumors and 12 

showing malign ones. A mammography is classified in a 

BI-RADS category (Breast Imagining Reporting Data 

System) from 0 to 6 [28]. The 1-3 categories signify that 

the probability to be a malignant tumor is very small; the 

5th category means that the probability to be a malignant 

tumor is very high, the 6th category known biopsy – proven 

malignancy and 0 category needs additional evaluation. In 

the 4th category the malignancy risk is 5-50% and, in this 

case, a biopsy is necessary. The tumor aspect is opaque 

with blurred edges. Thus, the information about malignity 

is concentrated in the tumor contour. The images in .jpg 

format with 1024 × 1024 pixels were converted in 

images .bmp, true color. For each image was traced by a 

radiologist the region of interest (FAR- Focus Attention 

Region) which was analyzed. 

3.2. Image Analyzes 

After image acquisition, a primary image processing 

(noise rejection, segmentation - in order to obtain binary 

image – and contour extraction) is necessary. In order to 

discriminate among healthy tissue and tumor mass we 

analyze each image pixel using specific criteria (similarity 

of the 3 × 3 pixel neighborhood average to the gray level of 

tumor mass center, pixel similarity to the health tissue gray 

level, pixel similarity to the tumor mass center gray level). 

The diagnostic classification of the masses was based on 

biopsy. The contour of each mass was manually drawn by 

an expert radiologist specialized in mammography. The 

data set includes circumscribed and spiculated cases in both 

benign and malign categories. In the next figures we 

presented an example of mammography where the 

radiologist selected a risk area (Fig. 1 a, b). 

 

(a)                     (b) 

Figure 1. (a) The original mammogram; (b) the white circle indicates the 

suspicious region of interest (aria with microcalcifications). 

3.3. Fractal Dimension and Lacunarity Estimation 

The outline of each image was analyzed by estimating the 

fractal dimension. In brief, the fractal dimension of each 

outline was measured by the box-counting algorithm [29]. 

The box-counting method consists on partitioning the 

pattern or image space into square boxes of equal size and 

on counting the number of boxes that contain a part (at 

least one pixel) of the image. The process is repeated with 

partitioning of the image space into smaller and smaller 

squares. The log of the number of boxes counted is plotted 

against the log of the magnification index for each stage of 

partitioning, yielding a set of points on a line. The slope of 

the best-fitting straight line to the plot as above gives the 

FD of the pattern. 

Lacunarity [30] is a counterpart to the fractal dimension 

that describes the texture of a fractal. Lacunarity is related 
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to the size distribution of the holes. If a fractal has large 

gaps or holes, it has high lacunarity; on the other hand, if a 

fractal is almost translationally invariant it has low 

lacunarity. Lacunarity measures the distribution of gap 

sizes: low lacunarity geometric objects are homogeneous 

because all gap sizes are the same, whereas high lacunarity 

objects are heterogeneous. This measure supplements 

fractal dimensions in characterizing patterns extracted from 

digital images. 

Lacunarity (λ) is generally based on the pixel distribution 

for an image, that one can get from scans at different box 

sizes at different grid orientations. Basic number for 

lacunarity, λ, is λε,g = (σ/µ)
2

ε,g where σ is the standard 

deviation of the number of pixels that were in a box of size 

and µ is the mean for pixels per box at this size, ε, in a box 

count at this orientation, g. To put heterogeneity from one 

perspective and one series of grid sizes into an average, the 

mean (λ) from all ε sized boxes at a grid orientation, g, is 

calculated. We have used 16 to 48 pixel size boxes for each 

of four grid position on ROI (Region of Interest). 

4. Results and Discussion 

The algorithms for computing fractal dimensions were 

implemented in Microsoft Visual C++ 6.0 software. For 

this purpose we used an original software package 

described in detail elsewhere [31]. The lacunarity was 

calculated using ImageJ [32] with Java plugin FracLac 

[33]. 

In Fig. 2 we have two cases of mammograms where the 

radiologist classified BI-RADS 2 for image (a) and 

classified BI-RADS 5 for image (b). 

 

   (a)                     (b) 

Figure 2. Examples of mammograms: (a) benign tumor (1024×1024); (b) 

malignant tumor (1024×1024). 

For example we presented in Fig. 3 the contours of 6 

benign cases and 6 malignant tumors having associated 

fractal dimension values from the total of 18 benign and 12 

malignant images of tumors. Malignant tumors generally 

have higher FD because they are more ragged and 

spiculated than benign masses. 

In Fig. 4 are shown the results of fractal analysis for 

benign and malignant tumors analyzed on contour of 

tumors using box-counting algorithm. 

 

 

Figure 3. Contours of 6 benign masses (above) and 6 malignant tumors 

(below) “FD values for benign tumors: 1.126, 1.137, 1.147, 1.158, 1.175, 

1.323 and FD values for malignant tumors: 1.294, 1.339, 1.385, 1.446, 

1.569, 1.618”. 

 

Figure 4. Fractal dimension values in benign and malignant tumors where 

establish the threshold 1.3 (red line). 

Note that in Fig. 4, the last figure (at right) in the top row 

has the fractal dimension larger than the threshold 1.3, 

while the fractal dimension of the first figure (at left) in the 

bottom row is less than the threshold. 

The experimental values of FD are presented in table 1. 

Table 1. Experimental values of FD 

 Benign (n = 18) Malignant (n = 12) 

 FD values < 1.3 > 1.3 < 1.3 > 1.3 

 Cases 16 2 1 11 

 Percentage 89% 11% 8% 92% 

After the investigation of the tumor evolution, 18 cases 

were classified as benign and other 12 cases were classified 

as malignant. The percentage of correct diagnosis in the 

malignant case was approximately 92%. 

For this reason we have proposed to associate to the 

fractal dimension the lacunariy in order to better 

discriminate among malign and benign masses. Lacunarity 

is frequently assessed during fractal analysis. 

Lacunarity explicitly characterize the spatial organization 

of an image and its composing sub-units, which are 

potentially useful in representing the tumor inner structure. 

From the anatomical point of view, the lacunarity helps to 

estimate the spatial heterogeneity of the lesions when the 

object complexity given by fractal dimension is not 

enough. 
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In Fig. 5 are shown the results of lacunarity for benign 

and malign tumors analyzed on mammogram’s image 

texture with the Image J software. 

Note that in Fig. 5 the last figure (at right) in the top row 

has the lacunarity larger than the threshold 2, while the 

lacunarity of the first figure (at left) in the bottom row is 

less than the threshold. Table 2 shows the FD and 

lacunarity values and disease state the clinical case 

analyzed. 

 

Figure 5. Lacunarity values in benign and malignant tumors where 

establish the threshold 2 (red line). 

In table 2 it is observable that the three cases below or 

above (marked with + in table) the threshold of 1.3 in FD 

are different from the case in lacunarity. 

Table 2. Clinical cases, FD and lacunarity values 

Case 

ID 

Patient 

ID 
BI-RADS 

Disease 

state 
FD values 

Lacunarity 

values (λ) 

01 P01 2 B 1.085 0.858 

02 P02 3 B 1.241 1.604 

03 P03 5 M 1.569 2.789 

04 P04 4 M 1.375 2.030 

05 P05 3 B 1.323+ 1.756 

06 P06 6 M 1.618 3.382 

07 P07 2 B 1.147 0.971 

08 P08 2 B 1.157 1.372 

09 P09 5 M 1.489 3.133 

10 P10 3 B 1.175 1.902 

11 P11 5 M 1.294+ 3.429 

12 P12 2 B 1.094 1.041 

13 P13 3 B 1.183 1.876 

14 P14 6 M 1.601 3.540 

15 P15 4 M 1.339 1.935 

16 P16 5 M 1.446 2.900 

17 P17 2 B 1.158 1.052 

Case 

ID 

Patient 

ID 
BI-RADS 

Disease 

state 
FD values 

Lacunarity 

values (λ) 

18 P18 6 M 1.612 2.237 

19 P19 5 M 1.402 2.960 

20 P20 2 B 1.095 1.453 

21 P21 2 B 1.126 1.070 

22 P22 3 B 1.311+ 1.502 

23 P23 3 B 1.257 1.781 

24 P24 2 B 1.137 1.231 

25 P25 3 B 1.280 1.476 

26 P26 4 M 1.385 2.562 

27 P27 3 B 1.208 1.546 

28 P28 6 M 1.651 3.359 

29 P29 2 B 1.139 1.277 

30 P30 3 B 1.254 1.843 

+ three cases of FD values below or above the threshold of 1.3 

The experimental values of lacunarity are presented in 

table 3. 

Table 3. Experimental values of lacunarity 

 Benign (n = 18) Malignant (n = 12) 

Lacunarity values (λ) < 2 > 2 < 2 > 2 

Cases 18 0 1 11 

Percentage 100% 0% 8% 92% 

Significant differences were found between DF values in 

benign and malignant tumors using t-test (t = 8.126, p = 

0.01) and between lacunarity values (t = 8.814, p = 0.01) 

respectively. 

5. Conclusions and Future Works 

This study identified two best predictors of breast cancer 

risk among the computer-based quantitative measures of 

mammographic features. 

In this application using fractal dimension we can 

distinguish healthy from unhealthy subjects. Fractal analysis 

is often brought to the evaluation of the FD that allows 

having a global description of the lack of homogeneities in 

the image. The applicability of this geometry in image 

analysis comes from the fact that the depicted objects are 

discontinuous, complex, and fragmented. The significance 

and the advantage of this geometry compared to classical 

processing methods, is due to way in which the 

non-regularities are assumed and identified. 

The results show that there is no situation wherein a 

tumor (benign or malign) to be placed outside of both 

thresholds. Among 30 cases, 27 (90%) were correctly 

classified, and in three cases the decision was related to 
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“insufficient information to formulate a diagnosis”. The 

fractal dimension values and lacunarity obtained are 

consistent with those presented in literature [34]. 

Fractal dimension might be a helpful adjunctive 

technique to distinguish among benign and malign cases of 

mammary tumors. Is has been proven to be really effective 

when it was combined with lacunarity in the classification 

process of breast masses and in the diagnosis of breast 

cancer. We found a good association between FD, a 

measure of the contour of a tumor and lacunarity, a measure 

of texture in breast cancer. When FD was combined with 

lacunarity, the classification accuracy was improved. 

Combinations of shape factors and texture measures would 

cetrainly be more effective in the classification of breast 

masses than any type of features on its own. These results 

have also a good correlation with the visual inspection done 

by the pathologist. 

One of the main limitations of the study is the relatively 

small number of breast cancer cases acquired for a certain 

period of time. Aiming more relevant statistics, we 

presently work to extend the database with medical images 

of the patients with breast carcinoma. 
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