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Abstract: OWA operators, introduced by Yager, are very important non linear aggregation functions in both academic studies 
and a myriad of applications. In this study, we use two dimensional OWA aggregation function into pedagogical evaluation 
practice, which will involve the preferences and experiences of decision makers and teachers. In addition, we also introduce a 
long time educational evaluation model based on Stancu OWA operators with two same parameters. The model involves time 
orness degree given by teachers and is useful for monitoring long time teaching and learning process in schools. 
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1. Introduction 

Pedagogical evaluation methods in educational application 
are very crucial for the daily works of schools and educational 
organizations. There are a large variety of models to help 
educators, teachers and school practitioners judge the current 
situations of students’ learning status. Effective, fair and 
timely evaluation results can also help students both find their 
shortcomings in study and incentive them to get more 
studying motivations. In detail, many evaluation models are 
based on different aggregation functions [2, 5–6, 11, 13, 20] in 
certain backgrounds. In practice, the evaluation process 
involves a large amount of subjective preferences of teachers, 
and thereby we always need some suitable models that can 
express the preferences and teaching experiences of first-line 
teachers. A well-developed model can not only present the 
true performance of students, but also indicate or predict the 
possible performance of them in the future. However, simple 
and single evaluation functions have their inherent limitations. 
In practice we often need some much comprehensive models 
to improve those single models. In addition, the preferences of 
teachers (often showing their precious teaching experiences) 
should also be remembered to add in. 

The subjective preferences of decision maker generally are 
between two extreme cases, i.e., between absolutely 
optimistic and absolutely pessimistic, in which fuzzy models 
are often more suitable than traditional dichotomy. Therefore, 

we can use a variable over real compact unit interval [0, 1] to 
model the variation of those preferences. However, many 
preferences are given by teachers with some Ordered 
Weighted Averaging (OWA) weights [16, 18]. For example, 
the preference of a teacher to weight the 4 performances of a 
student is often represented by an OWA weight based 
evaluation function: let ( ) (0.1,0.2,0.5,0.2)

i
w= =w  be the 

weights provided by the teacher, and let 
( ) (1,0.9,0.6,0.5)

i
a= =a  be the performance vector of a 

student over 4 tests and they are ordered from the highest to 
the lowest, and the weighted arithmetic mean 

4

1
( ) T

i ii
f w a

=
= ⋅ = ⋅∑w

a w a  shows that the teacher is slightly 

strict or pessimistic, because (s)he puts more weights on the 
lower performances. 

The well-known Ordered Weighted Averaging (OWA) 
operator [16, 18] is a very important and widely used method. 
During over twenty years, the OWA operator has been well 
used and developed in a large variety of theoretical areas and 
real applications [1, 3–4, 7–10, 12, 14–19]. By using a 
measurement called orness/andness [16, 18] (or attitudinal 
character), OWA operators can effectively model the 
decision-making preferences from absolutely optimistic 
(corresponding to orness 1) to absolutely pessimistic 
(corresponding to orness 0). Generally, an OWA operator is a 
weighting vector 1( , , )nw w=w ⋯ , which could be used to 

aggregate an input vector 1( , , )nb b=b ⋯ (ordered in 
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magnitude, i.e., 1 2 n
b b b≥ ≥ ≥⋯ ) and then we can get the 

aggregation result 
1

( , )
n

i ii
F b w

=
=∑b w . 

If the teacher wishes to evaluate the comprehensive 
performance of a group of students, we need a more general 
frame to still involve the teacher’s preferences into the model. 
In this situation, however, we need to consider two times of 
the teacher’s performance: one is for single student’s 
performances on different tests; the other is for the evaluation 
preference for different students. In this study, we will develop 
a reasonable and effective model to model this dual 
preferences frame and later we will add an additional 
dimension over time variable; and we will still use the OWA 
weights and orness, but in time environment the terminologies 
will be correspondingly called time OWA and t-orness [3] as 
later we will discuss. And in this study we will introduce some 
well-known special OWA weights into educational practices 
and show their reasonability in our tridimensional evaluation 
model. 

The remainder of this study is organized as follows: Section 
2 discusses the aggregation method for several students’ 
performances and several subjects using two dimensional 
OWA operators; the detailed processes of this method 
including five major steps are also presented. Section 3 
proposes the time dimension for long time evaluation model 
using Time Induced OWA model. Section 4 summarizes the 
main result of this study. 

2. Two Dimensional OWA Weights with 

Given Preference Pair in Educational 

Evaluation 

Mathematically, OWA operators are nothing but the 
Choquet integrals [2] with symmetric capacity. However, as 
we will see, the recursive OWA operators [15] and Time 
Induced OWA operators [17] are not convenient to be seen as 
Choquet integrals. 

Definition 1. [16] An OWA operator of dimension n is a 

mapping : ( , ) ( , )n
F −∞ +∞ → −∞ +∞ , which has an 

associated weighting vector 1 2( , , , )nw w w=w …  satisfying 

the following properties 

1

1; 0 1; 1,2, ,
n

j j

j

w w j n
=

= ≤ ≤ =∑ …  

and such that 

1 2 ( )
1

( , , , ) ,
n

n j j

j

F a a a w aσ
=

= ⋅∑w
…             (1) 

where :{1,..., } {1,..., }n nσ →  is a permutation such that 

( ) ( )i ja aσ σ≥  whenever i j< . 

Definition 2. [16] The degree of “orness” associated with 
this operator is defined as 

1 1

1
orness( ) ( ) .

1 1

n n

i i

i i

n i
n i w w

n n= =

−= − =
− −∑ ∑w       (2) 

The measure of “andness” associated with an OWA 
operator is the complement of its “orness”, and is defined as 

andness( ) 1 orness( )= −w w  

or  

1 1

1 1
andness( ) ( 1) .

1 1

n n

i i

i i

i
i w w

n n= =

−= − =
− −∑ ∑w  

Proposition 1. [16] The max, min and average operator 

correspond to * (1,0, ,0)=w … , * (0, ,0,1)=w …  and 

(1/ ,1/ , ,1/ )
A

n n n=w … , respectively, and *orness( ) 1=w , 

*orness( ) 0=w  and orness( ) 1/ 2
A

=w . 

Remark In this paper, the max can represent the oldest 
data/input/score and conversely the min can represent the 
most recent one. 

The next proposition shows one particular reverse property 
related to the orness degree of two OWA operators that are 
reverse of each other. 

Proposition 2. [16] (Reverse Property) For any OWA 
weighting vector 1 2( , , , )

n
w w w=w … , 

orness( ) α=w , then for the reverse of w: 

1 2 1 1( , , , ) ( , , , )
n n n

w w w w w w−′ ′ ′ ′= =w … … , orness( ) 1 α′ = −w . 

In educational evaluation practice, suppose for one 
comprehensive test of several subjects jM  ( 1,..., )j p= , 

student 
i

A  ( 1,..., )i q=  obtains p performances (represented 

as a vector) for different subjects: ijs . Thus, we can form a 

q p×  performance matrix ( )ijS s= ; and each row of S, 

1( ,..., )i i ips s=s  represents score/performance vector of 

student 
i

A , while each column of S, 1( ,..., )j j qjt t=t  

represents the performances of all the students for only one 
certain subject jM . If the teacher’s attitude between different 

subjects is α  and his preference for all students is β , then 

we given select two OWA operators ( )p
u  and ( )q

v  with 
orness  α  and β , respectively, for him. In this study, the 

selection for ( )p
u  and ( )q

v  is arbitrary. 
Therefore, we can firstly aggregate 1( ,..., )i i ips s=s  under 

the same OWA weighting vector ( )p
u , i.e., ( ) ( )p iF

u
s ; and then 

aggregate score vectors for different students 

( )1( ),..., ( )qF F= u uf s s  with OWA weighting vector ( )q
v , i.e., 

( ) ( )qF
v

f . 

For example, suppose we have the performance matrix with 
3 4× : 
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6 6 10 8

8 10 9 8

7 8 6 5

S

 
 =  
  

. 

And the teacher’s two attitudinal characters for subjects and 
students are 2 / 3α =  and 3 / 4β = , respectively. We can 

select two monotonic OWA weighting vectors 
(4) (0.4,0.3,0.2,0.1)=u  and (3) (0.6,0.3,0.1)=v , with orness 

values (4)( ) 2 / 3orness =u  and (3)( ) 3 / 4orness =v . Note 

that these two attitudes in practice may represent the teacher is 
slightly optimistic or with some confidence. 

Consequently, we compute to obtain: 

( )( ) ( )( ) ( )( ) ( )( )( 4 ) 1( ) 0.4 10 0.3 8 0.2 6 0.1 6 8.2F = + + + =
u

s ; 

( ) ( ) ( ) ( ) ( )( ) ( )( )( 4 ) 2( ) 0.4 10 0.3 9 0.2 8 0.1 8 9.1F = + + + =
u

s ; 

( )( ) ( )( ) ( )( ) ( )( )( 4 ) 3( ) 0.4 8 0.3 7 0.2 6 0.1 5 7F = + + + =
u

s . 

Thus, ( )8.2,9.1,7=f , and we have 

( )( ) ( )( ) ( )( )(3) ( ) 0.6 9.1 0.3 8.2 0.1 7

5.46 2.46 0.7 8.62

F = + +

= + + =
v

f
. 

As a comprehensive result, we obtain score 8.62 as the 
evaluated performance of those three students with four 
different subjects. By comparison to tradition weighted 
arithmetical mean, this result involves useful preferences and 
experiences of first line teachers. Therefore, a much more 
comprehensive evaluation for a collection (say, for all students 
of a class) is obtained. 

The detailed process including 5 major steps of this method 
is as follows. 

The detailed process of Two dimensional OWA evaluation: 

Step 1: Determine the q p×  performance matrix 

( )ijS s=  of objects being evaluated. Each row of S, 

1( ,..., )i i ips s=s  represents score/performance vector of 

student 
i

A , while each column of S, 1( ,..., )j j qjt t=t  

represents the performances of all the students for only one 
certain subject jM . 

Step 2: Determine preference degree (orness) α  with 

respect to different subjects and an OWA vector ( )p
u  such 

that ( )( )p
orness α=u . 

Step 3: Determine preference degree (orness) β  with 

respect to different students and an OWA vector ( )q
v  such 

that ( )( )q
orness β=v . 

Step 4: Aggregate 1( ,..., )i i ips s=s  under the same OWA 

weighting vector ( )p
u  to obtain ( ) ( )p iF

u
s  ( 1,...,i q= ). 

Step 5: Aggregate score vectors for different students 

( )1( ),..., ( )qF F= u uf s s  with OWA weighting vector ( )q
v  to 

obtain ( ) ( )qF
v

f . Then, ( ) ( )qF
v

f  is the final comprehensive 

evaluation result. 

3. Comprehensive Time Induce OWA 

Merge for Long Time Evaluation 

The Time Induced OWA (IOWA) operator was proposed by 
Yager in [17]. The IOWA operator is used to aggregate pairs of 

the form ( , )
i i

t a ( 1,2, ,i n= ⋯ ). Within these pairs,
it is called 

the order-inducing value/variable and 
i

a  is called the 

argument value/variable [3]. Note that 
i

a s are the elements 

that need to be aggregated, rather than
i

t s. 

Therefore, for n pairs of the form ( , )
i i

t a ( 1,2, ,i n= ⋯ ), an 

Time IOWA operator of dimension n is a mapping 

: ( , ) ( , )n
F −∞ +∞ → −∞ +∞

w
, which also has an associated 

weighting vector 1 2( , , , )
n

w w w=w …  satisfying the 

following properties 

1

1; 0 1; 1,2, ,
n

j j

j

w w j n
=

= ≤ ≤ =∑ …  

such that 

[ ]1 1 2 2
1

( , ), ( , ), , ( , )
n

T

n n j j

j

F t a t a t a w b
=

= =∑w
wb⋯ , 

where 1 2( , , , )
n

b b b=b …  is simply the reordered form of 

1 2( , , , )
n

a a a=a … , which corresponds to the linear ordering 

relation “ ≺ ” in the linearly ordered set (or chain):

1 2({ , , , }, )
n

C t t t= … ≺ . 

For example (see [3]), suppose 1 1( , ) (2001,3)t a = , 

2 2( , ) (2002,1)t a = , 3 3( , ) (2003,2)t a = , 4 4( , ) (2004, 4)t a = , 

i
t  represent years, the time-ordered arguments vector to be 

aggregated is not (4,3, 2,1)=b , but (3,1,2,4)=b . In time 

series, the newly arrived argument is always 1 1( , )
n n

t a+ + , 

which means that we only need to add 1na +  to the rightmost 

side of the original time-ordered arguments vector 
( )

1 2( , , , )n

na a a=b ⋯  to obtain the new time-ordered 

arguments vector ( 1)
1 2 1( , , , , )n

n na a a a
+

+=b ⋯ . 

Suppose every month we have a comprehensive test with 
several subjects for students, using the methods 
aforementioned in Section 2, we can obtain the evaluation 
result for a certain month, say, 

k
M  ( 1,2,...)k = . If we use 

the similar method for different k, and with the different 
selection for ( )p

u  and ( )q
v , we can compute the scores for 

every month as 
k

s  ( 1,2,...)k = . In addition, this process can 

be endless; that is, we can use a similar way to well-known 
exponential smooth weights for every month. Therefore, we 
can timely know the current learning and teaching status in 
each organization unit in school. In this sense, we need a 
recursive model like exponential smooth method. In this study, 
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we will use the recursive OWA weights [15] to aggregate the 
performances of each month. 

Based on Stancu Polynomials, Singh et al. proposed the 

Stancu OWA operators [12]. For an OWA operator of 

dimension i, ( )
1 2( , , , )i

i i iiu u u=u …  (i = 1, 2, …), if its weights 

satisfy the condition (an empty product denotes 1) 

1 2

0 0

2

0

1
( ) (1 )

(1 )

i j j

s s

ij i

s

i
t s t s

i j
u

s

α α

α

− − −

= =

−

=

− 
+ − + − =

+

∏ ∏

∏
      (3) 

with [0,1]t ∈ , 0α ≥  being two parameters, then it is called 

a Stancu OWA operator. 
Proposition 3. [4] Left Recursive OWA operators is a 

particular case of Stancu OWA operators with two equal 
parameters, i.e., t α= . 

We also need to review some newly finding results [5]. 
Proposition 4. For any Recursive OWA operator (explicit 

form) ( ) ( ) ( ) ( )
1 2( , , , )n n n n

nw w w=w ⋯  (n = 2, 3, …) with constant 

orness α  

( ) ( )
1

1 1
( 2)

1
n n

i i
w i w

i

α
α −
− = − + ⋅ −  

, i = 2, 3, … , n 

Proposition 5. For any two families of Recursive OWA 
operators with the same dimension: 

( ) ( ) ( ) ( )
1 2( , , , )n n n n

nw w w=w ⋯  and ( ) ( ) ( ) ( )
1 2( , , , )n n n n

nv v v=v ⋯  (n = 

2, 3, …), such that ( )( )n
orness α=w  and ( )( )n

orness β=v . 

If α β> , then 
( ) ( )

( ) ( )
1 1

n n

i i

n n

i i

w v

w v− −

<  (i = 2, 3, …, n). 

Proposition 6. For any Recursive OWA operator (explicit 

form) ( ) ( ) ( ) ( )
1 2( , , , )n n n n

nw w w=w ⋯  (n = 2, 3, …) with the 

constant orness α , 

if 0.5α >  then ( ) ( )
1

n n

i iw w −< , i = 2, 3, …, n 

if 0.5α <  then ( ) ( )
1

n n

i iw w −> , i = 2, 3, …, n 

For Recursive OWA operator, when a new argument 1n
s +  

(represent the comprehensive score in month n+1), arrives at 
the rightmost of the original arguments vector ( )n

s  to form: 

( 1) ( )
1 1 1[ , ] [ , , , ]n n

n n ns s s s
+

+ += =s s ⋯ , 

if we wish to keep the time orness α unchanged (time 
andness 1 α−  also unchaged), we can use the following 
formula [20] to obtain the new aggregation result: 

Let ( 1) 1

1 ( 1)
nk

n

α
α

+ −=
+ −

                (4) 

then ( 1) ( )

( 1) ( 1) ( ) ( 1)
1( ) (1 ) ( )n n

n n n n

nF k F k s+
+ + +

+= − + ⋅
w w

s s  has the 

same underlying time orness α (or time andness 1 α− ). In 
other words, it can be shown that the implicit OWA operator 

( 1)n+
w obtained repeatedly by this formula has the property: 

( 1)orness( )n α+ =w  for any n = 2, 3, …, and ( 1)n+
w  needs not 

to be explicitly expressed. 
If one needs to continue the evaluation problem for the next 

month, and by using (4), we can use the recursive method to 
evaluate each month’s comprehensive performance of all 
students based on the historical performance and the new one 
– this process is very similar to the exponential smooth 
process. However, the traditional ES model can not involve 
the time attitude of teachers/decision-makers. 

For example, suppose the teacher’s time attitude degree 

(time andness) is 3/4, and suppose (2)
1 2( , )s s=s  being the 

two scores of the first month and the second month, then 
(2) (2) (2)

1 2( , ) (1/ 4,  3 / 4)w w= =w , and we have 

( 2 )

(2) (2) (2)
1 1 2 2( )F w s w s= +

w
s . A new month passed, and a new 

score 3s arrives at the rightmost of (2)
s  to form 

(3)
1 2 3( , , )s s s=s , and we wish to keep the time andness degree 

3/4 unchanged for (3)
w , then we can create (3)

w  by the 
following recursive way: 

[ ]

(3) (2) (2) (2)
1 2

(3) (3) (3)
1 2 3

2 3 2 3 2 3
[ ,  ] [ ( , ),  ] [ (1/ 4,  3 / 4),  ]
5 5 5 5 5 5

0.1,0.3,0.6 [ , , ]

w w

w w w

= = =

= =

w w
 

and then 

(3)

( 2 )

(3) (3) (3) (2) (2)
3

(2)
3

2 3
( ) ( ) ( )

5 5
2 3

( )
5 5

T T
F s

F s

= ⋅ = ⋅ +

= +

w

w

s w s w s

s

 

if the comprehensive score of Month4 is 4s , then 

( 4) (3)

(4) (3)
4

1 1
( ) ( )

2 2
F F s= +

w w
s s . And we can find that the 

underlying “explicit” I-OWA operator 

[ ](4) 0.05,0.15,0.3,0.5=w  with time orness 1/4 (time 

andness 3/4). 
With this similar recursive process, we can very 

conveniently provide the comprehensive scores of those 
students at every time nodes. Therefore, we can real time 
monitor the learning and teaching performance of every 
month node, while keep the involved time attitude unchanged. 

4. Conclusions 

In this study, we introduced the two dimensional OWA 
aggregation function into pedagogical evaluation practice. 
With the proposed models, we can obtain a comprehensive 
performance for and p q×  score matrix. The model can 

involve the experiences and preferences of first line teachers 
and thereby more useful and reaonsable. Furthermore, we also 
considered a long time educational evaluation model which 
uses Stancu OWA operators and therefore quite convenient 
and reasonable. The model involving time attitude of teacher 
also can monitor the long time teaching and learning status in 
teaching organizations and schools. 
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