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Abstract: Analytical solutions are not available for the partial hemispherical hydrosphere which called as the Kugel ball 

fountain or the Kugel ball. However, this study offers a comprehensive idea about this phenomenon presenting a design map 

that gives a panoramic sight enabling the designers to easily choose whatever specifications needed for their fountain. Through 

simplifying the author previous formulae for this type of bearings, this paper removes the mystery of the Kugel ball 

phenomenon and shows that no complicated mathematic or physics are needed, as believed, to be grasped for producing such 

fountains. A new simple design technique is used and the most two famous fountains (at the House of Science in Patras, 

Greece and the largest at the Science Museum of Virginia, Richmond, USA.) are checked as an application of this design. One 

of the most important side results of this study is finding the equilibrium point, discovered in the author previous papers, which 

was considered as the equilibrium point between the forces of centripetal inertia, viscosity and friction due to the surface 

roughness. It becomes clear that this point is a natural characteristic of this type of bearings. 

Keywords: Kugel Ball Mathematics, Externally Pressurized Bearings, Spherical Bearings, Surface Roughness, 

Hydrostatic Bearings Design 

 

1. Introduction 

Kugel ball, as defined in the fountain Wikipedia, is a water 

feature or sculpture where a sphere sits in a fitted hollow in a 

pedestal, and is supported by aquaplaning on a thin film of water. 

Pressurized water flows between the sphere and socket, creating 

a mechanical hydrostatic bearing that is nearly frictionless. The 

sphere can weigh thousands of kilograms, but the efficient 

bearing allows it to be spun by the force of a hand. The sphere 

does not float, being denser than water; it is often made from 

granite. The hydraulics of the fountain can be controlled so that 

the axis of rotation of the sphere changes continually [1]. To 

understand the Kugel ball phenomenon it is necessary to go 

back to the first hydrosphere found by Shaw and Strang [2] 

where it was suggested through theoretical and experimental 

work that the lubricant inertia could explain the performance of 

the bearing. Block and Cameron [3] disputed Shaw and Strang 

suggestion putting forward approximate calculations to support 

their view. Dowson and Taylor [4, 5] offered a more complete 

theoretical analysis by starting with the equations of motion and 

reducing them to a usable form retaining only the centripetal 

inertia terms. Yacout [6-11] developed Dowson form to be able 

to handle this type of bearings with its different configurations, 

in presence of the surface roughness centripetal inertia and the 

lubricant variable viscosity, investigating its performance in 

details and offering a single equation covers this type and a 

design for restricted and self-restriction fitted bearing, which the 

Kugel ball is to be considered a partially hemispherical 

configuration of the hydrosphere. Snoeijer and Weele [12] 

offered mathematical analysis for the Kugel ball and concluded 

that, as a matter of fact, the kugel fountain can be thought of as a 

giant ball bearing. D'Alessio and Pascal [13] offered analytical 

investigation of the steady flow of a thin fluid layer over a 

sphere resulting from a constant discharge from a small hole at 

the top of the sphere concluding that the technique and approach 

adopted can be used to model other thin flows that occur in 

similar settings. Michal Michalec et al [14] and Zhifeng Liu et al 

[15] offered a useful panoramic approach through reviews 

handling the hydrostatic bearings/systems of different types. The 

reviews went through the bearings /systems researches, design, 

optimization and applications. Inasmuch as the hydrosphere has 

been found, the arguments about this type of bearings have not 
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been stopped; however, the present study mainly offers a new 

technique for designing the Kugel ball as a partially 

hemispherical hydrostatic thrust spherical bearing. 

2. Expressions Needed 

Simplifying the expressions in Yacout (6-11) gives the 

simplest forms of the equations needed for the Kugel ball at 

the appendix, which cover the un-recessed fitted hydrosphere. 

Equating the parameter: ( , , , ,r c vK K K S ) with zero for un-

recessed stationary fitted bearing supplied with constant 

viscosity lubricant, the expressions become surprisingly simple: 

 

Figure 1. Bearing configuration. 
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2.2. Dimensionless Load Carrying Capacity 
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2.3. Dimensionless Rotational Torque 
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4/ 2M me Rπµ= Ω                             (6) 

2.4. Dimensionless Flow Rate 
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3. Kugel Ball Mathematics 

3.1. Supply Pressure 

From eq. (4): 
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3.2. Ball Design Parameter (bdp) 

From eq. (7, 8): 
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3.3. Ball Rotation 

From eq. (6): 

4/ 2me M Rπ µΩ =                            (10) 
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Figure 2. Forces balance. 

Reforming eq. (4) becomes: 
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From figure 2: 

Balancing the forces gives: 
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3.4. Moment Due to Lateral Dislocation of the Ball Center 

w lm we=                                     (13) 

3.5. The Lubricant Film Thickness 
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4. Design Procedures 

The ball diameter is (D) and its specific weight is ( )γ  

Then: 

Select the parameters of ( , , , )i ore mφ β  

Draw ( )fJ at different values of ( )η  

Draw ( ) ( )or NΩ at different values of ( )η  

Draw 
2( )

f
J Q at different values of ( )η  i.e., the graph

( )jfqc η− or the suggested name (bdp) graph. 

Calculate the ball 
2( )

f
J Q based on the selected 

parameters i.e., (JFQ) 

The intersection between the calculated ( )JFQ  with the 

drawn graph ( )jfqc η− gives the required ( )η . 

By this determined ( )η find the ( )fJ graphically from the 

curve ( )fJ η−  

Determining ( )fJ  the supply pressure ( )
s

p  could be 

calculated from equation (8). 

Getting ( )
s

p the flow rate (q) could be calculated from 

equation (7). 

The ball rotational speed (N) could be calculated from 

equation (10) or graphically from the ( )N η−  graph. 

The minimum and maximum lubricant film thicknesses 

could be calculated from equation (14). 

Calculate the ball center dislocation ( )
l

e through equating 

the two moments in equations (12, 13). 

 

Figure 3. Bearing Characteristics. 

 

Figure 4. Bearing Characteristics. 
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5. Design Examples 

5.1. Checking the House of Science Fountain in Patras, 

Greece 

The fountain specifications are: 

Ball radius (R) = 0.5 m fitted with the seat. 

Material, granite, specific weight ( γ ) = 2.75x10
4
N/m

3 

Following the previous design procedures: 

iφ = 2.31 deg, Ke = 1/775, mor = 1 for self-restriction [11] 

and β =2/3 for consistency [6-11], water lubricant 

ρ = 103 Kg/m3, µ = 0.001 N.s2/m4 

From eq. (7): 
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= 8.5593 x 10
-6 

From eq. (10): 
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JFQ =0.1011 

From figure ( jfqc η− ), the intersection between the (JFQ) 

and the (jfqc) gives: 

0.6887η =  

From figure (
fJ η− ) or from equation (4) where (Jf=1/W) 

the geometry factor could be known mathematically or 

graphically as: 

Jf =3.1868 

From equation (8): 

Ps= (2/3 x 3/2) x (1) x (2.75 x10
4
) x (3.1868) 

= 8.763 x 10
4 
N/m

2
 

Ps = 0.8763 Atmosphere 

Ball weight (w) = 1.4399 x 10
4 
N 

From equation (7): 

q = (8.5593 x 10
-6

) x { [1-(2/3) ] x ps }
1/2

 

= 0.001468 m
3
/s 

q = 1.468 Liter/s 

From equation (14): 

cose eh e θ=  

cosi ih e θ=  

2.31degiφ =  

/ 2b xφ η π= = 0.6887 x 90 = 62 deg 

The difference between ( & )φ θ could be neglected or 

could be found, in details, in yacout [10] which gives: 

iθ = 2.307deg 

eθ =61.9178deg 

e =R x Ke = (0.5 x 1/775) x 10
6
= 645.16micron 

cosi ih e θ= = 645.16 x cos (2.307) =644.64micron 

cose eh e θ= = 645 x cos (61.9178) =303.7micron 

hi = 644.64micron 

he = 303.7micron 

From equations (5, 9, 11 and 12) the rotational speed could 

be mathematically calculated or graphically through ( )M η−
and ( )M η−  graphs. 

m = 0.041 N.m 

M = 0.3644 

N = -1.7645 rpm (A. C. W.) 

From equations (13): 

el = m/w = (0.041/1.4399 x 10
4
) x 10

6
= 2.846micron 

el = 2.846micron 

 

Figure 5. Design Example 1. 

5.2. Checking Virginia Museum Fountain in Richmond, 

USA 

The main difference between this example and the 

previous one is the ball stagnation. 

The fountain specifications 
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It has the same previous specifications excep the ball 

radius. 

Ball radius = 1.5 m 

Starting with the selection of: 

iφ =  2.31 deg, mor = 1, β =2/3 and with aid of subfigure 

(3-b) select Ke=1/1750, which gives the minimum ( )η  that 

satisfies the condition of (m = 0), i.e., no rotation, the figures 

(8-10) could be drawn and all needed information could be 

got as before either mathematically or graphically. 

 

Figure 6. Design Example 1. 

 

Figure 7. Design Example 1. 

 

Figure 8. Design Example 2. 

 

Figure 9. Design Example 2.  

 

Figure 10. Design Example 2. 

6. Results 

The Kugel ball is treated as an un-recessed fitted self-

restriction hydrosphere trough a new design technique 

simplifying the hydrosphere formulae and developing two 

especial simple characteristic equations governing the kugel 

ball design. 

A side result of this study is finding the partially 

hydrosphere, equilibrium point which was believed to be as 

the point of balance between the centripetal inertia, the 

viscosity and the surface roughness friction forces. 

7. Descution 

The new provided design technique simplifies the fitted 

hydrosphere phormaulae deriving the two characteristic 

equations (8, 9) especially for this pattern of the fitted 

hydrosphere. 

Equation (8) simply calclates the pressure supply through 

multiplying the the ball diameter by its specific weight and 

the bearing geometry factor. 
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Equation (10) is a master govering relation where it could 

be really defined as the bearing or the ball design parameter 

(bdp); it cobines the geometry factor with the dimensionless 

flow rate in a simple form yeilding a constant value. 

7.1. General Ball Characteristics 

Figures (3, 4) show the ball behavior at different partial 

seats and different eccentricities. 

Subfigure (3-a) shows that the dimensionless rotational 

torque (M) increases with ( )η and decreases with (e) which is 

supported by Yacout [6]. 

Subfigure (3-b) is new and could be considered as an 

important side result of this study and will be discussed in 

details later on, however, it enables the designer to know the 

parameter ( )η that makes the ball stagnant. 

Subfigures (3-c, d) show the ball rotational speed and the 

( )η range that the ball changes its rotational direction. 

Subfigures (4-a) shows that the dimensionless flow rate 

decreases with ( )η while increases with (e), supported by 

yacout [6-11]. 

Subfigures (4-b) shows the geometry factor ( )fJ where it 

decreases with ( )η and increases with (e) which is logic where 

( 1/ )fJ W=  and (W) increases with ( )η and decreases with (e), 

supported by Yacout [10-11]. 

Subfigures (4-c) show the intersection between the (JFQ) 

parameter of the designed ball with the ( )fJ curve to 

determine (Q
2
) and with (jfqc) curve to determine ( )η , 

Subfigures (4-d) show a design map that gives a 

panoramic sight on the ball behavior to enable the designer to 

quickly choose the area of his work. 

7.2. Checking the First Example 

Figures (5, 6 and 7) represent the first design example 

procedures and calculations. 

From subfigure (5-a) the parameter ( )η is determined; then, 

after getting ( )η , the geometry factor (Jf) is determined from 

subfigure (5-b). 

After getting ( )η and (
fJ ), the pressure supply (ps), the 

flow rate (q), the rotational speed (N) and other specifications 

have bee got mathematically and also graphically. 

Subfigures (5-d) and (6-b) show the designer the ability to 

design a stagnant ball. 

Subfigures (6-c,d), represent the supply pressure and the 

flow rate where (ps and q) could be easily determined 

graphically. 

Figure (7) represent the lubricant film thicknesses at its 

inlet and outlet where the thickness could be graphically 

determined. 

Looking at the few data mentioned by Snoeijer and van der 

Weele [12] about this example, it could be realized the 

agreement with the present results. However, despite the lack 

ofinformation about the specificationsof this example, the 

results reveal that the Kugel ball is a self-restriction 

hydrosphere Yacout [11]. 

7.3. Checking the Second Example 

Figures (8-10) represent the second design example 

procedures and calculations. 

In this example the ball is stagnant, hence, figure (3-b) is 

nessary to get the idea about the parameter ( )η that could 

result in the zero moment then the same procedures are to be 

applied as before to get the results mathematically or 

graphically as shown in the first example. 

Due to the absence of data about this example, the present 

results could be considered as a temporary guide for the 

future investigations. 

7.4. The Side Result 

The side result got in this study is the point of minimum 

moment, subfigures (3-b); this point appears in yacout [6-8] 

which considered as the equilibrium point between the forces 

of the centripetal inertia, viscosity and surface roughness 

friction. 

This point of minimum moment appears around ( )η  value 

of (0.75). From subfigures (5-b) and (8-b), the geometry 

factor at this point is (2.406 – 2.411) and its load carrying 

capacity (W ~ 0.416) which coincides with the equilibrium 

point of the fitted hydrosphere in yacout [6]. 

It becomes clearly now that the name of this point and the 

reason of its appearance is not the balance between the 

aforementioned forces and it could be assured that the point’s 

name is the minimum moment and the reason is the 

minimum difference between (mo and mi) where the 

centripetal inertia will not affect this difference despite its 

effect on the load carrying capacity (W). 

8. Conclusion 

The new design technique has many advantages where it: 

Results in deriving two simple characteristic relations where 

the first is concerned with the supply pressure and the second 

with the flow rate. While the first one is especially for the Kugel 

ball, the second one could be generally applied to the 

hydrosphere where no hydrosphere could be outside this relation. 

Proves that the Kugel ball is just a simple hydrosphere 

based on simple mathematics not as believed before 

Offers the mathematical reason of the ball rotation 

calculating its rotational speed whilst the concerned 

references treated the rotation or (spin as said in these 

references) as to be as a postulate 

Proves that the lubricant film is not a sheet as believed and 

mentioned in the references but a convergent shape with 

different thicknesses 

Finds, as a side result, the real reason of what is called the 

forces equilibrium point of the hydrosphere. 

Offers a design map of panoramic sight on the ball 

characteristics to help the designer select the needed 

specifications 

Show clearly, through the two design examples, that the 
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increase in the seat arc length decreases the supply pressure 

which leads to levitate the ball by low pressure. 

9. Future Work 

Based on the conception of this especial hydrosphere, a 

general new design technique will be offered to simply 

design the externally pressurized thrust spherical hydrostatic 

bearings avoiding the difficulties in the previous designs and 

improving the method of selecting the proper bearing. 

Appendix 

All mathematical equations related to the hydrosphere 

could be found in Yacout [6-11] and the necessary ones 

which serve this design are listed. 

Appendix 1. Dimensionless Pressure 
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Appendix 2. Dimensionless Load Carrying 
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Appendix 3. Dimensionless Rotational Torque 
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Appendix 4. Dimensionless Flow Rate 
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Appendix 5. The Lubricant Film Thickness 
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Appendix 6. Geometry Factor 

1 /fJ W=  

Nomenclature 

3(6 )iA q e pµ π= −  

a =Bearing projected area ( 2Rπ ). 
2 23b σ=  

D = Ball diameter 

ord =  Orifice restrictor diameter 

iod =Bearing inlet orifice diameter. 

e = Eccentricity. 

le = Lateral eccentricity (dislocation) 

h = Film thickness = cose θ  

cos
e e

h e θ=  

cosi ih e θ=  

fJ = Geometry factor 1/W=  

2

f
JFQ J Q=  For the ball 

2

f
jfqc J Qη=  For the ball at different (η ) 

eK = ( e R ) 

orK = Orifice restrictor constant 

M  = Dimensionless torque(
42

me

RπµΩ
). 

m = Rotational torque. 

/or or iom d d=  

wm = The moment due to the ball center dislocation 

N = Rotational speed (rpm) 

ip = Inlet pressure 

sp = Supply pressure 

q = lubricant volume flow rate 

R  = Ball radius. 

W  = Dimensionless load carrying capacity ( 2

iw R pπ ). 

w = Ball weight. 

/i sp pβ =  

bϕ = Seat outer rim angle. 

iϕ = Seat inner rim angle. 

θ = Angle co-ordinate. 

iθ =Inlet flow angle. 

eθ = Outlet flow angle. 

ρ = Lubricant density (1000 N. s
2/

m
4
). 

σ = Dimensionless surface roughness parameter. 
2

oσ = Variance of the film thickness. 

Λ = min( / )h σ Dimensionless film thickness parameter 

(5:100) for the hydrodynamic lubrication regime. 

γ = Specific weight of the ball material 
4 32.75 10 /x N m  

2 bη φ π=  

ξ = Normalized roughness Parameter (0.05:1) 
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λ = Bearing stiffness. 

µ =Lubricant viscosity (0.001 N. s/m
2
) 

2 NπΩ =  

 

References 

[1] Fountain Wikipedia. 
https://en.wikipedia.org/wiki/Kugel_fountain. 

[2] The hydrosphere, A new hydrodynamic bearing," Shaw M. C. 
and Strang C. D. “The annual meeting of the American 
Society of Mechanical Engineers, 1948, 137-146. 
https://sites.google.com/umich.edu/shihlabs/prof-milton-
shaw/manuscript-of-professor-milton-shaw. 

[3] Discussion of Show and Strang hydrosphere, a new 
hydrodynamic bearing, “Block H. and Cameron A. 
“Transaction of ASME J. Appl. Mech. 1949, Vol. 71, 93-102. 

[4] Fluid-inertia effects in spherical hydrostatic thrust bearings, 
“Dowson D. and Taylor C. M. “ASLE, Transaction, 1967, 10, 
3, 316-321. https://doi.org/10.1080/05698196708972189. 

[5] Re-examination of hydrosphere performance, "Dowson D. and 
Taylor C. M. “ASLE, Transaction, 1967, 10, 3, 325-333. 
https://doi.org/10.1080/05698196708972189. 

[6] The combined effects of the centripetal inertia and the surface 
roughness on the hydrostatic thrust spherical bearings 
performance, Ahmad W. Yacout, Ashraf S. Ismail, Sadek Z. 
Kassab,’ Tribology International, 2007, 40 (3), 522-532. 
https://doi.org/10.1016/j.triboint.2006.05.007. 

[7] W., Ismail A. S. and Kassab S. Z.,” The Surface Roughness 
Effect on the Hydrostatic Thrust Spherical Bearings 
Performance (part 2 un-recessed clearance type), ASME 
International Mechanical Engineering Congress and 
Exposition, IMECE2006-13004. 
https://doi.org/10.1115/IMECE2006-13004. 

[8] Yacout A. W., Ismail A. S. and Kassab S. Z.,” The Surface 

Roughness Effect on the Hydrostatic Thrust Spherical 
Bearings Performance (Part 3 recessed clearance type of 
bearings), “ASME International Mechanical Engineering 
Congress and Exposition, IMECE 2007 -41013. 
https://doi.org/10.1115/IMECE2007-41013. 

[9] The Effect of the fluid Film variable viscosity on the 
hydrostatic thrust spherical bearing performance in the 
presence of centripetal inertia and surface roughness,’ Ahmad 
W. Y. Elescandarany, ’International Journal of Mechanical 
Engineering and Applications, 2018, 6 (1), 1-12. 
https://doi:10.11648/j.ijmea.20180601.11. 

[10] Design of the Hydrostatic thrust spherical bearing with 
restrictors (Fitted type), “Ahmad W. Y. Elescandarany’ 
International, “Journal of Mechanical Engineering and 
Applications, 2019, 7 (2), 34-45. 
https://doi:10.11648/j.ijmea.20190702.11. 

[11] Design of Self-restriction Hydrostatic Thrust Spherical 
Bearing (Fitted Type)’ Ahmad W. Y. Elescandarany’ 
International Journal of Mechanical Engineering and 
Applications, 2019, 7 (4), 111-122. 
https://doi:10.11648/j.ijmea.20190704.14. 

[12] Physics of the granite sphere fountain,’Jacco H. Snoeijer and 
Ko van der Weele, ‘American Journal of Physics 2014, 82, 
1029. https://doi: 10.1119/1.4886365. 

[13] The dynamics of the globe fountain, ’Serge D’Alessio and J. 
P. Pascal, ’AFM 2016, September 5-7, Ancona, Italy. 
https://doi:10.2495/cmem-V4-N2-131-141. 

[14] A review of the design and optimization of large-scale 
hydrostatic bearing systems, “Michal Michalec, Petr Svoboda, 
Ivan Krˇupka, Martin Hartl,” Engineering Science and 
Technology, an International Journal (JESTECH), 2021. 
https://doi.org/10.1016/j.jestch.2021.01.010 

[15] A review of hydrostatic bearing system: Researches and 
applications,” Zhifeng Liu, YumoWang, Ligang Cai, 
Yongsheng Zhao, Qiang Cheng and Xiangmin Dong, 
“Advances in Mechanical, Engineering 2017, Vol. 9 (10) 1–27 
DOI: 10.1177/1687814017730536. 

 


