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Abstract: Wind energy has become one of the most cost-effective and environmental friendly renewable energy resources 

among all exploited renewable energy. However, the failure of gearbox contributes most of the downtime for wind turbine 

system. Dynamic properties of drivetrain, including gearbox should be investigated in detail further. In present paper, a 

mathematical model for a horizontal axis wind turbine drivetrain was developed using the torsional multibody dynamic model. 

The drivetrain in this study consisted of a low-speed planetary gear stage (three identical planets with spur teeth, sun and fixed 

ring gears) and two high-speed spur gear stages. This typical arrangement has been commonly used in the wind turbine 

industry. Based on this model, this paper aims to investigate the influence of drivetrain parameters on the dynamic response of 

the wind turbine. The dynamic responses of the turbine with different rotor inertia and generator inertia are compared. Then the 

difference due to changing of the shaft stiffness is also investigated during and after the transient condition. This parametric 

study shows that lower rotor inertia and generator inertia could lead to more oscillations. 
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1. Introduction 

The growing awareness of the threat of climate change 

caused by greenhouse gas has brought wind energy to the top 

of the global consensus, and wind energy has become the 

most cost-effective of all currently exploited renewable 

energy resources and has attracted extensive research and 

business interest [1-2]. Besides the industrial application 

success, extensive research is also carried out outside of the 

commercial companies [3-6]. 

The increased sizes of rotor and turbine have led to a 

complex design of the drivetrain mechanism. As one of 

the most critical components on the operation of wind 

turbines, the drivetrain is responsible for most of the 

downtime and results in the increment in operational 

costs [7]. Various studies have addressed the dynamic 

modeling of wind turbines [8]. However, few studies 

have focused on the advanced dynamic modeling of 

drivetrain [9-13]. 

As extension of our previous research [9], this study 

uses the multibody dynamics simulation techniques to 

extend the two-lumped-masses model into the torsional 

model for the drivetrain of a wind turbine, where exactly 

one degree of freedom (DOF) of each drivetrain 

component is used to investigate the torsional vibration of 

the drivetrain. Based on this model, dynamic analysis is 

carried out to study the transient response of the drivetrain 

structures. Numerical investigation is carried out to study 

the effects of the drivetrain parameters on the performance 

of the wind turbine. 
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2. Mathematical Model of the Wind 

Turbine Drivetrain 

The lumped parameter dynamic model of the drivetrain 

investigated in this study is shown in Figure 1. With one 

DOF for each component, the dynamic model has ten DOFs. 

Each gear, i, has a polar moment of inertia of Ji, i = rotor, c, 

p1, p2, p3, s, g1, g2g3, g4, gen, for the rotor, the carrier, the 

planets 1, 2, 3, the sun, the gears 1, 2 and 3, 4 and the 

generator, respectively; kj, j = 1, 2, 3, is the torsional stiffness 

for the Low Speed Shaft (LSS), Intermediate Shaft (IMS) and 

High Speed Shaft (HSS), respectively. The shaft connecting 

gears 2 and 3 (Figure 1) was assumed to be rigid due to 

immediately adjacent gears. The parameter ri is the base 

circle radius for each gear component and rc is the radius of 

the circle passing through the planet centers for the carrier. 

The angular displacements of the central members, θrotor, θc, 

θs, θg1, θg2g3, θg4, θgen, were defined as absolute displacements 

about a fixed coordinate frame, whereas the angular 

displacements of planets, θcp1, θcp2, θcp3, were defined relative 

to the carrier c as: 

cpi pi cθ θ θ= −                                 (1) 

 

Figure 1. Dynamic modeling of wind turbine drivetrain. 

 

 

Figure 2. (a) Planet gear stage model, (b) parallel gear stage model. 

The linear springs with time-varying stiffness krp(t), ksp(t), 

kg12(t) and kg34(t) were used to model the gear mesh [14] 

(Figure 2). Each mesh stiffness is expressed in the Fourier 

series as: 
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where krp and ksp are mean values. 

The Fourier coefficients are given as: 
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where Csp, Crp are sun-planet contact ratio and ring-planet 

contact ratio; γsp, γrp are phase angle of sun-planet gear pair 

and ring-planet gear pair. 

Similar mesh stiffness is defined for the parallel gear stage, 

except that there are different gear mesh frequencies (GMFs) 

and contact ratios. The mesh stiffness for the ring–planet, the 

sun–planet and the gears 1–2 and 3–4 are presented in Figure 

3. 

The GMF for each gear mesh pair can be determined from 

kinematic relationships as: 

( )
=

p

c rM Nω ω                                    (8) 

( )12

1 1=
g

g gM Nω ω                              (9) 
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( )34

3 3=
g

g gM Nω ω                           (10) 

The relative gear mesh displacements of the sun–planet 

and the ring–planet gear mesh are defined as: 

spi s s c c pi pir r rδ θ θ θ= − +                (11) 

rpi r r c c p pir r rδ θ θ θ= − −                  (12) 

where rr is the radius of the ring gear. A fixed ring gear is 

assumed in this study, which results in θr = 0. 

 

Figure 3. Time-varying gear mesh stiffness. 

Lagrange’s equation was used to derive the EOM [15]. The Lagrangian of the undamped dynamic models shown in Figure 2 

with three planets is given as (Kahraman 2001):
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The Lagrange EOMs of the ten-DOF dynamic model are given as: 

i
i i

d L L
Q

dt q q

 ∂ ∂− = ∂ ∂ ɺ
 i= rotor, c, cp1, cp2, cp3, s, g1, g2g3, g4, gen                               (14) 

where a dot over the parameter denotes differentiation with 

respect to time and ∂ denotes a partial derivative. Eq. (14) 

together with Eq. (13) leads to eight coupled ordinary 

differential equations, which can be written in the matrix 

form as: 

Mu+Ku=Qɺɺ                                 (15) 

where u, M, K, and Q are the displacement vector, the mass 

matrix the stiffness matrix, and the external force. 

The aerodynamic torque and electromagnetic torque are 

considered as external forces. 

3. Results and Discussion 

3.1. Numerical Analysis Method 

Equations of motion were solved using the direct 

integration method to obtain the transient response of the 

wind turbine drivetrain. Solution at the next time step was 
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calculated from the solutions at the previous time steps. The 

unconditional stable Newmark-β method (Figure 4) was used 

for the numerical analysis by implementing it into the Matlab 

based on the Eqs. 13~15. The basic integration equations that 

relate the positions, the velocities and the accelerations from 

the time step t to t+∆t are given as follows: 

( )1t t t t t tu u u u tγ γ+∆ +∆ = + − + ∆ ɺ ɺ ɺɺ ɺɺ              (16) 

( ) ( )2
0.5t t t t t t tu u tu u u tβ β+∆ +∆ = + ∆ + − + ∆ ɺ ɺɺ ɺɺ      (17) 

 

Figure 4. Flowchart of the numerical method of direct integration method. 

Typical parameters of a wind turbine drivetrain from 

Todorov (2009) are used in this study (Table 1). The rotor is 

exited with the angular velocity of 18 rpm.  

Table 1. System parameters for the drivetrain configurations. 

rc- carrier radius (mm) 270 

rp- planet radius (mm) 160 

rs- sun radius (mm) 110 

rg1- radius of gear1 (mm) 290 

rg2- radius of gear 2 from the 2nd stage (mm) 95 

rg3- radius of gear 3 from the 3rd stage (mm) 185 

rg4- radius of gear 4 (mm) 80 

Jrotor- inertia of the rotor (kg·m2) 4.18×106 

Jc- inertia of the carrier (kg·m2) 57.72 

mp- mass of the planet (kg) 57.79 

Jp- inertia of the planet (kg·m2) 1.12 

Js- inertia of the sun (kg·m2) 0.86 

Jg1- inertia of the gear 1 (kg·m2) 14.32 

Jg2g3- inertia of the gear 2 and gear 3 (kg·m2) 1.62 

Jg4- inertia of the gear 4 (kg·m2) 0.2 

Jgen- inertia of the generator (kg•m2) 93.22 

k1- stiffness of the LSS (Nm/rad) 7.19×107 

k2- stiffness of the internal shaft (Nm/rad) 1.4×107 

k3- stiffness of the HSS shaft (Nm/rad) 0.15×107 

krp- stiffness of the ring-planet gear mesh in the planetary 

gear stage (N/m) 
0.73×108 

ksp- stiffness of the sun-planet gear mesh in the planetary 

gear stage (N/m) 
0.73×108 

kg12- stiffness of the gear mesh between gear 1-2 (N/m) 2.02×109 

kg34- stiffness of the gear mesh between gear 3-4 (N/m) 0.11×108 

Crp-ring-planet contact ratio 1.9342 

Csp-sun-planet contact ratio 1.6242 

Cg12- contact ratio of gears 1 and 2 1.6616 

Cg34- contact ratio of gears 3 and 4 1.5984 

α- pressure angle (°) 20 

gear ratio 34.654 

3.2. Numerical Analysis Results 

3.2.1. Effects of Rotor and Generator Inertia Parameters 

To investigate the effects of the drivetrain parameters, 

seven cases are analyzed with the proposed multibody 

dynamic model. Table 2 presents the cases studied with 

different rotor inertia. The generator inertia and shaft 
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stiffness are kept as constant. 

Table 2. Simulation cases for the rotor inertia parameters. 

 Case 1 Case 2 Case 3 

Inertia of the rotor 0.5Jrotor Jrotor 1.5Jrotor 

Inertia of the generator Jgen Jgen Jgen 

Figure 5 shows the rotational speed of the rotor, planet 1, 

sun gear and generator, respectively. It is observed that the 

rotor inertia has great influence on the rotor and planet 1 and 

negligible influence on sun gear and generator. Not only the 

magnitude but also the oscillation period of rotor speed 

change due to changing of the rotor inertia. The effect of the 

rotor inertia on the gear contact forces are investigated 

(Figure 6) and the results show that there is a large increase 

of the contact force of the ring-planet and sun-planet gear 

pair but no effect on the parallel gear contact force. 

 

  

Figure 5. Effect of the rotor inertia on component rotational speed. 
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Figure 6. Effect of the rotor inertia on gear contact force. 

 Table 3 summarizes the simulation cases for the generator 

inertia parameters in which the rotor inertia and shaft 

stiffness remain constant. Figure 7 shows the response of 

three cases using different generator inertias. No effect is 

found on the rotor speed. But the higher generator inertia 

reduces the planet 1, sun gear and generator speed magnitude 

but increases the oscillation periods. Figure 8 shows the 

effect of the generator inertia on different gear pair contact 

force. Oscillation periods of all the contact forces are affected 

by generator inertia but the magnitude remain unchanged.  

Table 3. Simulation cases for the generator inertia parameters. 

 Case 4 Case 5 Case 6 

Inertia of the rotor Jrotor Jrotor Jrotor 

Inertia of the generator 0.5Jgen Jgen 1.5Jgen 

 

 

Figure 7. Effect of the generator inertia on component rotational speed. 
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Figure 8. Effect of the generator inertia on gear contact force. 

3.2.2. Effects of Shaft Stiffness Parameters 

Table 4~6 summarizes considered cases for different LSS, 

IMS, and HSS stiffness parameters, respectively. LSS 

stiffness only has a small influence on the rotor speed while 

negligible effects can be found for other components (Figure 

9). With increasing of the LSS stiffness, the contact force 

between ring gear and planet gear and the contact force 

between sun gear and planet gear increase but no effect on 

the parallel gear stage (Figure 10). Due to the different IMS 

stiffness, the oscillation period of the planet 1, sun gear and 

generator speed change significantly (Figure 11). Similar 

effect on the oscillation period can be identified for all the 

gear contact forces (Figure 12). The oscillation period of the 

planet 1, sun gear and generator change a little because of the 

increasing of the HSS stiffness (Figure 13). The reduction of 

the oscillation period for all the gear stages can be found with 

increasing of HSS stiffness (Figure 14).  

Table 4. Simulation cases for the LSS stiffness parameters. 

 Case 7 Case 8 Case 9 

LSS stiffness 0.5K1 K1 1.5K1 

IMS stiffness K2 K2 K2 

HSS stiffness K3 K3 K3 

Table 5. Simulation cases for the IMS stiffness. 

 Case 10 Case 11 Case 12 

LSS stiffness K1 K1 K1 

IMS stiffness 0.5K2 K2 1.5K2 

HSS stiffness K3 K3 K3 
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Figure 9. Effect of the LSS stiffness on component rotational speed. 

 

 

Figure 10. Effect of the LSS stiffness on gear contact force. 
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Figure 11. Effect of the IMS stiffness on component rotational speed. 

 

 

Figure 12. Effect of the IMS stiffness on gear contact force. 
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Table 6. Simulation cases for the HSS parameters. 

 Case 13 Case 14 Case 15 

LSS stiffness K1 K1 K1 

IMS stiffness K2 K2 K2 

HSS stiffness 0.5K3 K3 1.5K3 

 

 

Figure 13. Effect of the HSS stiffness on component rotational speed. 
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Figure 14. Effect of the HSS stiffness on gear contact force. 

4. Conclusions 

A mathematical model of the drivetrain in a horizontal 

wind turbine was proposed. The model used multibody 

dynamics to investigate the torsional vibration in the 

drivetrain. The governing equation was derived using 

Lagrange’s equation. The model took into account the 

flexibility of the gear mesh by using linear springs with time-

varying stiffness and shaft torsion.  

The equations of motion of the drivetrain were solved 

numerically by the direct integration method to obtain the 

transient response of the system. The parameter studies were 

carried out based on the proposed model. The following 

conclusions can be drawn from this study: 

1) The generator inertia has most significant effect on the 

response of the components. 

2) Higher generator inertia can reduce the oscillation 

range and delay the oscillation period. 

3) LSS stiffness has negligible effects while IMS and HSS 

stiffness can reduce the period of the component speed 

response. 

4) Rotor inertia and LSS stiffness have a large effect on 

the contact force magnitude of the ring-planet and sun-

planet gear pair but limited effect on the parallel gear 

stage contact force. 

Acknowledgements 

The authors would like to gratefully acknowledge 

financial support from the National Science Foundation of 

China (Grant No. 51709039, 51761135011). This work is 

also partially supported by the Fundamental Research 

Funds for the Central Universities (DUT19GJ209) and 

State Key Laboratory of Hydraulic Engineering 

Simulation and Safety. 

 

 

References 

[1] Dincer F (2011) The analysis on wind energy electricity 
generation status, potential and policies in the world. Renew 
Sust Energ Rev 15 (9): 5135-5142. 

[2] Luhur MR, Manganhar AL, Solangi KH, Jakhrani AQ, 
Mukwana K C, Samo S R (2016) A review of the state-of-the-
art in aerodynamic performance of horizontal axis wind 
turbine. Wind Struct 22 (1): 1-16. 

[3] Jonkman JM (2009) Dynamics of offshore floating wind 
turbines - model development and verification. Wind Energy, 
12 (5): 459-492. 

[4] Kim CH, Kim KS, Kim HY, Paek IS, Yoo NS, Nam YS, 
Campagnolo F, Bottasso C (2012) A method to estimate 
bending moments acting on a wind turbine blade specimen 
using FBG sensors. Int. J. Precis. Eng. Manuf 13 (7): 1247-
1250. 

[5] Shi W, Park HC, Na S, Song J, Ma S, Kim CW (2014) 
Dynamic analysis of three-dimensional drivetrain system of 
wind turbine. Int J Precis Eng Manuf 15 (7): 1351-1357. 

[6] Zhang JP, Li DL, Han Y, Hu DM, Ren JX (2013) Dynamic 
stability analysis on large wind turbine blade under 
complicated offshore wind conditions. J Vibroeng 15 (3): 
1597-1605. 

[7] Oyague F (2009) Gearbox Modeling and Load Simulation of a 
Baseline 750-kW Wind Turbine Using State-of-the-Art 
Simulation Codes. Technique report NREL/ TP-500-41160. 

[8] Dresig H, Schreiber U (2005) Vibration Analysis for Planetary 
Gears, Modeling and Multibody Simulation. Proceedings of 
ICMEM2005, Nanjing, China, October. 

[9] Shi W, Kim CW, Chung CW, Park HC (2012) Dynamic Modeling 
and Analysis of a Wind Turbine Drivetrain Using the Torsional 
Dynamic Model. Int J Precis Eng Manuf 14 (1): 153-159. 

[10] Shi W, Park YH, Park HC, Ning DZ (2018) Dynamic analysis 
of the wind turbine drivetrain considering shaft bending effect. 
J Mech Sci Technol 32 (7): 3065-3072. 



77 Wei Shi et al.:  Parametric Study of Drivetrain Dynamics of a Wind Turbine Using the Multibody Dynamics 
 

[11] Todorov M, Vukov G, Dovbrev I (2009) Analysis of torsional 
oscillation of the drivetrain in horizontal axis wind turbine. 
Electromotion-2009-EPE Chapter ‘Electric Drives’ Joint 
Symposium Lille, France. 

[12] Todorov M, Vukov G (2010) Parametric torsional vibrations 
of a drive train in horizontal axis wind turbine. Proceedings of 
CFSER-2010, Damas. 

[13] Wu X, Ma Z, Rui X, Yin W, Zhang M, Ji K (2016) Speed 
control for the continuously variable transmission in wind 
turbines under subsynchronous resonance. IJST-T Mech Eng 
40 (2): 151-154. 

[14] Lin J, Parker RG (2002) Planetary gear parametric instability 
caused by mesh stiffness variation. J Sound Vibr 249 (1): 129-
145. 

[15] Shabana A (2010) Computational Dynamics, John Wiley & 
Sons, Inc, Ed., New York. 

[16] Kahraman A (2001) Free torsional vibration characteristics of 
compound planetary gear sets. Mech Mach Theory 36 (8): 
953-971. 

 

 


