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Abstract: The paper studies the suppression of oscillation of a certain two-mass system when it is transferred from the initial 

state of rest to the given state of rest during a time interval prescribed. The problem is solved by the two methods: the Pontryagin 

maximum principle (first method) and the generalized Gauss principle (second method). Computational results are presented and 

the solutions are compared to each other. When the time of motion is short the both methods give practically the same results, but 

when the time of motion is long the results differ widely. If the time of motion is long then the second method is more preferable 

than the first one, since the control obtained by the second method sways the mechanical system less than the control obtained by 

the classical approach. This can be explained by the fact that the first method contains the control including harmonics with the 

natural frequency of the system, and this seeks to put the system into resonance. In contrast to this, in the second method the 

control is sought in the form of time polynomial that provides relatively smooth motion of the system. It is noted that the first 

method always finds the control with jumps at the beginning and at the end of motion. The second method also gives the same 

jumps when the time of motion is short, but when the time of motion is long the similar jumps vanish when one uses the 

generalized Gauss principle. 
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1. Introduction 

One of the most important problems of the control theory 

is the problem of finding the optimal force that transfers a 

mechanical system during the time required from a phase 

state for which the generalized coordinates and velocities are 

given to the final phase state with the generalized coordinates 

and velocities prescribed. If the final phase state is the state 

of rest, then such a problem is called the problem of 

suppression of oscillation. 

The classical methods applied to solving similar problems 

are based, first of all, on the Pontryagin maximum principle 

[1] and on the dynamical programming [2] developed by R. 

Bellman and his scholars. Academician N. N. Moiseev [3] 

advises to use the local extremum method by F. L. 

Chernous’ko [4]. 

This paper uses a new method basing on the application of the 

generalized Gauss principle [5] to solving the problem of 

suppression of oscillation of a two-mass system with a spring. 

Its results will be compared to the application of the Pontryagin 

maximum principle. Solving the problem formulated continues 

the cycle of investigations performed earlier at the Department 

of Theoretical and Applied Mechanics of Saint Petersburg State 

University (for example, see works [6-10]). The first work in 

this cycle was the paper [11]. 

2. Equations of Motion 

 

Figure 1. Two-mass system. 
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Consider the problem of horizontal motion of two particles 

with masses �  and ��  connected to each other by the 

spring of stiffness �  along the � -axis (Figure 1). The 

motion of the mechanical system is realized under the action 

of the control horizontal force F, applied to the right mass �. 

It is required to find such a control force F that the system 

could be moved from the initial state of rest by the distance 

� to a new state of rest during the time �� . 

Denote the dimensional coordinates of the masses by 	 

and 	�. Then the differential equations of motion of the 

mechanical system are 

�	
 + ��	 − 	�� = �,
��	
� + ��	� − 	� = 0.           (1) 

In the problem formulated the following boundary 

conditions should be fulfilled: 

	�0� = 0, 	��0� = 0, 	� �0� = 0, 	���0� = 0,
	���� = �, 	����� = �, 	� ���� = 0, 	������ = 0. (2) 

Note that two equations (1) contain three unknown time 

functions 	, 	�, �. In monograph [12] this indeterminacy is 

eliminated by means of the condition of minimization of the 

functional 

� = 	� ���������
� .              (3) 

For the sake of convenience in further investigations, we 

shall write the equations of motion of the system in principal 

coordinates [13]. Seeking the solution of the homogeneous 

system corresponding to nonhomogeneous system of 

differential equations (1) in the form 

	 = �sin�Ω� + $�,
	� = ��sin�Ω� + $�, 

we get the system of homogeneous linear algebraic equations 

% &
' − Ω�(� − &

'�� = 0,
− &

') � + % &
') − Ω�(�� = 0.            (4) 

Setting the determinant of the system equal to zero and 

writing it in the extended form, we obtain a characteristic 

equation, from the roots of which the dimensional natural 

frequencies are found 

Ω� = 0, Ω� = +&�',')�
'') .              (5) 

For each of the frequencies (5) from system of equations 

(4) we arrive at the normal modes of vibration 

�1,1�, %1, − '
')( .              (6) 

Basing on the normal modes (6), we construct the general 

solution of the homogeneous system of differential equations 

in question 

	 = .� + .�� + .�sin�Ω�� + $�,
	� = .� + .�� − .�

'
') sin�Ω�� + $�.     (7) 

Supposing that the principal coordinates /�  and /� 

change according to the laws 

/� = .� + .��,/� = .�sin�Ω�� + $�, 
from solution (7) we get the coordinate transformation 

	 = /� + /�, 	� = /� − '
') /� ,        (8) 

which makes it possible to write the system of the Lagrange 

equations of second kind in principal dimensional 

coordinates /�  and /�  in the form of an independent 

system of two equations 

0/�
 = �, /�
 + &1
'') /� = 2')

1' , 0 = � + ��. (9) 

Note that according to transformation (8) 

/� = �	 + ��	�
0 , 

that is why the first equation in (9) represents the principle of 

motion of centre of mass of the mechanical system in 

question. 

Introduce the dimensionless quantities 

3 = 2')4
&145 , �� = ')

'
67
5 , �� = 6)

5 ,
8 = Ω��, � = Ω���, 9� = :)

:) = 1.       (10) 

Using notation (10), formulas (9), (2), (3) appear as 

��;; = 3, ��;; + �� = 3,             (11) 

���0� = 0, ���0� = 0, ��; �0� = 0, ��;�0� = 0,  (12) 

����� = 1, ����� = 1, ��; ��� = 0, ��;��� = 0, (13) 

� = 	� 3��8��8�
� .                 (14) 

Here the prime denotes differentiation in dimensionless 

time 8. Since a linear problem is solved, without loss of 

generality we assume that the masses move by the 

dimensionless distance equal to unit. Besides this, we 

succeeded in obtaining the same nonhomogeneity 3 due to 

linear transformation of one of the principal coordinates in 

(10). 

3. Solving the Problem by the Pontryagin 

Maximum Principle 

We’ll seek the optimal control with the help of 

minimization of functional (14) applying the Pontryagin 

maximum principle [1]. According to the general theory we 

write equations (11) in the form of system of differential 

equations of the first order 
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<=; = >= , ? = 1,4AAAA, 
>� = <�, >� = 3, >B = <C, >C = 3 − <B, 

and compose the Hamilton–Pontryagin function 

� = −3� + D�<� + D�3 + DB<C + DC�3 − <B�. 
The system of equations for finding the Lagrange 

multipliers D= and control 3 

D=; = − E�
E<= , ? = 1,4AAAA, E�

E3 = 0, 
in this case appears as 

D�;; = 0, DC;; + DC = 0, 23 = D� + DC.  (15) 

System (11) implies that the control has the form 

3�8� = G� + G�8 + GB sin�8� + GC cos�8�,  (16) 

where G= , ? = 1,4AAAA, are arbitrary constants. 

The partial solutions of equations (11) satisfying the zero 

initial conditions (in this case boundary conditions (12)) can 

be represented by the Duhamel integrals 

�� = � 3�8��J
� �8 − 8���8�,

�� = � 3�8��sin�8 − 8���8�.J
�

         (17) 

Substituting (16) into integrals (17) and satisfying 

boundary conditions (13), we get a system of linear 

inhomogeneous algebraic equations with respect to the 

sought constants G=, ? = 1,4AAAA. For the four cases of motion 

when � = 2K; 8K; 16K; 32K we have 

� = 2K: G� = 0.387637, G� = −0.123389,
GB = 0, GC = −0.246777, 

� = 8K: G� = 0.009874, G� = −0.000786,
GB = 0, GC = −0.0015715, 

� = 16K: G� = 0.002397, G� = −0.000095,
GB = 0, GC = −0.00019,  

� = 32K: G� = 0.000595, G� = −0.000012,
GB = 0, GC = −0.000024. 

The computational results are presented in Figures 2, 3, 4 

and 5 by dashed lines. 

4. Relationship Between the Solution and 

Nonholonomic Mechanics 

Now consider the solution obtained by the Pontryagin 

maximum principle minimizing functional (14) from a totally 

new viewpoint. To this end, note that the control (16) 

obtained by the Pontryagin maximum principle is the 

solution of differential equation 

T4
TJ4 % T4

TJ4 + 9��( 3 = 0, 9�� = 1.       (18) 

Returning in equation (18) from dimensionless variables to 

dimensional ones, we get 

T4
TU4 % T4

TU4 + Ω��(� = 0.          (19) 

If we substitute the expression for � taken from the first 

equation of system (1) into (19) then we have 

� TVW
TUV + �� + �Ω��� TXW

TUX − � TXW)
TUX +

+�Ω��
T4W
TU4 − �Ω��

T4W)
TU4 = 0.       (20) 

Differential equation (20) can be considered as a 

nonholonomic sixth-order(!) constraint that is continuously 

realized when moving under the action of the control 

obtained by the minimization of functional (3). Thus, for the 

control obtained by the Pontryagin maximum principle the 

nonholonomic high-order constraint is continuously realized, 

and in this case one can try to solve the control problem 

formulated with the help of the theory of motion of 

nonholonomic high-order constraint systems developed in 

monograph [14]. This fact suggests that one should apply the 

generalized Gauss principle typical for the theory of motion 

of nonholonomic high-order constraint systems. Let us turn 

our attention to this principle. 

5. The Gauss Principle and the 

Generalized GAUSS Principle 

Let the kinetic energy �  of a mechanical system in 

curvilinear coordinates Y = �Y�, … , Y[� has the form 

� = ���� + ���� + ���� =
= 1

� \]JY]� YJ� + 0\�^Y �̂ + 1
� \��,

_, 8 = 1, `AAAA, $ = 0, `AAAA, Y� = �, Y�� = 1.
       (21) 

Here 0 is the mass of the whole system. Introduce into 

consideration the differentiable manifold of all positions of 

the mechanical system which it can have at the given time 

moment �. Then the Lagrange equations of the second kind 

in the tangent space [15] constructed for the moment � in 

the distinguished point Y = �Y�, … , Y[� can be represented 

as a vector equality similar to the Newton second law: 

0abbbc = dbc.                  (22) 

Here the acceleration of the system abbbc and the vector of 

active forces dbc are 

abbbc = 1
0 � ���

E�
EY�] − E�

EY]�ec] ,
dbc = f]ec] .

 

Here the vectors ec] , _ = 1, `AAAA, are the vectors of reciprocal 

basis introduced in the tangent space. The main metric tensor 

�\]J�, _, 8 = 1, `AAAA, is given by the coefficients of a positive 

definite quadratic form ���� (see formula (21)). 

If we impose nonholonomic second-order constraints (to 
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such a form can be reduced the both holonomic and 

nonholonomic constraints >�g��, Y� = 0, 	>�g��, Y, Y� � = 0 

after differentiation in time) 

>�g ≡ $�,]g ��, Y, Y� �Y
] + $�,�g ��, Y, Y� � = 0,
i = 1, ?AAAAA,     (23) 

on the motion of the system, then in the case of ideal 

constraints equation (22) appears as [14] 

0abbbc = dbc + Λgkcl,g ,
kcl,g = $�,]g ec] , m = ` − ?.        (24) 

The Lagrange multipliers Λg , i = 1, ?AAAAA, can be found as 

functions of �, Y, Y�  [14]. To equation (24) the Gauss 

principle corresponds (n;; means that only the variables Y
] 

are varied): 

n;;o = 0, o = 1
� %abbbc − pbc

1(�
.      (25) 

Formulae (25) state that the reaction force qbc = 0abbbc − dbc 
of ideal nonholonomic constraints (23) has the minimum 

value. 

Suppose now that on the motion of the system the linear 

nonholonomic high-order constraints are imposed (the 

figures in degrees in brackets denote the order of derivatives 

in time) 

>r,�g ≡ $r,�,]g ��, Y, Y� , … , Y�r,���Y
]�r,�� +
+$r,�,�g ��, Y, Y� , … , Y�r,��� = 0,

i = 1, ?AAAAA, _ = 1, `AAAA, s ≥ 1.
 (26) 

Then we can introduce the generalized Gauss principle 

n�r,��o�r� = 0, o�r� = 1
� %abbbc�r� − pbc�u�

1 (�
. (27) 

The symbol n�r,�� in (27) means that only the s + 2rT 

– order derivatives of generalized coordinates are varied. 

Formulae (27) imply the minimality of the vector 

ℛbc ≡ qbc�r� = 0 Tuwbbbc
TUu − Tupbc

TUu .       (28) 

Note that equations (26) should be regarded as the 

program of motion given in the form of additional system of 

differential equations that should be continuously realized in 

the process of motion of the mechanical system. That is why 

in nonholonomic mechanics the high-order constraints given 

in form (26) are usually called program constraints, the 

reaction force vector qbc formed by them plays the role of the 

control that provides realization of the given program. In its 

turn, vector (28) can be conventionally called “the reaction” 

of these high-order constraints. We also note that one should 

take into consideration [14] that due to the necessity of 

forming this reaction by technical devices the sought reaction 

is represented in the form qbc = Λgxbcg , xbcg = x]gec] , where Λg  

are found along with the generalized coordinates as unknown 

time functions, and coefficients x]g are usually given by the 

control system as constant values. 

6. Solving the Problem by Means of the 

Generalized Gauss Principle 

Thus, we have seen that the problem of interest can be 

considered as a mechanical problem on the motion of which 

the sixth-order nonholonomic constraint (20) is imposed. It 

was shown in monograph [14] that for finding the reaction 

force of such a constraint one should compose a fourth-order 

differential equation. So, if one considers constraint (20) as a 

certain program of motion that should be fulfilled by the 

mechanical system then the reaction force of this constraint 

turns out to be the control force providing realization of this 

program. That is why equation (20) with respect to the 

control can be interpreted as a differential equation with 

respect to the reaction force. In this case the reaction force 

can be represented as 

qbc = 3���xbc, xbc = ∑ x]�]z� ec].      (29) 

When a sixth-order constraint is imposed, the Gauss 

principle states that “the reaction” of this constraint should be 

minimal, that is the quantity 

�ℛbc�� ≡ �qbc�C��� = %0 TXwbbbc
TUX − TXpbc

TUX(
�
    (30) 

should be minimal. 

From all possible nonholonomic sixth-order constraints we 

distinguish such a subset for the elements of which the 

quantity �ℛbc�� ≡ �qbc�C��� is equal to its low bound which is 

zero. As follows from formulae (29), (30), the single equation 

corresponds to all these elements 

�C3
��C = 0. 

The general solution of this equation has the form 

3�8� = G� + G�8 + GB8� + GC8B.    (31) 

The arbitrary constants G= , ? = 1,4AAAA, in the control (31) 

are found with the help of formulas (31), (17), (13) 

analogously to how it was done in the preceding section. As a 

result, we obtain 

� = 2K: G� = 0.444357, G� = −0.606773,
GB = 0.222178, GC = −0.0235739, 

� = 8K: G� = −0.000997, G� = 0.0042555,
GB = −0.000498, GC = 0.0000132, 

� = 16K: G� = −0.000058, G� = 0.000486,
GB = −0.000029, GC = 0.0000004, 

� = 32K: G� = −0.0000035, G� = 0.000059,
GB = −0.0000018, GC = 0.00000001. 

Computational results are presented in Figures 2, 3, 4 and 

5 by continuous curves. 
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Figure 2. Motion when T=2π. 

 

Figure 3. Motion when T=8π. 

 

Figure 4. Motion when T=16π. 
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Figure 5. Motion when T=32π. 

7. Conclusion 

In the paper the control that transfers a two-mass system 

with a spring from the initial state of rest to the final state of 

rest by the given distance in horizontal direction during the 

time prescribed is found. The problem was solved by the two 

different principles dealing with the different fields of 

mechanics – the control theory and the non-holonomic 

mechanics. In the first case the Pontryagin maximum 

principle was applied (let us call it the first method), and in 

the second case the generalized Gauss principle was used 

(call it the second method). 

It is interesting that when the time of motion is short the 

both methods give practically the same results (see the 

graphs in Figure 2), but when the time of motion is long the 

results differ widely (see Figures 3-5). Good agreement in the 

first case justifies the use of the method from the theory of 

non-holonomic high-order constraint mechanics for the 

problems formulated in the control theory, since the results 

coincide with the values obtained by the classical approach 

basing on the Pontryagin maximum principle. 

If the time of motion is long then the second method is 

more preferable than the first one, since the control obtained 

by the second method sways the mechanical system less than 

the control obtained by the classical approach. This can be 

explained by the fact that the first method contains the 

control including harmonics with the natural frequency of the 

system (remind that the dimensionless natural frequency of 

the system 9�=1), and this seeks to put the system into 

resonance. In contrast to this, in the second method the 

control is sought in the form of time polynomial that provides 

relatively smooth motion of the system. 

It is also of interest to note that the first method always 

finds the control with jumps at the beginning and at the end 

of motion. The second method also gives the same jumps 

when the time of motion is short, but when the time of 

motion is long the similar jumps vanish when one uses the 

generalized Gauss principle. 
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