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Abstract: Cutting tool wear is a very complex process. Various factors have a direct or indirect effect on cutting tool wear, 

resulting in uncertainty, so it is difficult for experimental data and result to have good stability. However, Vibration analysis is a 

very important means for condition monitoring and fault diagnosis. This paper aims to study the methods of tool vibration 

signal processing, pattern recognition and trend prediction. Collected on tool vibration signal at different times, wavelet noise 

reduction is used to pretreat the vibration signals. Then, for the self-similar vibration signals, we propose the fractional 

Brownian motion (FBM) theory with long-range dependence (LRD). Combined with Wigner-Ville spectrum, characteristic 

parameter can be extracted, so the cutting tool wear state can be determined according to fractal dimension and average slope 

of the fitting curve of the logarithm power spectrum. Finally, we use FBM model to predict the trend of tool vibration signals. 

Experiments show that the methods have a good effect on tool wear state recognition and trend prediction. 
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1. Introduction 

In the machining process, the tool wear will affect the 

surface quality and dimensional accuracy of the artifacts. 

Therefore, monitoring and predicting tool wear more 

accurately are currently an urgent issue to be solved in the 

automatic machining process 
[1]

. Studies have shown that tool 

condition monitoring and diagnosis face a lot of 

non-stationary signals. Researching the new practical methods 

are the need to promote the continuous development of tools 

fault diagnosis. 

Bhattacharyya used cutting force signal to estimate tool 

wear in face milling. Stephenson and Ali performed studies on 

tool temperature effects on interrupted metal cutting and 

reported theoretical and experimental results 
[2-3]

. Iwata and 

Moriwaki used an acoustic emission signal to monitor tool 

wear condition in cutting processes. Zhang et al. used a Hall 

Effect sensor to measure the current supplied to the spindle 

motor drive of a vertical NC miller together with the cutting 

forces 
[4-5]

. According to trend prediction, prediction experts 

have put forward a prediction method, which adopts a particle 

swarm optimization extended memory method which 

combines support vector regression (SVR) and a prediction 

method which combines support vector machines (SVM) and 

wavelet neural network optimization 
[6-7]

. This improves the 

accuracy of prediction, but has a complex computing process. 

In the paper, combined FBM theory with Wigner-Ville 

spectrum, the cutting tool wear state can be determined 

according to fractal dimension and average slope of the fitting 

curve of the logarithm power spectrum. Then, the paper also 

proposes the FBM model and calculates the model parameters 

to predict the future tool vibration signals. 

2. The Method of Tool Wear State 

Recognition 

2.1. Fractional Brownian Motion (FBM) 

If 0 <H <1, the fractional Brownian motion (FBM) with 

Hurst parameter H is the continuous Gaussian process

( ){ }, , 0
H

B t w t > , ( ) 00,HB w b= and so whose definition is 

given by 
[8]
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Where 1/2Hα = − , ( ),B s w  is a weiner process and

( )
0

1 xx e dxαα
∞ −Γ + = ∫ . 

If H = 
1

2  

then ( ),HB t w coincides with the standard 

Brownian motion B(t, w). 

The constant H determines the sign of the covariance of the 

future and past increments. This covariance is positive when

1
H>

2

, zero when 1
H=

2
and negative when 

1
H<

2
. 

2.2. Wigner-Ville Spectrum 

FBM is a non-stationary process. For the non-stationary 

process, its power spectrum does not have a clear definition, 

so it cannot be obtained by the usual methods. But by 

Wigner-Ville spectral decomposition, we get the power 

spectrum. 

If the average power of fractional Brownian function ( )H
B t

is limited, then 

( )
2

H

1
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2
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t
dt

T −
< +∞∫               (2) 

So the power spectrum ( )H
B t is proportional to 2 1Hf − − [9]
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For non-stationary random process X (t), if the correlation 

function R (t, s), then the Wigner- Ville spectrum of X (t) 
[10]

 is 
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So Wigner-Ville spectrum is a time-dependent spectrum, 

Wigner-Ville spectrum of FBM ( )
HB

S w  is 
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If the function Z(x) subjects to FBM of variable x, then the 

power spectrum of Z (x) is bound to obey the formula 4 and 

get the power spectrum of Z(x): 

( ) 2 1

1
Z H

S w
w

+=                      (6) 

Take the logarithm to formula 6: 

( )( ) ( ) ( )log 2 1 logZS w H w= − +              (7) 

If the slope of the line is k, you can get the fractal parameter 

H=-(k+1)/2.The relationship about fractal parameters H and 

fractal dimension D of FBM is: D = 2-H, so we can get D = 

(5-k) / 2. 

By calculating the power spectrum of vibration signals can 

we plot the logarithmic plot of power spectrum, the slope of 

the fitted line can be obtained by the least squares fitting. By 

analyzing the values of the parameter D in different time 

periods, we can find the regularity and judge the state of tool 

wear. 

2.3. The FBM Model 

2.3.1. FBM Incremental Simulation 
If time interval [0, T] is divided into N equal parts, then 

each length is /t T N∆ = .For each time interval jt

( )0,1, 2 ,j N= ⋯ , FBM increment is discretized by Maruyama 

extended symbols 
[11-12]

: 

( ) ( )(t , H) (t t, H) (t , H)
H

j j j
B B B w t t∆ = ∆ + ∆ − = ∆   (8) 

If T = 1, N = 200, = 0.005, H = 0.65, then we get 

incremental simulation diagram of FBM and see FBM with 

steady increments.  

According to ( ) ( ) ( )( )
1

B t , ,
H

j j
H B t H w t t+ = + ∆ , we 

get the FBM simulation curves, shown in Fig1. 

 

 

Fig. 1. FBM and its incremental simulation 

2.3.2. FBM Stochastic Simulation 

Simulate the vibration signals and its changes meet the 

following fractional stochastic differential equation. 

( )2
S=

H H
d Sdt SdB S dBµ σ λ+ +            (9) 

Where µ is the drift rate, σ is the fluctuation rate of gain, 

λ is the interference term of gain. 

The essential difference between this model and standard 
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Brown motion-driven model is that fractional Brown motion 

can be described the long-term memory of returns, and the 

increment is not independent of each other. 

In this paper, the expansion of Maruyama symbol 

( )( )d
H

H
B w t dt= is used to simulate the FBM increment, the 

time period is divided into M equal-spaced intervals, the time 

interval is t∆ , discrete stochastic differential equation 
[13]

: 
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Where ( )1
w t  and ( )2

w t  are independent which are 

standard normal distributions. 

Take the initial signal
0

S , FBM simulation of the time 

period is shown in Fig2.  
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Fig. 2. Flow chart of signal simulation 

2.3.3. Parameters Estimation 

Assuming time interval of the gain data is t∆ , the N +1 data 

of observation vector consist of y= ( )0
, ,

t N t
y y y∆ ∆⋯ ,time 

vector is t= ( )0, , ,t N t∆ ∆⋯ , fractional Brown motion vector 

is ( ) ( )( ) [ 0 , , , ( )]
H H H H

B t B B t B N t= ∆ ∆⋯ ,so the parameters

µ and σ by the maximum likelihood estimation is as 

follows
[14]

: 
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Parameter λ can be obtained by fourth-order matrix 

describing the extreme phenomenon:  
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In this paper, R/S method is calculated to Hurst parameter H 

of input sequence. Hurst coefficient (0,1)H ∈  is a measure 

of a persistent random phenomenon. (0.5,1)H ∈ can have a 

long- range dependence. The greater the value H is, the 

stronger the long- range dependence is. Hurst parameter on 

signal series is 0.6497, as shown in Fig3. 

 

Fig. 3. Hurst index of vibration signals 

According to the selected data as a calculation cycle, the 

parameters result is 

2
= 0.6011 =0.0013 =0.0281µ σ λ， ，  

Through multiple simulations, we can get number of 

vibration signals approximate curves, then average for each 

time point of all possible approximation load curves, you can 

get on the approximate vibration signals values of each time 

point, that is the most likely path changes.  

3. The Experiment Simulation 

3.1. Tool Wear State Recognition 

In this paper, we adopt db wavelets to denoise signals. Due 

to use different db wavelets, we can get different effects. And 

db4 wavelet relative to other wavelets has the shortest time 

window, and better time resolution, so we use db4 wavelet to 

denoise signals 
[15]

. Because the selection and quantification of 

threshold is directly related to the quality of signal denoising, 

the paper selects the default threshold to denoise signals. 
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Collected 4096 tool vibration signals data for a period of 

time, it was divided four sections for analysis, the 

corresponding logarithmic power spectrum and fitted curve 

are shown in Fig4. 

 

(a)The power spectrum of vibration signal1          (b)The power spectrum of vibration signal2 

 

(c)The power spectrum of vibration signal3          (d)The power spectrum of vibration signal4 

Fig. 4. The power spectrum and fitted curve of vibration signals 

According to the Fig4, the average slope of the time period 

and fractal dimension D can be calculated by the fitting slopes, 

and we can in turn to calculate the fractal dimension D of other 

periods.  

As can be seen from the Tab1, with the increase of the tool 

cutting time, the fractal dimension D of the Brownian motion 

of the vibration signal is also increasing. Thus, the larger 

fractal dimension D, the greater the tool wear.

Table 1. The fractal dimension parameters 

Time Parameter 0 minute 20 minute 40 minute 60 minute 80 minute 

D 13.54 13.69 14.44 14.96 15.7 

 

3.2. Trend Forecast 

 
Fig. 5. Original and predicted values of vibration signals 

According to the FBM model, we collect the tool vibration 

signals at a certain time and predict the future situation of 

vibration signals 
[16]

. The next 100 vibration signals data are 

simulated and compared with the real values by using 

MATLAB, as it is shown in Fig5. 

Figure 5 can clearly be seen that FBM model can relatively 

accurate predict the future values, the maximum relative error 

of FBM model is within 6%. From the terms of the maximum 

and minimum relative error, or the average relative error, the 

method has slightly satisfactory prediction results and provide 

a new method for predicting tool state. 

4. Conclusions 

For the characteristics of vibration signals of the tool wear 

state, it is studied on the application of FBM and Wigner-Ville 

methods to the tool wear state identification, three main 

conclusions are as follows: 

� In terms of the instability, nonlinearity and long-range 
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dependence of vibration signals, the paper proposes the 

wavelet theory and FBM method combined with 

Wigner-Ville Spectrum; 

� FBM can reflect the long-range dependence advantages 

of time series, combined FBM theory with Wigner-Ville 

spectrum, the cutting tool wear state can be determined 

according to fractal dimension and average slope of the 

fitting curve of the logarithm power spectrum; 

� FBM model used in economy and network traffic is 

proposed to establish stochastic differential equation and 

simulation has a better prediction result and provides an 

effective method to study the long-term trend prediction. 
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