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Abstract: This paper considers a tool switching problem (ToSP) in flexible manufacturing systems (FMSs). Indeed, a new 

version of the ToSP that may be faced in practice is proposed. In this paper, a tool life is considered for each tool and a new 

formulation of the ToSP is presented, however, because of the complexity of such an NP-hard problem, the exact method can’t 

be used to solve large-sized problems. Therefore, a well-known meta-heuristic method, genetic algorithm (GA), is proposed to 

solve the problem. Furthermore, the computational results obtained by the proposed GA and the B&B methods are compared 

by performing on several non-large dimension instances. Finally, it is shown that the GA results are promising. 
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1. Introduction 

Current trends in manufacturing systems are to move 

towards highly flexible production systems that can respond 

quickly to demand changes and to the processing of a variety 

of products. Flexible manufacturing systems (FMSs) are 

considered as one of the most important production 

technologies to efficiently handle today’s changes in market 

requirements. An FMS consists of a computer-controlled, 

integrated configuration of numerically controlled machine 

tools with automated material handling systems. 

Problems of a flexible manufacturing technology are 

relatively complex compared to traditional manufacturing 

systems, this difficulty originates primarily from the 

fundamental objective behind the FMS concept that said to 

be as efficient as a mass production facility and yet as 

flexible as a job shop facility. Since each machine in an FMS 

is quite versatile and capable of performing many different 

operations and each part type may have alternate routes 

through the system, it becomes very complex to solve FMS 

planning, scheduling, and operational problems.  

Management tool, which is one of the FMS problem 

sections, is about to get the right tool, to the right place at the 

right time. The need for tool management stems from the 

high variety of tools that are typically found in automated 

manufacturing systems.  

The experiments show significant costs can be avoided by 

performing appropriate tool management strategies. In this 

study, we deal with a single machine that has several slots in, 

which different tools can be loaded. Each tool occupies only 

one slot and each part type executed on machine requires a 

particular set of operation to be done. Part types are 

sequentially executed and only one part type can be installed 

on the machine each stage and therefore, each time a part 

type will be processed, the corresponding tools should be 

loaded into the machine magazine. If the number of available 

slots is limited, it should be required at some points a tool 

switch (i.e., removing a tool from the magazine and inserting 

another one in its place). Although the order of tools in the 

magazine is often irrelevant, the need of performing a tool 

switching is dependent on the order, in which the part type is 

executed. It is assumed that the tools are versatile and 

considered a tool life for each tool, as we know there is not a 

considerable amount of the literature related to a tool life in 

an FMS. The objective is to minimize the total part type 

tardiness and tool purchasing cost.  

In this study a new formulation of the given problem is 

presented; but because of the complexity of the NP-hard 
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problem, we cannot use an exact method (e.g., branch-and-

bound) to solve the large-sized problem. Therefore, we 

propose a well-known meta-heuristic method, namely 

genetic algorithm (GA), to solve the given problem. We 

compare the proposed GA and the branch-and-bound 

(B&B) method by performing several non-large dimension 

instances. Finally, it is shown that the associated results are 

promising. 

2. Literature Review 

The previous research carried out in tool switching 

problems can be found in the early of 60’s by Belady [1]. 

Then, the uniform tool switching (each tool occupies one 

slot) has been tackled by a number of different techniques. 

In the late 80’s, a number of studies have been contributed 

specially to solve the problem by El Maraghy [2] and Kiran 

and Krason [3]. Tang and Denardo [4], proposed an ILP 

formulation of the problem, and later Bard [5], described a 

non-linear integer programming formulation with a dual-

based relaxation heuristic method. Heuristic-based 

constructive methods have been also applied to the 

problem. For instance, Djellab et al. [6], tackled the ToSP 

by a hypergraph representation and proposed a particular 

heuristic method oriented towards minimizing the number 

of gaps in edge-projection. They used the hypergraph to 

represent the relation among products and the needed tools. 

Also, Hertz et al. [7], described three constructive methods, 

namely FI, GENI and GENIUS, in their model at each step 

first a job is selected to be inserted in current tour and then 

best position in the tour are selected. In addition, the nearest 

neighbor (NN) and 2-opt search methods were also 

considered. 

The exact methods have been also applied to the problem. 

For instance, Laporte et al. [8], proposed two exact 

algorithms, namely a branch-and-bound approach and linear 

programming-based branch-and-cut algorithm. Precisely, the 

last one is based on a new ILP formulation having a better 

linear relaxation than that proposed previously by Tang and 

Denardo [4]. It should be noted that these exact methods are 

inherently limited, since Oerlemans [9] and Crama et al. [10], 

proved formally that the tool switching problem (ToSP) is 

NP-hard for c>2, where c is the number of the slots in the 

machine’s magazine. This limitation has been already 

highlighted, where Laporte et al. [8], reported that their 

algorithm was able to manage instances with 9 products; but, 

it presented a very low success ratio for instances over 10 

products. 

Sarin and Chen [11], also formulated the machine 

loading and tool allocation as 0–1 linear programming. 

Part assignments and tool allocations are determined 

simultaneously considering a tool life, tool size (i.e. 

number of slots a tool occupies on tool magazine) and 

magazine capacity. Buyurgan et al. [12], introduced a 

heuristic approach for tool selection and allocation. Their 

proposed approach utilizes the ratio of a tool life over a 

tool size for tool selection and allocation they also 

consider a tool life.  

The clustering/grouping methods have also been 

attended. For instance, Salonen et al. [13], attacked the 

uniform ToSP of the printed circuit boards (PCBs) and 

described an algorithm that iterated the process of first 

determining a good (or even optimal) grouping of the PCBs 

for further sequencing them. A hierarchical product 

grouping technique, based on the Jaccard’s similarity 

coefficient as clustering criterion, is also employed to avoid 

identical groupings. A different and very interesting 

approach has been described by Zhou et al. [14], who 

proposed a beam search algorithm. This method was 

especially efficient and practical in comparison to the 

previous techniques. The reason for this result is that the 

performance of the algorithm can be adjusted by changing 

the search and evaluation functions. 

The meta-heuristic methods have been also used recently. 

So, several tabu search (TS) methods have been used in the 

literature by Salonen et al. [13], Herts and Widmer [15], Al 

Fawzan and Al Sultan [16], Amaya et al. [17], Konak et al. 

[18]. 

3. Problem Statement 

In this section, the assumptions, mathematical formulation 

and meta-heuristic method of the presented model are 

elaborated. 

3.1. Assumptions 

Except the other usual assumptions of tool switching 

problem (that are said in introduction section) there are other 

new assumptions in this model that are listed below: 

(1) Operating times for all part type operations on 

different tool types are known. 

(2) The purchase cost of each tool type is known. 

(3) Each tool has a tool life that specified in advance if its 

remaining life is over and we need more then it will be 

substituted with the new one.  

(4) The number of the magazine slot (i.e., magazine 

capacity) should be specified in advance. 

(5) Each tool type can perform one or more operations 

(i.e., versatile tool). 

(6) Required time for switching tools is constant and 

known. 

(7) The release time is the time that all of part types are 

done (i.e., it is considered makespan for the presented 

model). 

(8) The due date should be specified in advance. 

(9) The tardiness penalty is considered when the release 

time is greater than the due time. 

(10) The insert of a new tool type is not allowed except 

when the last tool type remaining capacity is zero or 

there is no remaining capacity to assign. 

3.2. Input Parameters 

Input parameters are as follow:  



54 Hamid Dadashi et al.:  Optimization of a New Tool Switching Problem in Flexible Manufacturing   

Systems with a Tool Life by a Genetic Algorithm 

��  tool life for tool k (k=1,…, K) 

tsw  required time for tool switching 

���  required time for doing operation l (l=1,…,L) by 

using tool k 

duedate  due date of part types 

penalty  rate of penalty of tardiness 

��  purchasing cost of tool k 

C  magazine capacity 

��,� = 	1	if	tool	�	can	do	operation	�0	otherwise	 	 

��,� = 	1	if	part	type	!	"! = 1,… , $%	needs	operation	�
0	otherwise	 	 

3.3. Decision Variables 

Decision variables are as follow: 

&�' = 	1	if	part	type	!	is	scheduled	to	stage	*	"* = 1,… , $%	
0	otherwise	 	 

+��� = 	1	if	operation	�	on	part	type	!	is	done	by	tool	�	0	otherwise	 	 

-�'  Number of tool type k on stage j 

--�'  
Number of new tool type k that inserted on 

stage j  

./�'  
The remaining capacity of last tool type k that is 

inserted into magazine at the beginning of stage j 

00�' 
Number of non-new tool type k that are inserted 

or removed on stage j (with consideration of 

previous stage) 

$/�' Number of using tool k on stage j 

$�/� Total number of tools using of tool type k 

duepenalty Total cost of tardiness 

purcost Total cost of purchasing of tools 

sw Total number of the tool switching  

ft Releasing time of total part type 

3.4. Mathematical Formulation 

The objective of the mathematical model is minimizing the 

total cost of tool purchasing and tardiness of part types. The 

mathematical formulation is as follows: 

min U= duepenalty + purcost                       (1) 

s.t. 

∑ &�'� = 1	∀*                                    (2) 

∑ &�'' = 1	∀!                                     (3) 

∑ -�'� = 3	∀*                                     (4) 

∑ ∑ 4567
86�� ≤ $�/�	∀�	                              (5) 

∑ $�/� × ��� = 0/.�;<�                          (6) 

∑ ∑ &�' × +����� = $/�' , ∀�, *                      (7) 

./�,'=> + @--�,'=> × ��A − $/�,'=> = ./�' , ∀�, *   (8) 

$/�,' − ./�,' ≤ �� × --�' , ∀�, *                   (9) 

$/�,' ≤ �� × -�' , ∀�, *                           (10) 

--�,' ≤ -�,' , ∀�, *                                 (11) 

--�,> = -�,>, ∀�                                  (12) 

./�,' ≤ �� , ∀�, *                              (13) 

./�,> = 0, ∀�                                (14) 

∑ ∑ CC6DEFF6D
G

H
'IG� = <J	                     (15) 

-�,'=> − @-�' − --�'A ≤ 00�' , ∀�, *               (16) 

−K-�,'=> − @-�' − --�'AL ≤ 00�' , ∀�, *	         (17) 

"∑ ∑ ∑ +��� × ������ % + "<J × �<J% = M�       (18) 

"M� − �/N���N% × 0N$���- ≤ �/N0N$���-      (19) 

∑ +���� = ��� , ∀!, �                          (20) 

+��� ≤ ��� × ��� , ∀!, �, �	                      (21) 

&�' , +��� = 0	;.	1, -�' , $/�' , --�,' , $�/�, 00�,'
≥ 0	�$�	!$�NPN., �/N0N$���- ≥ 0 

Constraint 2 ensures that only one part type assigns to each 

stage. Constraint 3 ensures each part type assigns to one 

stage. Constraint 4 ensures that the number of assigned tools 

to each stage is equal to the magazine capacity. Constraint 5 

counts the number of tools using of each tool type, constraint 

6 specifies the total purchasing cost of tools. Constraints 7 

specifies Number of using tool k on stage j (for all k and j), 

constraint 8 specifies The remaining capacity of last tool type 

k that is inserted into magazine at the beginning of stage j 

(for all k and j), constraint 9 specifies Number of new tool 

type k that inserted on stage j (for all k and j), constraint 10 

specifies Number of tool type k on stage j (for all k and j), 

constraint 11 ensures that the number of new tool does not 

exceed the number of total tools, constraint 12 assigns the 

value of number of new tools to number of total tool, for the 

first stage, constraint 13 ensures that the remaining tool life 

does not exceed capacity of tools in other word Constraint 13 

ensures Assumption 10 given in Section 3.1, constraint 14 

assigns the value zero for remaining tool life at the first stage,  

Constraints 15 counts the number of total tool switching, 

Constraint 16 and 17 counts the number of non-new tool type 

k that is inserted or removed on stage j (00�'), Constraint 18 

specifies the finishing time of all part types. Constraint 19 

specifies the penalty cost of tardiness. Constraints 20 and 21 

ensure that the value of +���  corresponding to specify the tool, 

operation and part type. Constraint 20 also ensures that if part 

type i needs operation l, it should be done only by one tool. 

3.5. Proposed Genetic Algorithm 

Because of the complexity of the given problem known as 

NP-hard one, it can’t be used any exact method (e.g., branch-
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and-bound) for solving large-sized problems. Therefore, in 

this section a meta-heuristic method based on a genetic 

algorithm (GA) in order to solve such a hard problem is 

proposed. The chromosome structure and coding system are 

inspired by a coding method that introduced by Tavakkoli-

Moghaddam et al. [19]. The solution coding and method of 

our proposed GA are described below. 

3.5.1. Chromosome Structure 

A feasible solution or chromosome consists of the 

following genes. 

(1) The gene related to the assignment of a tool to the 

operations of the part type is named as matrix QR�,'S. 
For example, RG,T = 5 means that tool 5 is used for 

doing operation 3 on part type 2 (if a35×b23 =1), note 

that if bij=0, then the corresponding allele will be zero. 

(2) The gene related to the assignment of the part type to 

the stage is named as matrix VW�X that alleles are limited 

to 1, 2,…, n (n is a number of the part type). For 

example, WG = 5 means that part type 2 assign to stage 

5.  

(3) The gene related to the remaining tool life at the end of 

specific part types is named QY�,'S. For example, F3,6=4 

means the remaining life of tool 6 after processing part 

type 3 is 4 (it means that it can be used 4 times more 

for the next part types until its failure and after that if it 

is needed this tool more, A new tool type 6 should be 

inserted). During the process of part types, matrix QY�,'S 
will be continually up to date. For example, if a 

specific tool type that is selected before (for the 

previous operation of the current part type), is selected 

and the capacity of a tool is not zero then it should be 

used the same tool that is selected before (without 

using another tool) otherwise it should be inserted a 

new tool type and up to date matrix F. It means more 

than one tool with the same type are exist on the 

current stage. 

(4) The gene related to counting the failed tool of each tool 

type on the magazine when a specific part type is 

installed on a machine is named QZ�,'S. For example, 

G1,5=2 means when part type 1 is on machine, a 

number of failed tool type 5 that exist on the magazine 

is 2. 

(5) The gene related to counting the total tool number of 

each tool type on the magazine when a specific part 

type is on a machine is named Q[�,'S . For example, 

H1,5=2 means when part type 1 is on a machine, a 

number of total tool type 5 that exist on magazine is 2. 

(6) The gene indicates which tools exist on a magazine is 

named Q\]Z�,'S. For example, MAG2,3 =3 means when 

part type 2 is on a machine, tool 3 exists on slot 3. Note 

that the order and layout of tools in a magazine are not 

considered. 

The feasible solution chromosome structure will be as 

follows: 

^VRXH×_ , VWXH×>, VYXH×` , VZXH×` , V[XH×` , V\]ZXH×ab 

where n, L, K and C denote a number of the part type, total 

operation tool and magazine capacity, respectively. To 

generate a new solution, only matrices X and Y are 

considered and arrays of these two matrices are changed, 

then the other matrices are been up to date by means of them.  

3.5.2. Generation of an Initial Population 

To obtain the initial population, first a random feasible 

solution of X and Y are created separately, then F, G, H and 

MAG are obtained and been up to date base on X and Y. To 

create a random feasible solution X, for each array of X, tool 

k is selected to be used for operation l on part type i 

randomly if alk×bil =1. In other words, A tool among the tools 

that can be used for doing the corresponding operation is 

selected randomly. Note that values of arrays with bil =0 are 

zero constantly.  

To Create a random feasible solution Y, a random 

permutation of 1 to n×Z is generated. 

As we mention after generation of X and Y, other matrices 

are obtained based on data of these two matrices. Also for 

obtaining MAG, a tool loading method is used. This method 

is based on the KTNS (keep tool needed soonest) method 

first introduced by Belady [1], Tang and Denardo [4] and 

Bard [5]. The aim of the KTNS rule is to minimize a number 

of tool switching. Following is our proposed algorithm to 

load the magazine at stages: 

� Step 1: According to the matrix Y for all stages inserts 

the tools that are selected at the corresponding row (i.e., 

part type that assigned to current stage) of matrix X 

(with considering and up to date matrix F). 

� Step 2: For i=1 to n, do as follows (i denotes a stage) 

� Step 2-1: If i =1, then go to Step 2-3; otherwise, if one 

or more tools are to be inserted and there are no vacant 

slots in the magazine, then go to step2-2; otherwise, set 

i=i+1 and go to Step 2-4. 

� Step 2-2: Remove the failed tools until the number of a 

vacant slot is sufficient for the remaining inserted tool 

on Step 2-1; but, if more vacant slots are still needed 

and there are no more failed tool on a magazine, then 

use the KTNS method and keep the tools that are 

needed soonest and remove other tools to make a vacant 

slot, set i=i+1 and go to Step 2-4. 

� Step 2-3: Select the new tool types that need the soonest 

until the magazine is became full, and then set i=i+1. 

� Step 2-4: End. 

Note 1: Consider Step 2-3 if there is a tool selected 

before at the current stage; but, its remaining capacity is 

zero. If it is needed soonest, then a new tool of this type can 

be selected and the corresponding array on matrix F is 

being up to date. 

Note 2: Only the tools that are selected in Step 1 are used 

at each stage. 

3.5.3. Fitness Value 

The fitness value is the same objective function presented 

in Section 3.4. Also, an algorithm is proposed to count the 

number of tool switching on a magazine. This algorithm is 

explained bellow. 
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Algorithm parameters: 

Zcde  number of failed tool type j at stage i that exists on a 

magazine 

[cde  number of total tool type j at stage i that exists on a 

magazine  

Ycde  remaining capacity of tool type j at the end of stage i 

Algorithm steps: 

Consider the initial value of a number of tool switching is 

zero, sw=0 and for all i and j | [cde f 0	&	! f $, do as follows 

(i and j denote the stage and tool type, respectively): 

I If ["cE>%,de f 0 , then go to Step II; otherwise, <J �
<J ? @[cde A and go to Step III. 

II If Ycde � 0, then <J � <J ? @[cde B Z"cE>%,de A; otherwise, 

<J � <J ?	@"[cd B 1e % B 	Z"cE>%,de A. 
III End. 

Note1: Consider Step II if the remaining capacity of tool 

type j that exists on a magazine at stage i is not zero	"Ycde f
0%. Then, according to assumption 10 given in Section 3.1, 

then number of failed tool type j at the end of stage i will be 

"[cd B 1e %; but, if the remaining capacity of tool type j is zero 

Ycde � 0, then it will be [cde . 

3.5.4. Mating Pool Selection Strategy 

To create the new generation, it is necessary to select some 

chromosomes (mating pool) based on their fitness function 

values in the current generation for recombining or creating 

chromosomes related to the new generation. In this case, a 

normalized fitness strategy is used, in which the fitness of the 

current generation chromosomes is first normalized 

according to Eq. (22), then the chromosomes, which their 

normalized fitness is less or equal to zero, are selected as a 

mating pool. 

i� � j5=k
l , ! � 1, 2, … , �,                           (22) 

where Zi is the normalized fitness of chromosome i and fi is 

the fitness of chromosome i µ and δ are the mean and the 

standard deviation of the chromosomes fitness values in the 

current generation, respectively.  

3.5.5. Operators of the Proposed GA 

As mentioned before, to generate a new solution only 

arrays of matrices X and Y are changed and other matrices 

are changed by them, thus the GA operator is exercised only 

over matrices X and Y. Matrix Y is a linear one so operators 

(i.e., mutation or crossover) are performed on it by using a 

traditional method. However, the structure of matrix X is 

formed as a non-linear one. Thus, the GA linear operators 

cannot be used in a non-linear matrix type as the traditional 

forms and these operators should be improved 

proportionally. So the improved operators that proposed by 

Tavakkoli-Moghaddam et al. [19], are used to exercise on 

matrix X. In each run of the GA, one of the operations is 

exercised over one of the matrices X and/or Y related to the 

current chromosome randomly in order to generate new 

solutions. 

i. The crossover and mutation on matrix X  

For the mutation operator, one X chromosome is selected 

from the mating pool, randomly and then a portion of the 

matrix is selected by a block or diagonal method, randomly. 

Then, randomly change the array of the selected portion 

while considering the feasibility. Figs. 1 and 2 denote the 

mutation operator over matrix X.  

 
Fig. 1. Mutation operator over matrix X, block method. 

 
Fig. 2. Mutation operator over matrix X, diagonal method. 

For the crossover operator, two X chromosomes, which 

called as parents, are selected, randomly, from the mating 

pool and A portion of the matrix (i.e., block or diagonal 

method) is selected, randomly, Then in order to create a new 

chromosome the two portions are swapped. Fig. 3 denotes 

the crossover operator over matrix X. 

 
Fig. 3. Crossover operator over matrix X, block method. 

ii. The crossover and mutation on matrix Y 

For crossover on Y, the well-known order crossover, 

named as OX is used. For the purpose of mutation on Y, the 

block neighborhood for the tool switching problem proposed 

by Al Fawzan and Al Sultan [16], is considered. It is based on 

swapping the whole segments of contiguous positions. The 
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resulting mutation operator is called the random block 

insertion (RBI) and works as follows: 

1. A block length �� ∈ oH/G  is uniformly selected at 

random. 

2. The starting point of the block �q ∈ oH=Gr7  is 

subsequently selected at random. 

3. Finally, an insertion point bi is selected, such that 

�q ? �� ≤ �� ≤ $ B �� and the segments 

(bs, bs+bl) and (bi, bi+bl) are swapped. 

3.5.6. Stopping Criteria 

This paper, the following stopping criteria are considered. 

1. Number of generations: In this case, the algorithm 

terminates if the number of generations exceeds the 

specific number. 

2. Time interval: In this case, the algorithm terminates if 

the difference between the current time and the 

achievement time to the best solution exceeds the 

specific time interval. 

4. Computational Results 

In this section, an application of the proposed model is 

presented and also the performance of the proposed GA 

method is evaluated by using several examples. In this 

section 16 numerical examples in different small and large 

sizes are considered. Small-sized examples are optimally 

solved by a branch-and-bound (B&B) method under the 

Lingo 8.0 software. However, because of the complexity of 

such an NP-hard problem, exact methods (e.g., B&B) cannot 

optimally solve large-sized problems in a reasonable CPU 

time. Furthermore, the proposed GA algorithm is coded in 

order to solve both small and large-sized examples. 

The parameter tuning for the GA (e.g., number of 

populations and number of generations) is carried out after an 

extensive phase of experimentation with different values. The 

best combinations of the parameter values are finally selected. 

Both the Lingo and Matlab software run on PC with two 

Intel® CoreTM2 T9300@ 2.5 GHz processors and 2 GB 

RAM. All the parameter values of the given problem described 

in Section 3.2 are chosen randomly. Instances main parameters 

are described by 3sH_|u that C, L, n and K denote the capacity 

of the magazines, the total number of operations, the number 

of part types and the total number of tools, respectively.  

Tables 1 and 2 list the examples that show the minimum 

and maximum number of operations required for all part 

types (Rows 1 and 2) and the minimum and maximum 

number of substitute tools, which can be used for a specific 

operation, for all operations (Rows 3 and 4). 

Table 1. Explanations of small-sized examples. 

 Example definitions vwxy|y zwx{||{| xwx{}|{} ~wx{x|{x vw~y|y 	zw~{||{| xw~{}|{} zw�y|y 

1 Min 2 2 2 3 2 2 2 2 
2 Max 3 4 5 5 3 4 4 4 

3 Min 2 2 2 3 2 2 3 2 

4 Max 4 5 4 6 4 6 5 4 

Table 2. Information of large-sized examples. 

  zwyy|y xwy{||{| xw{|{}|{} �w{}{x|{x �w{x{x|{x 	{|w}|{y|{y {|wv|{x|{x {}wz|v||v| 

1 Min 2 2 2 3 3 3 3 3 

2 Max 4 5 4 6 8 9 9 10 
3 Min 2 2 3 2 2 2 2 2 

4 Max 4 5 6 8 8 10 10 10 

 

The examples are solved by the proposed GA and the B&B 

method. Tables 3 and 4 illustrate the comparative results of 

small and large-sized examples, respectively. In these tables, 

columns CPU, OFV, NOG, NOP, MCPUT and BOFV denote 

the CPU run time of Lingo, the objective function value of 

Lingo, the number of generations of GA, the number of 

populations of GA, the mean CPU run time of GA and the best 

objective function value of GA in all iterations, respectively. 

Data in the GAP column are obtained as follows: 

Z]� � K����=������ L × 100                   (23) 

In Table 4, only in three out of eight instances, the B&B 

method is able to access to the feasible space within six 

hours, and the related results of these instances are not as 

good as the proposed GA and the average of the Gap between 

the GA and the B&B method is computed about 2%. By 

considering the CPU run time, it shows that the performance 

of the proposed GA is promising. 

Table 3. Comparison between B&B and GA runs for small-sized instances. 

No. 
Problem information  

 CPU OFV NOG NOP MCPUT BOFV GAP (%) 

1 3∂��|8 230 115 200 70 12.5 115 0 

2 4∂�>�|10 637 241.5 200 70 15.2 241.5 0 

3 5∂�>G|12 1180 223.5 200 80 21.1 233.5 4 

4 6∂�>�|15 3581 271 200 80 23.4 281 3.7 

5 3∂��|8 6844 164.5 200 80 15.2 164.5 0 

6 4∂�>�|10 12990 328 300 90 29.3 357 8.8 

7 5∂�>G|12 12708 266 300 90 32.1 266.5 0.2 

8 4∂��|8 19534 395 400 90 40.8 395 0 
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Table 4. Comparison between B&B and GA runs for large-sized instances. 

No. 
Problem information  

 CPU OFV NOG NOP MCPUT BOFV GAP (%) 

1 4∂��|8 21600 415* 500 90 53.8 395 - 

2 5∂�>�|10 21600 430* 500 90 68.9 380 - 

3 5∂>�>G|12 21600 680* 600 100 134 510 - 

4 7∂>G>�|15 21600 - 700 100 240.4 810 - 

5 9∂>�>�|15 21600 - 700 100 440.6 740 - 

6 10∂G�>�|18 21600 - 800 110 853.6 660 - 

7 10∂T�>�|15 21600 - 900 120 1376 830 - 

8 12∂��T�|30 21600 - 1000 130 2744 710 - 

*Best solution found after 6 hours 

5. Conclusion 

This paper has considered the problem of tool switching in 

flexible manufacturing systems (FMS), which is a well-

known problem in operations research. Indeed, A new 

version of tool switching is proposed. In addition, A tool life 

for each tool is considered. The objective of the problem was 

to minimize the total part tardiness and tool purchasing costs. 

Also the formulation of the problem is proposed; however, 

because of the complexity of such an NP-hard problem, it 

could not be used any exact method (e.g., branch-and-bound 

(B&B)) in order to solve large-sized problems. Therefore, an 

adopted meta-heuristic method (GA), is proposed, to solve 

the given problems. At last results that are obtained by the 

GA and the B&B method are compared to small-sized 

problems. The obtained results show a relative gap about 2% 

between the proposed GA and the B&B method in terms of 

objective function values. 
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