

International Journal of Industrial and Manufacturing Systems Engineering
2016; 1(3): 52-58

http://www.sciencepublishinggroup.com/j/ijimse

doi: 10.11648/j.ijimse.20160103.12

Optimization of a New Tool Switching Problem in Flexible
Manufacturing Systems with a Tool Life by a Genetic
Algorithm

Hamid Dadashi, Shiva Moslemi, Abolfazl Mirzazadeh

Department of Industrial Engineering, Kharazmi University, Tehran, Iran

Email address:
shivamoslemi1991@yahoo.com (S. Moslemi)

To cite this article:
Hamid Dadashi, Shiva Moslemi, Abolfazl Mirzazadeh. Optimization of a New Tool Switching Problem in Flexible Manufacturing Systems

with a Tool Life by a Genetic Algorithm. International Journal of Industrial and Manufacturing Systems Engineering.

Vol. 1, No. 3, 2016, pp. 52-58. doi: 10.11648/j.ijimse.20160103.12

Received: October 31, 2016; Accepted: November 11, 2016; Published: December 23, 2016

Abstract: This paper considers a tool switching problem (ToSP) in flexible manufacturing systems (FMSs). Indeed, a new

version of the ToSP that may be faced in practice is proposed. In this paper, a tool life is considered for each tool and a new

formulation of the ToSP is presented, however, because of the complexity of such an NP-hard problem, the exact method can’t

be used to solve large-sized problems. Therefore, a well-known meta-heuristic method, genetic algorithm (GA), is proposed to

solve the problem. Furthermore, the computational results obtained by the proposed GA and the B&B methods are compared

by performing on several non-large dimension instances. Finally, it is shown that the GA results are promising.

Keywords: Tool Switching, Flexible Manufacturing System, Total Part Tardiness, Tool Purchasing Cost, Genetic Algorithm

1. Introduction

Current trends in manufacturing systems are to move

towards highly flexible production systems that can respond

quickly to demand changes and to the processing of a variety

of products. Flexible manufacturing systems (FMSs) are

considered as one of the most important production

technologies to efficiently handle today’s changes in market

requirements. An FMS consists of a computer-controlled,

integrated configuration of numerically controlled machine

tools with automated material handling systems.

Problems of a flexible manufacturing technology are

relatively complex compared to traditional manufacturing

systems, this difficulty originates primarily from the

fundamental objective behind the FMS concept that said to

be as efficient as a mass production facility and yet as

flexible as a job shop facility. Since each machine in an FMS

is quite versatile and capable of performing many different

operations and each part type may have alternate routes

through the system, it becomes very complex to solve FMS

planning, scheduling, and operational problems.

Management tool, which is one of the FMS problem

sections, is about to get the right tool, to the right place at the

right time. The need for tool management stems from the

high variety of tools that are typically found in automated

manufacturing systems.

The experiments show significant costs can be avoided by

performing appropriate tool management strategies. In this

study, we deal with a single machine that has several slots in,

which different tools can be loaded. Each tool occupies only

one slot and each part type executed on machine requires a

particular set of operation to be done. Part types are

sequentially executed and only one part type can be installed

on the machine each stage and therefore, each time a part

type will be processed, the corresponding tools should be

loaded into the machine magazine. If the number of available

slots is limited, it should be required at some points a tool

switch (i.e., removing a tool from the magazine and inserting

another one in its place). Although the order of tools in the

magazine is often irrelevant, the need of performing a tool

switching is dependent on the order, in which the part type is

executed. It is assumed that the tools are versatile and

considered a tool life for each tool, as we know there is not a

considerable amount of the literature related to a tool life in

an FMS. The objective is to minimize the total part type

tardiness and tool purchasing cost.

In this study a new formulation of the given problem is

presented; but because of the complexity of the NP-hard

 International Journal of Industrial and Manufacturing Systems Engineering 2016; 1(3): 52-58 53

problem, we cannot use an exact method (e.g., branch-and-

bound) to solve the large-sized problem. Therefore, we

propose a well-known meta-heuristic method, namely

genetic algorithm (GA), to solve the given problem. We

compare the proposed GA and the branch-and-bound

(B&B) method by performing several non-large dimension

instances. Finally, it is shown that the associated results are

promising.

2. Literature Review

The previous research carried out in tool switching

problems can be found in the early of 60’s by Belady [1].

Then, the uniform tool switching (each tool occupies one

slot) has been tackled by a number of different techniques.

In the late 80’s, a number of studies have been contributed

specially to solve the problem by El Maraghy [2] and Kiran

and Krason [3]. Tang and Denardo [4], proposed an ILP

formulation of the problem, and later Bard [5], described a

non-linear integer programming formulation with a dual-

based relaxation heuristic method. Heuristic-based

constructive methods have been also applied to the

problem. For instance, Djellab et al. [6], tackled the ToSP

by a hypergraph representation and proposed a particular

heuristic method oriented towards minimizing the number

of gaps in edge-projection. They used the hypergraph to

represent the relation among products and the needed tools.

Also, Hertz et al. [7], described three constructive methods,

namely FI, GENI and GENIUS, in their model at each step

first a job is selected to be inserted in current tour and then

best position in the tour are selected. In addition, the nearest

neighbor (NN) and 2-opt search methods were also

considered.

The exact methods have been also applied to the problem.

For instance, Laporte et al. [8], proposed two exact

algorithms, namely a branch-and-bound approach and linear

programming-based branch-and-cut algorithm. Precisely, the

last one is based on a new ILP formulation having a better

linear relaxation than that proposed previously by Tang and

Denardo [4]. It should be noted that these exact methods are

inherently limited, since Oerlemans [9] and Crama et al. [10],

proved formally that the tool switching problem (ToSP) is

NP-hard for c>2, where c is the number of the slots in the

machine’s magazine. This limitation has been already

highlighted, where Laporte et al. [8], reported that their

algorithm was able to manage instances with 9 products; but,

it presented a very low success ratio for instances over 10

products.

Sarin and Chen [11], also formulated the machine

loading and tool allocation as 0–1 linear programming.

Part assignments and tool allocations are determined

simultaneously considering a tool life, tool size (i.e.

number of slots a tool occupies on tool magazine) and

magazine capacity. Buyurgan et al. [12], introduced a

heuristic approach for tool selection and allocation. Their

proposed approach utilizes the ratio of a tool life over a

tool size for tool selection and allocation they also

consider a tool life.

The clustering/grouping methods have also been

attended. For instance, Salonen et al. [13], attacked the

uniform ToSP of the printed circuit boards (PCBs) and

described an algorithm that iterated the process of first

determining a good (or even optimal) grouping of the PCBs

for further sequencing them. A hierarchical product

grouping technique, based on the Jaccard’s similarity

coefficient as clustering criterion, is also employed to avoid

identical groupings. A different and very interesting

approach has been described by Zhou et al. [14], who

proposed a beam search algorithm. This method was

especially efficient and practical in comparison to the

previous techniques. The reason for this result is that the

performance of the algorithm can be adjusted by changing

the search and evaluation functions.

The meta-heuristic methods have been also used recently.

So, several tabu search (TS) methods have been used in the

literature by Salonen et al. [13], Herts and Widmer [15], Al

Fawzan and Al Sultan [16], Amaya et al. [17], Konak et al.

[18].

3. Problem Statement

In this section, the assumptions, mathematical formulation

and meta-heuristic method of the presented model are

elaborated.

3.1. Assumptions

Except the other usual assumptions of tool switching

problem (that are said in introduction section) there are other

new assumptions in this model that are listed below:

(1) Operating times for all part type operations on

different tool types are known.

(2) The purchase cost of each tool type is known.

(3) Each tool has a tool life that specified in advance if its

remaining life is over and we need more then it will be

substituted with the new one.

(4) The number of the magazine slot (i.e., magazine

capacity) should be specified in advance.

(5) Each tool type can perform one or more operations

(i.e., versatile tool).

(6) Required time for switching tools is constant and

known.

(7) The release time is the time that all of part types are

done (i.e., it is considered makespan for the presented

model).

(8) The due date should be specified in advance.

(9) The tardiness penalty is considered when the release

time is greater than the due time.

(10) The insert of a new tool type is not allowed except

when the last tool type remaining capacity is zero or

there is no remaining capacity to assign.

3.2. Input Parameters

Input parameters are as follow:

54 Hamid Dadashi et al.: Optimization of a New Tool Switching Problem in Flexible Manufacturing

Systems with a Tool Life by a Genetic Algorithm

�� tool life for tool k (k=1,…, K)

tsw required time for tool switching

��� required time for doing operation l (l=1,…,L) by

using tool k

duedate due date of part types

penalty rate of penalty of tardiness

�� purchasing cost of tool k

C magazine capacity

��,� = 	1	if	tool	�	can	do	operation	�0	otherwise	 	

��,� = 	1	if	part	type	!	"! = 1,… , $%	needs	operation	�
0	otherwise	 	

3.3. Decision Variables

Decision variables are as follow:

&�' = 	1	if	part	type	!	is	scheduled	to	stage	*	"* = 1,… , $%	
0	otherwise	 	

+��� = 	1	if	operation	�	on	part	type	!	is	done	by	tool	�	0	otherwise	 	

-�' Number of tool type k on stage j

--�'
Number of new tool type k that inserted on

stage j

./�'
The remaining capacity of last tool type k that is

inserted into magazine at the beginning of stage j

00�'
Number of non-new tool type k that are inserted

or removed on stage j (with consideration of

previous stage)

$/�' Number of using tool k on stage j

$�/� Total number of tools using of tool type k

duepenalty Total cost of tardiness

purcost Total cost of purchasing of tools

sw Total number of the tool switching

ft Releasing time of total part type

3.4. Mathematical Formulation

The objective of the mathematical model is minimizing the

total cost of tool purchasing and tardiness of part types. The

mathematical formulation is as follows:

min U= duepenalty + purcost (1)

s.t.

∑ &�'� = 1	∀* (2)

∑ &�'' = 1	∀! (3)

∑ -�'� = 3	∀* (4)

∑ ∑ 4567
86�� ≤ $�/�	∀�	 (5)

∑ $�/� × ��� = 0/.�;<� (6)

∑ ∑ &�' × +����� = $/�' , ∀�, * (7)

./�,'=> + @--�,'=> × ��A − $/�,'=> = ./�' , ∀�, * (8)

$/�,' − ./�,' ≤ �� × --�' , ∀�, * (9)

$/�,' ≤ �� × -�' , ∀�, * (10)

--�,' ≤ -�,' , ∀�, * (11)

--�,> = -�,>, ∀� (12)

./�,' ≤ �� , ∀�, * (13)

./�,> = 0, ∀� (14)

∑ ∑ CC6DEFF6D
G

H
'IG� = <J	 (15)

-�,'=> − @-�' − --�'A ≤ 00�' , ∀�, * (16)

−K-�,'=> − @-�' − --�'AL ≤ 00�' , ∀�, *	 (17)

"∑ ∑ ∑ +��� × ������ % + "<J × �<J% = M� (18)

"M� − �/N���N% × 0N$���- ≤ �/N0N$���- (19)

∑ +���� = ��� , ∀!, � (20)

+��� ≤ ��� × ��� , ∀!, �, �	 (21)

&�' , +��� = 0	;.	1, -�' , $/�' , --�,' , $�/�, 00�,'
≥ 0	�$�	!$�NPN., �/N0N$���- ≥ 0

Constraint 2 ensures that only one part type assigns to each

stage. Constraint 3 ensures each part type assigns to one

stage. Constraint 4 ensures that the number of assigned tools

to each stage is equal to the magazine capacity. Constraint 5

counts the number of tools using of each tool type, constraint

6 specifies the total purchasing cost of tools. Constraints 7

specifies Number of using tool k on stage j (for all k and j),

constraint 8 specifies The remaining capacity of last tool type

k that is inserted into magazine at the beginning of stage j

(for all k and j), constraint 9 specifies Number of new tool

type k that inserted on stage j (for all k and j), constraint 10

specifies Number of tool type k on stage j (for all k and j),

constraint 11 ensures that the number of new tool does not

exceed the number of total tools, constraint 12 assigns the

value of number of new tools to number of total tool, for the

first stage, constraint 13 ensures that the remaining tool life

does not exceed capacity of tools in other word Constraint 13

ensures Assumption 10 given in Section 3.1, constraint 14

assigns the value zero for remaining tool life at the first stage,

Constraints 15 counts the number of total tool switching,

Constraint 16 and 17 counts the number of non-new tool type

k that is inserted or removed on stage j (00�'), Constraint 18

specifies the finishing time of all part types. Constraint 19

specifies the penalty cost of tardiness. Constraints 20 and 21

ensure that the value of +��� corresponding to specify the tool,

operation and part type. Constraint 20 also ensures that if part

type i needs operation l, it should be done only by one tool.

3.5. Proposed Genetic Algorithm

Because of the complexity of the given problem known as

NP-hard one, it can’t be used any exact method (e.g., branch-

 International Journal of Industrial and Manufacturing Systems Engineering 2016; 1(3): 52-58 55

and-bound) for solving large-sized problems. Therefore, in

this section a meta-heuristic method based on a genetic

algorithm (GA) in order to solve such a hard problem is

proposed. The chromosome structure and coding system are

inspired by a coding method that introduced by Tavakkoli-

Moghaddam et al. [19]. The solution coding and method of

our proposed GA are described below.

3.5.1. Chromosome Structure

A feasible solution or chromosome consists of the

following genes.

(1) The gene related to the assignment of a tool to the

operations of the part type is named as matrix QR�,'S.
For example, RG,T = 5 means that tool 5 is used for

doing operation 3 on part type 2 (if a35×b23 =1), note

that if bij=0, then the corresponding allele will be zero.

(2) The gene related to the assignment of the part type to

the stage is named as matrix VW�X that alleles are limited

to 1, 2,…, n (n is a number of the part type). For

example, WG = 5 means that part type 2 assign to stage

5.

(3) The gene related to the remaining tool life at the end of

specific part types is named QY�,'S. For example, F3,6=4

means the remaining life of tool 6 after processing part

type 3 is 4 (it means that it can be used 4 times more

for the next part types until its failure and after that if it

is needed this tool more, A new tool type 6 should be

inserted). During the process of part types, matrix QY�,'S
will be continually up to date. For example, if a

specific tool type that is selected before (for the

previous operation of the current part type), is selected

and the capacity of a tool is not zero then it should be

used the same tool that is selected before (without

using another tool) otherwise it should be inserted a

new tool type and up to date matrix F. It means more

than one tool with the same type are exist on the

current stage.

(4) The gene related to counting the failed tool of each tool

type on the magazine when a specific part type is

installed on a machine is named QZ�,'S. For example,

G1,5=2 means when part type 1 is on machine, a

number of failed tool type 5 that exist on the magazine

is 2.

(5) The gene related to counting the total tool number of

each tool type on the magazine when a specific part

type is on a machine is named Q[�,'S . For example,

H1,5=2 means when part type 1 is on a machine, a

number of total tool type 5 that exist on magazine is 2.

(6) The gene indicates which tools exist on a magazine is

named Q\]Z�,'S. For example, MAG2,3 =3 means when

part type 2 is on a machine, tool 3 exists on slot 3. Note

that the order and layout of tools in a magazine are not

considered.

The feasible solution chromosome structure will be as

follows:

^VRXH×_ , VWXH×>, VYXH×` , VZXH×` , V[XH×` , V\]ZXH×ab

where n, L, K and C denote a number of the part type, total

operation tool and magazine capacity, respectively. To

generate a new solution, only matrices X and Y are

considered and arrays of these two matrices are changed,

then the other matrices are been up to date by means of them.

3.5.2. Generation of an Initial Population

To obtain the initial population, first a random feasible

solution of X and Y are created separately, then F, G, H and

MAG are obtained and been up to date base on X and Y. To

create a random feasible solution X, for each array of X, tool

k is selected to be used for operation l on part type i

randomly if alk×bil =1. In other words, A tool among the tools

that can be used for doing the corresponding operation is

selected randomly. Note that values of arrays with bil =0 are

zero constantly.

To Create a random feasible solution Y, a random

permutation of 1 to n×Z is generated.

As we mention after generation of X and Y, other matrices

are obtained based on data of these two matrices. Also for

obtaining MAG, a tool loading method is used. This method

is based on the KTNS (keep tool needed soonest) method

first introduced by Belady [1], Tang and Denardo [4] and

Bard [5]. The aim of the KTNS rule is to minimize a number

of tool switching. Following is our proposed algorithm to

load the magazine at stages:

� Step 1: According to the matrix Y for all stages inserts

the tools that are selected at the corresponding row (i.e.,

part type that assigned to current stage) of matrix X

(with considering and up to date matrix F).

� Step 2: For i=1 to n, do as follows (i denotes a stage)

� Step 2-1: If i =1, then go to Step 2-3; otherwise, if one

or more tools are to be inserted and there are no vacant

slots in the magazine, then go to step2-2; otherwise, set

i=i+1 and go to Step 2-4.

� Step 2-2: Remove the failed tools until the number of a

vacant slot is sufficient for the remaining inserted tool

on Step 2-1; but, if more vacant slots are still needed

and there are no more failed tool on a magazine, then

use the KTNS method and keep the tools that are

needed soonest and remove other tools to make a vacant

slot, set i=i+1 and go to Step 2-4.

� Step 2-3: Select the new tool types that need the soonest

until the magazine is became full, and then set i=i+1.

� Step 2-4: End.

Note 1: Consider Step 2-3 if there is a tool selected

before at the current stage; but, its remaining capacity is

zero. If it is needed soonest, then a new tool of this type can

be selected and the corresponding array on matrix F is

being up to date.

Note 2: Only the tools that are selected in Step 1 are used

at each stage.

3.5.3. Fitness Value

The fitness value is the same objective function presented

in Section 3.4. Also, an algorithm is proposed to count the

number of tool switching on a magazine. This algorithm is

explained bellow.

56 Hamid Dadashi et al.: Optimization of a New Tool Switching Problem in Flexible Manufacturing

Systems with a Tool Life by a Genetic Algorithm

Algorithm parameters:

Zcde number of failed tool type j at stage i that exists on a

magazine

[cde number of total tool type j at stage i that exists on a

magazine

Ycde remaining capacity of tool type j at the end of stage i

Algorithm steps:

Consider the initial value of a number of tool switching is

zero, sw=0 and for all i and j | [cde f 0	&	! f $, do as follows

(i and j denote the stage and tool type, respectively):

I If ["cE>%,de f 0 , then go to Step II; otherwise, <J �
<J ? @[cde A and go to Step III.

II If Ycde � 0, then <J � <J ? @[cde B Z"cE>%,de A; otherwise,

<J � <J ?	@"[cd B 1e % B 	Z"cE>%,de A.
III End.

Note1: Consider Step II if the remaining capacity of tool

type j that exists on a magazine at stage i is not zero	"Ycde f
0%. Then, according to assumption 10 given in Section 3.1,

then number of failed tool type j at the end of stage i will be

"[cd B 1e %; but, if the remaining capacity of tool type j is zero

Ycde � 0, then it will be [cde .

3.5.4. Mating Pool Selection Strategy

To create the new generation, it is necessary to select some

chromosomes (mating pool) based on their fitness function

values in the current generation for recombining or creating

chromosomes related to the new generation. In this case, a

normalized fitness strategy is used, in which the fitness of the

current generation chromosomes is first normalized

according to Eq. (22), then the chromosomes, which their

normalized fitness is less or equal to zero, are selected as a

mating pool.

i� � j5=k
l , ! � 1, 2, … , �, (22)

where Zi is the normalized fitness of chromosome i and fi is

the fitness of chromosome i µ and δ are the mean and the

standard deviation of the chromosomes fitness values in the

current generation, respectively.

3.5.5. Operators of the Proposed GA

As mentioned before, to generate a new solution only

arrays of matrices X and Y are changed and other matrices

are changed by them, thus the GA operator is exercised only

over matrices X and Y. Matrix Y is a linear one so operators

(i.e., mutation or crossover) are performed on it by using a

traditional method. However, the structure of matrix X is

formed as a non-linear one. Thus, the GA linear operators

cannot be used in a non-linear matrix type as the traditional

forms and these operators should be improved

proportionally. So the improved operators that proposed by

Tavakkoli-Moghaddam et al. [19], are used to exercise on

matrix X. In each run of the GA, one of the operations is

exercised over one of the matrices X and/or Y related to the

current chromosome randomly in order to generate new

solutions.

i. The crossover and mutation on matrix X

For the mutation operator, one X chromosome is selected

from the mating pool, randomly and then a portion of the

matrix is selected by a block or diagonal method, randomly.

Then, randomly change the array of the selected portion

while considering the feasibility. Figs. 1 and 2 denote the

mutation operator over matrix X.

Fig. 1. Mutation operator over matrix X, block method.

Fig. 2. Mutation operator over matrix X, diagonal method.

For the crossover operator, two X chromosomes, which

called as parents, are selected, randomly, from the mating

pool and A portion of the matrix (i.e., block or diagonal

method) is selected, randomly, Then in order to create a new

chromosome the two portions are swapped. Fig. 3 denotes

the crossover operator over matrix X.

Fig. 3. Crossover operator over matrix X, block method.

ii. The crossover and mutation on matrix Y

For crossover on Y, the well-known order crossover,

named as OX is used. For the purpose of mutation on Y, the

block neighborhood for the tool switching problem proposed

by Al Fawzan and Al Sultan [16], is considered. It is based on

swapping the whole segments of contiguous positions. The

 International Journal of Industrial and Manufacturing Systems Engineering 2016; 1(3): 52-58 57

resulting mutation operator is called the random block

insertion (RBI) and works as follows:

1. A block length �� ∈ oH/G is uniformly selected at

random.

2. The starting point of the block �q ∈ oH=Gr7 is

subsequently selected at random.

3. Finally, an insertion point bi is selected, such that

�q ? �� ≤ �� ≤ $ B �� and the segments

(bs, bs+bl) and (bi, bi+bl) are swapped.

3.5.6. Stopping Criteria

This paper, the following stopping criteria are considered.

1. Number of generations: In this case, the algorithm

terminates if the number of generations exceeds the

specific number.

2. Time interval: In this case, the algorithm terminates if

the difference between the current time and the

achievement time to the best solution exceeds the

specific time interval.

4. Computational Results

In this section, an application of the proposed model is

presented and also the performance of the proposed GA

method is evaluated by using several examples. In this

section 16 numerical examples in different small and large

sizes are considered. Small-sized examples are optimally

solved by a branch-and-bound (B&B) method under the

Lingo 8.0 software. However, because of the complexity of

such an NP-hard problem, exact methods (e.g., B&B) cannot

optimally solve large-sized problems in a reasonable CPU

time. Furthermore, the proposed GA algorithm is coded in

order to solve both small and large-sized examples.

The parameter tuning for the GA (e.g., number of

populations and number of generations) is carried out after an

extensive phase of experimentation with different values. The

best combinations of the parameter values are finally selected.

Both the Lingo and Matlab software run on PC with two

Intel® CoreTM2 T9300@ 2.5 GHz processors and 2 GB

RAM. All the parameter values of the given problem described

in Section 3.2 are chosen randomly. Instances main parameters

are described by 3sH_|u that C, L, n and K denote the capacity

of the magazines, the total number of operations, the number

of part types and the total number of tools, respectively.

Tables 1 and 2 list the examples that show the minimum

and maximum number of operations required for all part

types (Rows 1 and 2) and the minimum and maximum

number of substitute tools, which can be used for a specific

operation, for all operations (Rows 3 and 4).

Table 1. Explanations of small-sized examples.

 Example definitions vwxy|y zwx{||{| xwx{}|{} ~wx{x|{x vw~y|y 	zw~{||{| xw~{}|{} zw�y|y

1 Min 2 2 2 3 2 2 2 2
2 Max 3 4 5 5 3 4 4 4

3 Min 2 2 2 3 2 2 3 2

4 Max 4 5 4 6 4 6 5 4

Table 2. Information of large-sized examples.

 zwyy|y xwy{||{| xw{|{}|{} �w{}{x|{x �w{x{x|{x 	{|w}|{y|{y {|wv|{x|{x {}wz|v||v|

1 Min 2 2 2 3 3 3 3 3

2 Max 4 5 4 6 8 9 9 10
3 Min 2 2 3 2 2 2 2 2

4 Max 4 5 6 8 8 10 10 10

The examples are solved by the proposed GA and the B&B

method. Tables 3 and 4 illustrate the comparative results of

small and large-sized examples, respectively. In these tables,

columns CPU, OFV, NOG, NOP, MCPUT and BOFV denote

the CPU run time of Lingo, the objective function value of

Lingo, the number of generations of GA, the number of

populations of GA, the mean CPU run time of GA and the best

objective function value of GA in all iterations, respectively.

Data in the GAP column are obtained as follows:

Z]� � K����=������ L × 100 (23)

In Table 4, only in three out of eight instances, the B&B

method is able to access to the feasible space within six

hours, and the related results of these instances are not as

good as the proposed GA and the average of the Gap between

the GA and the B&B method is computed about 2%. By

considering the CPU run time, it shows that the performance

of the proposed GA is promising.

Table 3. Comparison between B&B and GA runs for small-sized instances.

No.
Problem information

 CPU OFV NOG NOP MCPUT BOFV GAP (%)

1 3∂��|8 230 115 200 70 12.5 115 0

2 4∂�>�|10 637 241.5 200 70 15.2 241.5 0

3 5∂�>G|12 1180 223.5 200 80 21.1 233.5 4

4 6∂�>�|15 3581 271 200 80 23.4 281 3.7

5 3∂��|8 6844 164.5 200 80 15.2 164.5 0

6 4∂�>�|10 12990 328 300 90 29.3 357 8.8

7 5∂�>G|12 12708 266 300 90 32.1 266.5 0.2

8 4∂��|8 19534 395 400 90 40.8 395 0

58 Hamid Dadashi et al.: Optimization of a New Tool Switching Problem in Flexible Manufacturing

Systems with a Tool Life by a Genetic Algorithm

Table 4. Comparison between B&B and GA runs for large-sized instances.

No.
Problem information

 CPU OFV NOG NOP MCPUT BOFV GAP (%)

1 4∂��|8 21600 415* 500 90 53.8 395 -

2 5∂�>�|10 21600 430* 500 90 68.9 380 -

3 5∂>�>G|12 21600 680* 600 100 134 510 -

4 7∂>G>�|15 21600 - 700 100 240.4 810 -

5 9∂>�>�|15 21600 - 700 100 440.6 740 -

6 10∂G�>�|18 21600 - 800 110 853.6 660 -

7 10∂T�>�|15 21600 - 900 120 1376 830 -

8 12∂��T�|30 21600 - 1000 130 2744 710 -

*Best solution found after 6 hours

5. Conclusion

This paper has considered the problem of tool switching in

flexible manufacturing systems (FMS), which is a well-

known problem in operations research. Indeed, A new

version of tool switching is proposed. In addition, A tool life

for each tool is considered. The objective of the problem was

to minimize the total part tardiness and tool purchasing costs.

Also the formulation of the problem is proposed; however,

because of the complexity of such an NP-hard problem, it

could not be used any exact method (e.g., branch-and-bound

(B&B)) in order to solve large-sized problems. Therefore, an

adopted meta-heuristic method (GA), is proposed, to solve

the given problems. At last results that are obtained by the

GA and the B&B method are compared to small-sized

problems. The obtained results show a relative gap about 2%

between the proposed GA and the B&B method in terms of

objective function values.

References

[1] Belady, L. A study of replacement algorithms for virtual
storage computers, IBM Systems Journal., 1966, 5, 78–101.

[2] El Maraghy, H. A. Automated tool management in flexible
manufacturing, Journal of Manufacturing Systems., 1985, 4
(1), 1–14.

[3] Kiran, A., and Krason, R. Automated tooling in a flexible
manufacturing system, Industrial Engineering., 1988, 20, 52–
57.

[4] Tang, C. S., and Denardo, E. V. Models arising from a flexible
manufacturing machine, part I: minimization of the number of
tool switches, Oper. Res., 1988, 36 (5), 767–777.

[5] Bard, J. F. A heuristic for minimizing number of tool switches
on a flexible machine. IIE Transactions., 1988, 20 (4), 382–
391.

[6] Djellab, H., and Djellab, K., and Gourgand, M. A new
heuristic based on a hypergraph representation for the tool
switching problem, International Journal of Production
Economics., 2000, 64 (1-3), 165–176.

[7] Hertz, A., and Laporte, G., and Mittaz, M., and Stecke, K.
Heuristics for minimizing tool switches when scheduling part
types on a flexible machine, IIE Transactions.,1988 30, 689–
694.

[8] Laporte, G., and Salazar Gonzalez, J., and Semet, F. Exact
algorithms for the job sequencing and tool switching problem,
IIE Transactions., 2004, 36 (1), 37–45.

[9] Oerlemans, A. Production planning for flexible manufacturing
systems, PhD Dissertation, University of Limburg, Maastricht,
Limburg, Netherlands, 1992.

[10] Crama, Y., and Kolen, A., and Oerlemans, A., and Spieksma,
F. Minimizing the number of tool switches on a flexible
machine, Int. J. of Flexible Manufacturing Systems., 1994, 6,
33–54.

[11] Sarin, SC., and Chen, CS. The machine loading and tool
allocation problem in a flexible manufacturing system. Int J
Prod Res., 1987, 25 (7), 1081–94.

[12] Buyurgan, N., and Saygin, C., and Engin Kilic, S. Tool
allocation in flexible manufacturing systems with tool
alternatives, Robotics and Computer-Integrated
Manufacturing., 2004, 20, 341–349.

[13] Salonen, K., and Raduly Baka, C., and Nevalainen, O. S. A
note on the tool switching problem of a flexible machine,
Computers & Industrial Engineering., 2006, 50(4), 458–465.

[14] Zhou, B. H., and Xi1, L. F., and Cao, Y. S. A beam-search-
based algorithm for the tool switching problem on a flexible
machine, Int. J. of Advanced Manufacturing Technology.,
2005, 25 (9-10), 876–882.

[15] Hertz, A., and Widmer, M. An improved tabu search approach
for solving the job shop scheduling problem with tooling
constraints, Discrete Applied Mathematics., 1993, 65, 319–345.

[16] Al Fawzan, M. A, and Al Sultan, K. S. A tabu search based
algorithm for minimizing the number of tool switches on a
flexible machine, Computers & Industrial Engineering., 2003,
44 (1), 35–47.

[17] Amaya, E., and Cotta, C., and Fern´andez, A. J. A memetic
algorithm for the tool switching problem, in: Proc. Of the Int,
Workshop on Hybrid Metaheuristics, Málaga, Sapin, 2008,
Lecture Notes in Computer Science (LNCS), Springer-Verlag.,
2008, 5, 190–202.

[18] Konak, K., and Kulturel Konak, S., and Azizoglu, M.
Minimizing the number of tool switching instants in flexible
manufacturing systems, Int. J. of Production Economics.,
2008, 116, 298–307.

[19] Tavakkoli-Moghaddam, R., and Aryanezhad, M. B., and
Safaei, N., and Azaron, A. Solving a dynamic cell formation
problem using Metaheuristics, Applied Mathematics and
Computation., 2005, 170, 761–780.

