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Abstract: This paper proposes an adaptive genetic algorithm (FLC-aGA) approach based on fuzzy logic controller (FLC) for
evaluating the reverse logistics (RL) networks with centralized centers. For the FLC-aGA approach, an adaptive scheme using
a fuzzy logic controller is applied to GA loop. Five components which are composed of customers, collection centers, recovery
centers, redistribution centers, and secondary markets are used to design the RL networks. For the RL with centralized centers
(RLCC), collection center, recovery center, redistribution center and secondary market will be opened alone. The RLCC will
be formulated as a mixed integer programming (MIP) model and its objective function is to minimize the total cost of unit
transportation costs, fixed costs, and variable costs under considering various constraints. The MIP model for the RLCC is
solved by using the FLC-aGA approach. Three test problems with various sizes of collection centers, recovery centers,
redistribution centers, and secondary markets are considered and they are compared the FLC-aGA approach with other
competing approaches. Finally, the optimal solutions by the FLC-aGA and other competing approaches are demonstrated each
other using some measures of performance.
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refers to the distribution activities involved in product return,
source reduction, conservation, recycling, reuse, repair,
disposal, refurbishment, and remanufacturing [6]. Various
sides of the RL fields have been investigated by many
researchers [7-12]. Of the sides, a few studies have addressed

1. Introduction

In general, supply chain management (SCM) considers two
ways of its flow. First flow is a forward logistics network and
it considers various components such as row material supply

firms, manufacturing firms, distribution centers, retailers and
customers. On the other hand, second flow is called as a
backward (or reverse) logistics network and it consists of
customers, collection centers, recovery centers, redistribution
centers, and secondary markets. Of the two flows, especially,
reverse logistics (RL) network have recently focused on many
researchers since increasing interests in exhaustion of
resources and environmental regulation have caused the
effective treatment of used products [1-5].

The European working group on reverse logistics defined
the RL as “the propose of planning, implementing and
controlling flows of raw materials, in process inventory, and
finished goods, from the point of use back to point of recovery
or point of proper disposal” [1]. In a broader sense, the RL

the problem of determining the optimal locations and numbers
of the RL components such as collection centers, recovery
centers, etc. [2, 5, 13].

Min et al. [2] proposed a nonlinear mixed integer
programming (MIP) model to determine the optimal numbers
and locations of initial collection centers and centralized
return centers among RL components. The MIP model was
solved using genetic algorithm (GA) approach. A similar
study was performed by Aras and Aksen [13]. They suggested
a mixed integer nonlinear programming (MINP) to determine
the optimal numbers and locations of collection centers in the
RL network. The MINP was solved by Tabu search method.
Yun et al. [5] developed an aGA approach to solve the RL
network which determines the optimal numbers and locations
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of collection center, remanufacturing centers, redistribution
center and secondary markets. Two types of RL network were
taken into consideration. One is to consider the single RL
network with collection center, remanufacturing centers,
redistribution center and secondary markets alone and the
other is to use the multiple RL networks which collection
center, remanufacturing centers, redistribution center and
secondary markets can be opened more than one. They
compared the single RL network with the multiple RL network
using various measures of performance. Finally, the single RL
network outperformed the multiple RL network.

The above studies concerning the optimal location and
selection problem of RL components can be classified into
two ways; the RL with centralized center (RLCC) and the RL
with decentralized center (RLDC). In the RLCC, all used
products are sent to each central facility, where they are

collected, processed, and finally shipped to secondary markets.

On the other word, in the RLCC, collection centers, recovery
centers, redistribution centers and secondary markets will be
opened alone. In the RLDC, however, all used products are
sent to at least more than one facility, that is, several collection
centers, recovery centers, redistribution centers and
secondary markets can be opened. Between the RLCC and
the RLDC, the performance of the former has been proved to
be more effective than that of the latter [5].

Therefore, in this paper, we use the concept of the RLCC
and its detailed components consist of collection centers,
recovery centers, redistribution centers and secondary
markets. The RLCC will be formulated by a MIP model and
its objective is to minimize the total cost of transportation
costs, fixed costs, and variable costs under considering
various constraints. The MIP model will be solved by the
proposed FLC-aGA approach with a fuzzy logic controller
(FLC). Based on the above procedures, the objective of this
paper is to develop an efficient MIP model and the FLC-aGA
approach for the RLCC.

The focus of this paper is to design an adaptive genetic

algorithm (FLC-aGA) approach based on fuzzy logic
controller (FLC) for evaluating the reverse logistics (RL)
networks with centralized centers. The paper is organized as
follows: Section 2 introduces the detailed scheme of the
reverse logistics networks with centralized centers (RLCC). A
mixed integer programming (MIP) model is formulated for the
RLCC problem in Section 3. For solving the RLCC problem,
the FLC-aGA 1is proposed in Section 4. Three types of
numerical experiments with various sizes of the RLCC
problems are considered and they are solved for comparing
by the FLC-aGA approach with other competing approaches
in Section 5. Finally, conclusion and some remarks are
outlined in Section 6.

2. Reverse Logistics Network with
Centralized Centers (RLCC)

Since the RLCC is more efficient than the RLDC [5], we
first define the correct status of the RLCC. Generally, the
RLCC network consists of various components such as
collection centers, recovery centers, etc. In the previous
studies, Min et al. [2] considered only two components of
initial collection centers and centralized return centers. Aras
and Aksen [13] used one component of collection centers. On
the other hand, Yun et al. [5] considered various components
of collection centers, recovery centers, redistribution centers
and secondary markets.

Among the conventional studies mentioned above, we use
the basic concept of the RLCC network introduced in Yun et
al. [5], since they considered various components in the flow
of the RL network, but Min et al. [2] and Aras and Aksen [13]
used only a few components in it. Therefore, the former is
more acceptable concept in the RLCC network model than the
latters. Figure 1 shows a conceptual model for the RLCC
network used in this paper.

Stage 4 Stage 3 Stage 2 Stage 1

| Recovery Customer

|' Center 1 1
Secondary | Collection Customer

Market 2 | Center 2 2

L r i dudansaauin e G
distribution Cust:;:m.-er
Center 3

....................

Figure 1. Conceptual model for the RLCC network

In Figure 1, the used products collected from customers are
sent to a collection center, and after classifying them, the

products available for reuse are sent to a recovery center. The
recovery center revives or repairs them through proper
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treatments. The revived or repaired products are sent to a
secondary market via a redistribution center and are then
resold them to customers. The considerations under the RLCC
network in Figure 1 are as follows:

* The locations of collection centers should be determined
for effectively sending the used products collected from
customers. The locations of recovery centers,
redistribution centers, and secondary markets should also
be determined for revival (or repair), redistribution and
resale of the used products.

* The fixed costs required for the opening of the
determined  collection center, recovery center,
redistribution center and secondary market, and their
operation costs for treating unit product should be
determined.

* The unit transportation costs required for transporting the
products at each stage (customers > collection center >
recovery center = redistribution center = secondary
market) should be determined.

3. Mathematical Formulation

Before designing a mathematical model for the RLCC

problem, several assumptions considered are as follows:

* This paper only considers the RL network for a single
product.

* The number of customers is already known and each of
them sends only one used product to a collection center
opened. Therefore, the capacity of all customers is
identical with the number of customers.

* The locations of customers, collection centers, recovery
centers, redistribution centers, and secondary markets are
displayed as site coordinates and their values of each
location are known in advance.

* The fixed costs required for the opening of collection
center, recovery center, redistribution center and
secondary market are different each other and are already
known.

* For the RLCC problem, the collection centers, recovery
centers, redistribution centers and secondary markets
will be opened alone respectively.

* Unit handling cost at same stage is identical, since each
center (or market) at same stage performs same function.

* Unit transportation costs at each stage are calculated by
the site coordinates of the collection center, recovery
center, redistribution center and secondary market
opened at each stage. For instance, if the site coordinates
of the /™ recovery center and the k™ redistribution center
are (x;, y;) and (x4, yx) respectively, then the unit
transportation cost between the recovery center and the
redistribution center is calculated by using the Euclidian
distance as follows:

dy == )+ (v —v))° ()

Based on the assumptions mentioned above, we develop a

mathematical model effectively representing the RLCC
problem. The objective of this paper is to design their optimal
networks which can minimize the total cost composed of fixed
costs, variable costs and transportation costs. The
minimization of the total cost is considered as an objective
function and various constraints. The indices, parameters and
decision variables used in the objective function and various
constraints are set as follows:

Indices:

i : index of customer; [0/

J @ index of collection center; j LIJ

k : index of recovery center; k UK

[ : index of redistribution center; [ UL

m: index of secondary market; m [IM

Parameters:

FC;: fixed cost at collection center Jj

FM ;. : fixed cost at recovery center k

FD; : fixed cost at redistribution center /

FS,, : fixed cost at secondary market 77

VC . unit handling cost at collection center
VM : unit handling cost at recovery center

VD : unit handling cost at redistribution center
VS : unit handling cost at secondary market

CCj : unit transportation cost from customer i to
collection center Jj

CM j;. - unit transportation cost from collection center Jj
to recovery center k

MD,, : unit transportation cost from recovery center k to
redistribution center /

DS,,, : unit transportation cost from redistribution center /
to secondary market 77

CU,; : capacity at customer [

Decision variables:

¢, : collection capacity at collection center Jj

my : treatment capacity at recovery center k

d, : treatment capacity at redistribution center [

s, © treatment capacity at secondary market 7

L €= {1, if collection center j is open

J

0, otherwise

M _

{1, if recovery center k is open
X, =

0, otherwise

D {1, if redistribution center / is open
X =

0, otherwise

m

L5 = 1, if secondary market m is open
0, otherwise

Using the parameters and decision variables described
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above, we develop a mathematical model for effectively
representing the RLCC as follows:

Minimize Z =Yy » CC,[TU, [k +Y FC, k" + VC(Q ¢; k) +
i J J i

> > CM G G Y FM, M VMY m M) +
k k k

2

J
> > MD,Un, "+ Y FD, " + VDY d, &) +
k 1 ! 1

> YDs, G, + Y FS, &5 +VSQs, &)
1 m m m

subject to
e~ 2m =0 ®)
R0 @
Zd,—Z’:sm =0 )
2=t ©)
;ka =1 )
Zx,” =1 ®)
;xms =1 )
xS =1{0,1 O;0J (10)
x M =1{0,1} Ok OK (11)
x” =1{0,1} 0/0L (12)
x,5 =1{0,1} OmOM (13)

¢ omy,d,,s, 20 0j0J,0k0K,00L,0m0OM (14)

The objective function (2) minimizes the sum of fixed costs,
variable costs, and transportation costs resulting from each
stage. Equation (3) ensures that the sum of the used products
collected in whole collection centers is the same as that treated
in whole recovery centers. As the same meaning, equations (4)
and (5) ensure that the sums treated in whole recovery centers
and redistribution centers are the same as those in
redistribution centers and secondary markets, respectively.
Equations (6), (7), (8) and (9) show that collection centers,
recovery centers, redistribution centers and secondary markets
should be opened alone. Equations (10), (11), (12) and (13)
restrict the variables to integers 0 and 1. Equation (14) means
non-negativity.

The mathematical model formulated in this paper is
represented as a mixed integer programming (MIP) and the
FLC-aGA approach is proposed in next Section.

4. FLC-aGA Approach

Since the network design such as the RL network problem
has been known as NP-complete [14-15], conventional
approaches are difficult to effectively find the optimal solution.
Recently, a methodology using GA approach has been
successfully adopted to effectively solve the RL network
design problems [2, 4-5]. Unfortunately, however,
conventional GA approaches have some weakness in the
correct setting of genetic parameters such as crossover and
mutation rates. Identifying the correct setting values of genetic
parameters is not an easy task, because GA performance
considerately relies on their setting values. Therefore, many
studies have been performed to locate the correct setting
values [16-20].

Most of the conventional studies mentioned above have
recommended the use of adaptive scheme which can
automatically regulate GA parameters. Since keeping a
balance between exploitation and exploration in genetic
search process highly affects locating the optimal solution, it
has been generally known that, during its search process, the
approach both with a moderate and various increasing and
decreasing trends in its parameter values is more efficient than
the approach with rapid increasing or decreasing trends or the
approach with a constant value. Therefore, much time for the
correct setting of the genetic parameters can be saved, and the
search ability of GA can be improved in finding global optimal
solution [21].

In this Section, therefore, we design an adaptive genetic
algorithm approach based on fuzzy logic controller
(FLC-aGA) approach. Firstly, representation, initialization
and GA operators will be suggested. Secondly, an adaptive
scheme based on a FLC will be followed.

4.1. Representation and Initialization

The most important thing when designing the RL network
by GA is how to set a correct representation scheme, since
whether collection centers, recovery centers, redistribution
centers and secondary markets are opened or not should be
automatically determined during genetic search process.
Therefore, we design a new representation scheme as shown
in Figure 2 to correctly represent the structure of the RLCC
proposed in this paper.

c (o c M M M D D ol 5 =1 5
Hoon BN X N5oxn X Hoox n X

[oJof2fafofofofafofofo]a]

Figure 2. An example of representation for the RLCC

In Figure 2, the collection center 3 is opened ( x3c =1)and

the collection centers 1 and 2 are not opened (x,“ =x,“ =0).

As a same meaning, the recovery center 1, the redistribution
center 2, and the secondary market 3 are also opened,
respectively. Therefore, whether collection center, recovery
center, redistribution center and secondary market are opened
or not is determined by randomly having 0 or 1 in order that
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the total cost should be minimized. By using the
representation scheme, we can easily produce initial
population. If population size is 5, then initial population can
be generated as shown in Figure 3.

v=lolo|1]1]ofJofo]1]ofofo]1]
v=lo]|1]oJof1]ofo]1]oJ1]|o]o]
v-[LloJo]i]o]o]o]o]1]o]1]0]
velo]of1Jo]Jo]1f1]ofoJ1]o]o]
v=lo]1]of1fo]oJo|1]oJo]|1]o0]

Figure 3. An example of initial population for the RLCC
4.2. Genetic Operators

4.2.1. Selection

The selection strategy is to choose the respective
individuals from the current population. Therefore, the chosen
individuals are considered as the population of the next
generation. For selection, the elitist selection strategy in an
enlarged sampling space [15] is used.

4.2.2. Crossover

For improving the solution quality during genetic search
process, a crossover operator is needed for exchanging some
genes between individuals. In this paper, we develop a new
crossover operator for the RLCC. The detailed
implementation procedure is as follows:

Step 1: two individuals are randomly selected in population.

Step 2: two genes in the selected individuals are randomly
selected.

Step 3: the values of the selected genes are exchanged with
each other. If the value of the selected gene is exchanged with
1 (the third genes of V,* in Figure 4), then the gene with the
value 1 among the other genes should have the value 0 instead
of 1 (the second genes of V,** in Figure 4). On the other hand,
if the value of the selected gene is exchanged with O (the third
genes of V1* in Figure 4), then select randomly a gene among
the other genes and then the value of the selected gene is
exchanged with 1 (the second genes of V** in Figure 4).

These procedures of the crossover operators for the RLCC
are summarized in Figure 4.

v
n- [e[o[a]ilo o ol oo 1]
v= [0z 0]l o ol o ilo]0]

~L -
nm=lofoJof1]ofoJo]1fofz]o]1]
pe=l0f1]1fof1]o]Jof1fofo]o]o]

v -
n*=[o]1]of1]oJoJof[1[of1]o]o]

ve-{o[o[a]o[1[o o i o oTo 1]

Figure 4. An example of crossover operator for the RLCC

4.2.3. Mutation

A new mutation operator for the RLCC problem is
developed as follows:

Step 1: an individual is randomly selected in population.

Step 2: a gene in the selected individual is randomly
selected.

Step 3: If the value of the selected gene is 0, then the value
is exchanged with 1(the fifth genes of V5* in Figure 5). In this
case, the gene with the value 1 among the other genes should
have the value 0 instead of 1 (the forth genes of V5** in Figure
5). On the other hand, if the value of the selected gene is 1,
then the value is exchanged with 0. In this case, a gene among
the other genes is randomly selected and then the value of the
selected gene is exchanged with 1.

These procedures of the mutation operators for the RLCC
are summarized in Figure 5.

4.2.4. Repair Strategy for Infeasible Link

The physical link at each stage, representing the new
individuals after crossover and mutation operators, may be
infeasible, if the values of the genes of the new individuals are
changed (e.g., 0 = 1, or 1 = 0). Therefore, a new repair
strategy that the link at each stage can be feasible for the
individuals with the changed values of the genes should be
developed. In this paper, the following heuristic procedure is
used for the repair strategy.

s
v={0[1]of1fofofof1fofof1]o]
~L-
ve=lo]1]lofi]i]ofo|1fofo]1]o]

(o [T o [oTal oo [1]o o1 0]

Figure 5. An example of mutation operator for the RLCC

“=[ofalofa]ofofofs]ofof1]0]
(a) @‘/./..o"-' @ -\-..H"\-..‘\%.@}—@
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mo=lofafofofalofofsiJofofs]o]
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Figure 6. Repair strategy for infeasible link in the RLCC
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Step 1: Select one individual with the changed values of the
gene among the individuals resulting from crossover and
mutation operators

Step 2: The gene with value 1 at previous stage is linked to
the gene newly having value 1 at current stage. The linked
gene at current stage is also linked to the gene with value 1 at
the next stage. If all individuals have feasible links, then stop,
otherwise go to Step 1.

These procedures of the repair strategy are summarized in
Figure 6. The feasible link of the individual (V5) is described
in the representation (a) of Figure 6. If the newly generated
individual after crossover and mutation operators is the Vs of
Figure 6, then the link (a) is changed into infeasible one.
Therefore, we have to generate a new feasible link using the
V5. The new generated feasible link (b) is just obtained by
connecting the genes with the value | at each stage.

4.2.5. Fitness test
Each individual of the population in the FLC-aGA
approach should be evaluated by measuring its fitness. The
fitness values of each individual are computed by using the
objective functions in the equation (2) under satisfying all
constraints from the equations (3) through (14) for the
RLCC.

4.3. Adaptive scheme by a FLC

The adaptive scheme used in the FLC-aGA approach is to
automatically regulate the rates of the crossover and mutation
operators. Many conventional studies have developed various
adaptive schemes for regulating the rate [16-19, 22-26]. Of
them, several adaptive schemes using FLCs have been
successfully adopted for improving the performance of GAs
[16,18, 27]. Gen and Cheng [18] surveyed various adaptive
schemes using several FLCs. Subbu ef al. [27] developed a
fuzzy logic-controlled genetic algorithm (FLC-GA) using a
fuzzy knowledge base. The developed FLC-GA
automatically regulates the rates of the crossover and
mutation operators. Song et al. [16] suggested the two FLCs
to automatically regulate the rates of the crossover and
mutation operators. The suggested two FLCs are used as the
input variables of the GA. For successfully applying FLCs to
GAs, Subbu et al. [27] and Song et al. [16] proposed the
production of well-formed fuzzy sets and rules. Therefore,
the GAs which are controlled by these types of FLCs are
more efficient in terms of the search speed and solution
quality than the GAs without them [16, 18, 27].

Based on the conventional studies using FLCs, we also use
an FLC to adaptively regulate the rates of the crossover and
mutation operators in this paper. We use the basic concept of
Song et al. [16] and improve it in some aspects. The main
idea behind the concept is to use the crossover FLC and the
mutation FLC. These two FLCs are implemented
independently to automatically regulate the rates of the
crossover and mutation operators during the genetic search
process. The heuristic updating strategy for regulating the
rates is to consider the changes of the average fitness values
over two successive generations in the FLC-aGA populations.

That is, the rate of the crossover operator ( P.) and that of the

mutation operator ( P, ) should be increased, if better

offspring through the changes are consistently yield. However,
the p. and P, should also be decreased, if poorer offspring

are continuously produced. This scheme encourages
well-performing operators to produce more individuals, while
also reducing the chance for poorly performing operators to
destroy the respective individuals during genetic search
process.

For example, when a minimization problem is assumed, we
can set the change of the average fitness value at generation ¢,
Change _AvgFit(t) , as follows:

Change _ AvgFit(t) = (Fit,,, ..(0)=Fit,, . ())*xa

par _size . par _size+off _size .
- (Zk=1 Fltk(t) _ Zk=par7size+l Fltk (t))xa
off _size

(15)

par _size

where K is the generation index and @ is a scaling factor
to normalize the average fitness value for applying
defuzzification in the FLC. The @ is varied according to the
problem under consideration. The parameter, @ , was not
used in the original study [16]. However, the a is
definitely required for normalizing the average fitness value
since it is varied according to the problem under
consideration. Both Change _AvgFit(t — 1) and

Change _ AvgFit (¢) are used to regulate p.and p, , as
shown in Figure 7.

Procedure:regulationof p.and p, usingaverage fitness value
begin
if B < Change AvgFit(r—-1) = y and
B £ Change _AvgFit (t) = ¥
then increase p. and p,, for next generation :
if —y < Change AvgFir(r-1) = — 8 and
—y < Change _AvgFit(t) < —
then decreasep,. and p,, for next generation ;
if —f < Change AvgFit(t—1) <f and
— B < Change AvgFit(t) < J8
then rapidly increase p. and p,, for next generation ;

end
end

Figure 7. Regulation of p_and p, using average fitness value.

In the above, [1is a given real number in the proximity of
zero, and ) and — ) are given maximum and minimum
values of a fuzzy membership function, respectively. The
implementation strategy for the crossover FLC is as follows.

¢ Input and output for the crossover FLC.

The inputs for the crossover FLC are
Change _AvgFit(t —1) and Change AvgFit(¢t) . The
output is the change in the crossover rate, Ac(t).

* Membership functions of Change AvgFit(t—1) ,

Change _ AvgFit(t) ,and Ac(t).
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The membership functions of the fuzzy input and output
linguistic variables are shown in Figures 8 and 9,
respectively.  Both Change AvgFit(t—1)  and
Change _AvgFit (t) are respectively normalized in the
range, [-1.0, 1.0]. Ac(?) is also normalized in the range
of [-0.1, 0.1] with respect to the corresponding maximum
values.

* Fuzzy decision table
The fuzzy decision table developed in the conventional
study (Song et al. 1997) is used.

* Defuzzification table for control actions
The defuzzification table to simply represent the control
action for the crossover FLC should be required. The
defuzzification table developed in the conventional
study [16] is used.

NR NL NM NS ZE PS PM PL PR

-0 08 0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 10

Figure 8. Membership Change _ AvgFit (t =1)

functions  of
ange _AvgFit(t)

J7

NR NL NM NS ZE PS PM PL PR

-0.1  -0.08 -0.06 -0.04 -0.02 0 002 0.04  0.06 0.08 0.1

Figure 9. Membership function of Ac(t)

In the Figures 8 and 9, NR means Negative larger, NL
Negative large, NM Negative medium, NS Negative small, ZE
Zero, PS Positive small, PM Positive medium, PL Positive
large, and PR Positive larger.

The inputs of the mutation FLC are the same as those of the
crossover FLC and the output is the change in the mutation

rate, &m(t). The regulating strategy of the crossover and
mutation FLCs in the FLC-aGA is summarized in Figure 10.

Input Transformation Output
FLC
Change_ AvgFit (1~ 1) i | Fuzzy decision table | , | Changein 1 Update In
i Change AvgFit (1)} ﬁ; : Defuzzification table :-y/': de(t) i I ()
H P PP Amlr) i HE )]

Figure 10. Regulation strategy of the crossover and mutation FLCs

The detailed procedure for its application is as follows.

Step 1: The input variables of the FLC for regulating the
rates of the crossover and mutation operators are the changes
in the average fitness value in two successive generations as
follows:

Change _ AvgFit(t—1), Change _AvgFit(t) (16)

Step 2: After normalizing Change AvgFit(t—1) and
Change _AvgFit (t) , assign these values to the indexes i and
j corresponding to the control actions in the defuzzification
table [16].
Step 3: Calculate Ac(¢)and Am(t) as follows:

Ac(t) = Z(i, j)*0.02  Dm(r) = Z(i, j)*x0.002 (17)

where the contents of Z(i, j) are the corresponding values
of Change AvgFit(t —=1) and Change AvgFit (t) in
the defuzzification table [16]. The values of 0.02 and 0.002
are given to regulate the increasing and decreasing ranges of
the rates of the crossover and mutation operators.

Step 4: Update the changes in the rates of the crossover
and the mutation operators by using the following equations:

pc(t) = pc(t=1) + Ac(r)

Py (0) = py (t=1) + Bm(z) (18)

The adjusted rates should lie between 0.5 and 1.0 for the
pc () and between 0.0 and 0.1 for the p,, (¢) -

4.4. Overall Procedure of the FLC-aGA Approach

The detailed metaheuristic procedure for the FLC-aGA
approach is as follows.

Step 1: Representation
The representation method as shown in Figure 2 is used
to effectively represent the RLCC.

Step 2: Initialization
The initial population is consisted of the individuals
obtained by the representation procedure developed in
this paper.

Step 3: Fitness test
Equation (2) is used for the fitness test.

Step 4: Genetic operators
Selection: The elitist strategy in an enlarged sampling
space [18].
Crossover: The crossover operator shown in Section 4.2.2
is used.
Mutation: The mutation operator shown in Section 4.2.3
is used.

Step 5: Adaptation by FLC
The adaptive scheme using the FLC shown in Section 4.3
is used for automatically regulating the rates of crossover
and mutation operators.

Step 6: Termination condition
If a pre-defined maximum number of generations is
reached during the genetic search process, then all the
steps are terminated; otherwise, go to Step 3.

5. Numerical Experiments

Three types of the RLCC problem scales are considered in
numerical experiments. Each problem type has various sizes
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of collection centers, recovery centers, redistribution centers
and secondary markets. Table 1 summarizes the sizes of these
types. For each type, the fixed costs, unit handling costs and
the site coordinate information at customers, collection

centers, recovery centers, redistribution centers and secondary
markets are listed in Appendixes 1 through 6. The graphical
representation using site coordinate information for Type 1 is
displayed Figure 11.

Table 1. Three types of the RLCC

Type No. of Customer No. of collection center  No. of recovery center No. of redistribution center No. of secondary market
1 30 5 2 3 3
2 30 10 4 7 5
3 30 15 6 9 7
800 - Table 3. Measures of performance
700 - ° = ° Measure Description
e | d e ° CPU time Average CPU time (in Sec.)
N = * ° ® ®e The value of minimizing the sum of fixed cost,
001 e e ™ Optimal Solution  variable cost, and transportation cost resulting from
200 - ° each stage.
— ‘, = B Fixed cost, variable cost, transportation cost,
0 . .. . " Optimal settin opening/closing decision at collection centers,
200 - o , - P g recovery centers, redistribution centers, secondary
w4 * y ® . & ° markets in the optimal solution
® .
0.0 T T T i T T T 1 ~ -
0.0 10.0 200 30.0 40.0 50.0 60.0 70.0 80.0 Table 4' Pe}fformance resultsfor ]j)pe 1

@ Customer A Col. Center Rec. Center @ Red. Center ¥ Sec. Market

Figure 11. Graphical representation using site coordinate information for
Type I

For various comparisons, two conventional approaches are
used here and their performances are compared with the
FLC-aGA approach. They are summarized in Table 2. The
aGA approach shown in Table 2 has a heuristic for adaptive
scheme (Mak et al. 2000).

Table 2. Approaches for comparison

Approach Description
GA Conventional GA without any adaptive scheme
aGA aGA with the adaptive scheme used in Mak ez al. [19]

All the approaches shown in Table 2 were programmed in
Visual Basic version 6.0 and ran on the environment of IBM
compatible PC Pentium 4 processor, CPU 3.2GHz, 2GB RAM
and Window-XP. The parameter settings for the two
conventional approaches (GA and aGA) and the FLC-aGA
approach are as follows: total generation number is 10,000,
population size is 20, crossover rate is 0.5, and mutation rate is
0.05. The crossover and mutation rates in the GA approach are
fixed, but the rates in the aGA and the FLC-aGA approaches
are automatically regulated, during genetic search process.
Altogether 20 independent runs are made to eliminate the
randomness of each approach. All the approaches are
compared with each other using some measures of
performance shown in Table 3.

In Table 3, the CPU time is averaged over 20 independent
runs. The optimal solution and the optimal setting mean the
best result when each approach reaches to a pre-defined
maximum number of generations.

GA aGA FLC-aGA
CPU Time 0.47 0.38 0.39
Optimal solution 3272.5 3020.4 3020.4
Optimal Col. Center Fixed Cost 25.5 25.5 25.5
Setting Var. Cost 75.0 75.0 75.0
Transp. Cost 1227.8 1227.8 1227.8
Rec. Center  Fixed Cost 32.5 325 32.5
Var. Cost 135.0 135.0 135.0
Transp. Cost 210.0 210.0 210.0
Red. Center  Fixed Cost 232 20.1 20.1
Var. Cost 96.0 96.0 96.0
Transp. Cost 1080.0 834.0 834.0
Sec. Market ~ Fixed Cost 255 25.5 255
Var. Cost 48.0 48.0 48.0
Transp. Cost 294.0 291.0 291.0
Col. Center 1 Opem;l:/Clom Closing  Closing Closing
Col. Center 2 ” Closing  Closing  Closing
Col. Center 3 ” Opening Opening  Opening
Col. Center 4 ” Closing  Closing  Closing
Col. Center 5 ” Closing  Closing  Closing
Rec. Center 1 ” Closing  Closing Closing
Rec. Center 2 ” Opening Opening  Opening
Red. Center 1 ” Closing  Closing  Closing
Red. Center 2 ” Opening  Closing Closing
Red. Center 3 ” Closing  Opening  Opening
Sec. Market 1 ” Closing  Closing  Closing
Sec. Market 2 ” Closing  Closing Closing
Sec. Market 3 ” Opening  Opening  Opening

Table 4 shows various performance results of each
approach for Type 1. Especially, for more detailed comparison,
various costs and opening/closing decisions at each collection
center, recovery center, redistribution center, and secondary
market are shown in terms of the optimal setting.

In terms of the CPU time of Table 4, the GA approach is the
slowest, but the aGA and the FLC-aGA approaches have
almost the same result and the quickest, which means that the
aGA and the FLC-aGA approaches appropriately control their
search processes rather than the GA approach since the



International Journal of Intelligent Information Systems 2015; 4(2-1): 25-38 33

formers have adaptive schemes to automatically regulate a
balance between exploitation and exploration during genetic
search process. The appropriate control of the search process
in the aGA and the FLC-aGA approaches has influence on
their performances, that is, the performances of the aGA and
the FLC-aGA approaches are more efficient in terms of the
optimal solution than that of the GA approach. In terms of the
optimal setting, except for the fixed cost and the transportation
cost at the redistribution center and the transportation cost at
the secondary market, all of the costs in the GA, the aGA and
the FLC-aGA approaches have the same values, since the
redistribution center 2 in the GA approach is opened, whereas,
the redistribution center 3 in the aGA and the FLC-aGA
approaches are opened.

center 2 and the secondary market 3 for classifying, repairing
and selling them, respectively, which process is happened
under the same situation regardless of the GA, the aGA and
the FLC-aGA approaches. However, in the opening and
closing decision of redistribution centers, the GA approach
opens the redistribution center 2, while, the aGA and the
FLC-aGA approaches open the redistribution center 3, thus,
the former and the Ilatter show different graphical
representation. These different site coordinates highly affect
the fixed cost and transportation cost. Finally, the optimal
solutions of the GA and the two adaptive GAs (aGA and
FLC-aGA) approaches have different results.

Table 5. Performance results for Type 2

GA aGA FLC-aGA
S0 CPU Time 0.98 0.70 0.72
i Optimal solution 56143 54984 4927.2
Optimal Col. Center  Fixed Cost 12.8 12.5 10.2
60.0 -
'] Setting Var. Cost 105.0 105.0 105.0
500 Transp. Cost ~ 1482.0 9134 974.5
40.0 Rec. Center  Fixed Cost 36.5 36.5 36.5
Var. Cost 324.0 324.0 324.0
30.0
Transp. Cost ~ 825.0 1278.0 648.0
20 Red. Center  Fixed Cost 10.5 10.5 10.5
G Var. Cost 192.0 192.0 192.0
Transp. Cost ~ 795.0 795.0 795.0
0.0 T T T T
0.0 10.0 20.0 30.0 0.0 50.0 60.0 0.0 80.0 Sec. Market ~ Fixed Cost 10.5 10.5 10.5
Var. Cost 75.0 75.0 75.0
@ Customer A Col.Center Rec.Center @ Red.Center X Sec.Market
Transp. Cost  1746.0 1746.0 1746.0
Figure 12. Graphical representation according to opening/closing decisions Opening/Closin . . .
of the GA approach for Type I Col. Center 1 ; Closing Closing  Opening
Col. Center 2 ”? Closing Opening Closing
80.0 Col. Center 3 ”? Closing Closing  Closing
- Col. Center 4 ” Closing Closing  Closing
Col. Center 5 ”? Closing Closing  Closing
%0 Col. Center 6 ” Closing Closing  Closing
0.0 Col. Center 7 ”? Opening Closing  Closing
Col. Center 8 ”? Closing Closing  Closing
40 Col. Center 9 ” Closing Closing  Closing
o Col. Center 10 ”? Closing Closing  Closing
Rec. Center 1 ” Closing Closing  Closing
20 Rec. Center 2 ” Closing Closing  Closing
0% Rec. Center 3 ”? Opening Opening  Opening
Rec. Center 4 ” Closing Closing  Closing
0.0 T T T T T T T 5 H : H
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 Red. Center 1 Closing Closing Closing
Red. Center 2 ” Closing Closing  Closing
@ Customer A Col.Center Rec. Center # Red.Center  # Sec. Market Red Center 3 ” Closing Closing Closing
Figure 13. Graphical representation according to opening/closing decisions Red. Center 4 : Clos?ng Closing Clos?ng
of the aGA and the FLC-aGA approaches for Type 1 Red. Center 5 Closing Closing  Closing
Red. Center 6 ”? Opening Opening  Opening
Figures 12 and 13 show the graphical representation g, Cartizr Clstiy Cloging  Ulesin
. . . .. Sec. Market 1 ”? Closing Closing  Closing
according to the opening and closing decisions of each . . .
. R Sec. Market 2 ”? Closing Closing  Closing
collection center, recovery center, redistribution center, and » . . .
. Sec. Market 3 Closing Closing  Closing
secondary market, when each approach reach to the optimal Sec. Market 4 » Opening Opening  Opening
solution. Sec. Market 5 ” Closing Closing  Closing

In Figures 12 and 13, the opening decisions of collection
centers, recovery centers, redistribution centers and secondary
markets are represented as a link among them.

In Figs 12 and 13, the used products collected from all the
customers are sent to the collection center 3, the recovery

Table 5 shows the performance results for Type 2. In terms
of the CPU time, the aGA and the FLC-aGA approaches are
slightly quicker than the GA approach. In terms of the optimal
setting, the GA and the aGA approaches open the collection
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centers 7 and 2, respectively, whereas, the FLC-aGA approach
opens the collection center 1. Each collection center opened
has different fixed costs and different site coordinates.
Therefore, the fixed costs at each approach are different each
other, and the transportation costs between all the customers
and each collection center opened are also different. The
difference of the transportation costs between each collection
center opened and each recovery center opened is interpreted
by the difference among the site coordinates at each collection
center opened. These differences on the fixed cost,
transportation cost, and site coordinates at each approach have
greatly influence on the optimal solution, that is, the
performance of the FLC-aGA approach is superior to those of
the GA and the aGA approaches.

For Type 3, the performance results of each approach are
shown in Table 6. Similar to the result analysis of Table 5, the
aGA and the FLC-aGA approaches are slightly quicker than
the GA approach in terms of the CPU time. The optimal
solutions of each approach are greatly influenced by the fixed
costs, variable costs, and transportation costs resulting from
the collection centers, recovery centers, redistribution centers
and secondary markets opened. By the influence, the
performance of the FLC-aGA approach has the best result in
terms of the optimal solution.

0.0 100 200 30.0 40.0 50.0 50.0 700 80.0 900

@Customer A Col. Center  [BRec. Center @ Red. Center X Sec. Market

Figure 14. Graphical representation according to opening/closing decisions
of the GA approach for Type 3

0.0 10,0 200 300 40.0 50.0 60.0 70.0 80.0 90.0

@ Customer A Col. Center Rec. Center @ Red. Center ¥ Sec. Market

Figure 15. Graphical representation according to opening/closing decisions
of the aGA approaches for Type 3

0.0 100 200 300 400 500 600 700 80.0 S0.0

@ Customer A Col. Center Rec. Center @ Red. Center % Sec. Market

Figure 16. Graphical representation according to opening/closing decisions
of the FLC-aGA approaches for Type 3

Figures 14, 15 and 16 show the graphical representation
according to opening and closing decisions of each collection
center, recovery center, redistribution center, and secondary
market, when each approach reach to the optimal solution. In
the Figures, the GA, the aGA and the FLC-aGA approaches
open the collection centers 10, 1 and 12, respectively.
Therefore, the former and the Ilatter have different site
coordinates and show different graphical representation in
Figures 14, 15 and 16, which has greatly influence on the fixed
cost and transportation cost at the collection centers and
recovery centers opened. By the influence, the optimal
solutions of each approach have different results as shown in
Table 6.

Figure 17 shows the convergence process of each approach
for Type 3, until each approach reaches a pre-defined
maximum number of generations (in our case, 10,000). Each
approach show fast convergence processes during the initial
generations. However, after these generations, the GA and the
aGA approaches does not show any convergence behaviors,
whereas, the FLC-aGA approach shows a convergence
behavior after about the generations of 2,200. By the
difference of these convergence behaviors, we can confirm
that the performance of the FLC-aGA approach is
significantly superior to those of the GA and the aGA
approaches as shown in Table 6.

5000 -

4500

&
8
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aGA
FLC-aGA

ahjeA ssau)d

////
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Figure 17. Convergence processes of each approach for Type 3
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Table 6. Performance results for Type 3

GA aGA FLC-aGA
GA aGA FLC-aGA Sec. Market 2 ? Closing Closing Closing
CPU Time 1.20 091 0.92 Sec. Market 3 ? Closing Closing Closing
Optimal Solution 3039.5 2941.0 2787.1 Sec. Market 4 ? Closing  Closing Closing
Optimal Col. Center  Fixed Cost 19.3 20.5 25.2 Sec. Market 5 ? Closing Closing Closing
Setting Var. Cost  75.0 75.0 75.0 Sec. Market 6 ? Opening Opening Opening
Transp. Cost 1147.1 832.4 1246.8 Sec. Market 7 ? Closing Closing Closing
Rec. Center  Fixed Cost 22.2 36.2 36.2 . . . .
According to the above mentioned various analysis results
Var. Cost 156.0 156.0 156.0 . .
using Types 1, 2 and 3, we can conclude the following:
tieg, Costacid) - M 1SS * The aGA and the FLC-aGA approaches with adaptive
Red. Center  Fixed Cost  23.6 23.6 23.6 schemes are more efficient in terms of the CPU times and
Var. Cost ~ 144.0 1440  144.0 the optimal solutions than the GA approach without any
Transp. Cost 3240 2460  246.0 adapt%ve scheme, since the formers are wgll regulatg the
Sec. Market  Fixed Cost 243 243 243 genetic search process to reach their optimal solutions
Var. C 1140 140 1140 rather than the latter does.
ar. Cost ‘ : ‘ * Ofthe aGA and the FLC-aGA, the adaptive scheme using
Transp. Cost 558.0 5580 5580 the FLC in the FLC-aGA approach outperforms that
Col. Center 1 Oosri’znmg/a Closing  Opening Closing using the heuristic in the aGA approach.
g” ) ) ) * The FLC-aGA approach more effectively represents
Col. Center2 Closing  Closing  Closing various types of the RLCC than the GA and the aGA
Col. Center 3 ? Closing  Closing Closing approaches.
Col. Center 4 ? Closing  Closing Closing
Col. Center 5 ? Closing  Closing Closing 6. Conclusion
Col. Center 6 ? Closing  Closing Closing Thi h d FLC-aGA h
is paper has proposed a -a approach to
Col. Center 7 ? Closing  Closing Closing . pap . prop PP

) . . effectively solve various types of the RLCC problems. For the
(CIE (Chiast Gy Clstiy - Cleyng FLC-aGA approach, a new representation, crossover operator,
Col. Center 9 " Closing ~ Closing  Closing mutation operator and repair strategy have been employed,
Col. Center 10 ” Opening Closing  Closing and a FLC has been used for an adaptive scheme. The used
Col. Center 11 » Closing Closing Closing FLC can automatically regulate the rates of crossover and
Col. Center 12 = Clegine Oty Opewng mutation opergtors during genetic search process.

Col.C i Closi Closi a For designing the RLCC network model, four stage
. Cent, ” i .

oL Tenter R networks have been considered and they are composed of

Col. Center 14 ” Closing  Closing  Closing customers, collection centers, recovery centers, redistribution

Col. Center 15 7 Closing  Closing Closing centers, and secondary markets. Various constraints including

Rec. Center 1 z Closing Closing Closing unit transportation costs, fixed costs, and variable costs have

Ree. Center 2 5 Gl Clistns Cliiag been considered at each stage. Since th§ qu §ctive of designing

. . . the RLCC network model is to minimize the total cost
Rec. Center 3 ? Closing Closing Closing . .

. . i resulting from each stage, we have suggested a mathematical
Rec. Center 4 Opgnig Cring  Clriag model using mixed integer programming.

Rec. Center 5 ” Closing  Closing  Closing In numerical experiment, three types of the RLCC problem
Rec. Center 6 ” Closing  Opening Opening with various sizes of collection centers, recovery centers,
Red. Center 1 » Closing Closing Closing redistribution centers, and secondary markets have been
Red. Center 2 5 Clafirs  Clagfiry @l suggested and they'have been solved using the GA approgch

) ) ) without any adaptive scheme, the aGA with an adaptive
Red. Center 3 ? Closing Closing Closing . . ..

. _ . scheme using the conventional heuristic, and the proposed
et Ll 4 Closing  Closing  Closing FLC-aGA approach with an adaptive scheme using the FLC.
Red. Center 5 7 Closing  Closing  Closing Some measures of performance have been used for comparing
Red. Center 6 ” Closing Closing Closing the efficiency among each approach. Finally, the FLC-aGA
Red. Center 7 » Cloginy Oty g approac.h has been proved to be more efficient than other
Red. Center 8 ? Opening Opening Opening competing approaches (GA and 2GA). .

. ) _ } For our future study, much larger sized problems of the
Red. Center 9 Closing  Closing  Closing RLCC network model will be considered to compare the
Sec. Market 1 ” Closing  Closing  Closing performance the FLC-aGA with other competing approaches.
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Appendix 3. Fixed cost and unit handling cost for Type 2

Appendix
Appendix 1. Fixed cost and unit handling cost for Type 1
Fixed cost Unit handling cost

Col. Center 1 32.0 2.5

Col. Center 2 28.1 ”

Col. Center 3 25.5 ”

Col. Center 4 29.2 ”

Col. Center 5 20.0 ”

Rec. Center 1 353 4.5

Rec. Center 2 32.5 ”

Red. Center 1 28.4 32

Red. Center 2 23.2 ”

Red. Center 3 20.1 ”

Sec. Market 1 20.8 1.6

Sec. Market 2 28.2 ”

Sec. Market 3 25.5 ”

Appendix 2. Site coordinates information for Type 1

No. Customer Col. Center Rec.Center IC{z;]l'ter i;:'rket
X y X Y X y X y X y

1 319 644 56.6 30.7 59.7 102 134 320 247 526

2 12.6 57.1 446 172 187 38.6 221 27 644 76.6

3 39.7 229 122 36.0 7.1 133 165 10.8

4 759 545 47.1 46.7

5 1.3 573 334 237

6 329 89

7 67.4 36.7

8 38.6 18.6

9 240 119

10 41.0 613

11 38.6  70.1

12 66.2 10.7

13 40.7 51.2

14 731 582

15 414 544

16 56.0 54.6

17 554 16.2

18 703 399

19 172 6.0

20  67.5 45.0

21 264 244

22 74 682

23 20.1 543

24 745 121

25  30.7 66.5

26 76.6 234

27 58 49.0

28 68.1 653

29 202 30.1

30 599 244

Fixed cost Unit handling cost
Col. Center 1 10.2 3.5
Col. Center 2 12.5 “
Col. Center 3 13.6 “
Col. Center 4 11.8 w
Col. Center 5 12.1 “
Col. Center 6 11.5 “
Col. Center 7 12.8 “
Col. Center 8 11.4 “
Col. Center 9 12.0 “
Col. Center 10 11.1 “
Rec. Center 2 35.2 10.8
Rec. Center 2 36.5 “
Rec. Center 3 36.5 “
Rec. Center 4 35.1 “
Red. Center 1 10.5 6.4
Red. Center 2 11.6 “
Red. Center 3 10.4 “
Red. Center 4 11.1 “
Red. Center 5 11.8 “
Red. Center 6 10.5 “
Red. Center 7 10.5 “
Sec. Market 1 10.5 2.5
Sec. Market 2 10.2 “
Sec. Market 3 10.8 “
Sec. Market 4 10.5 “
Sec. Market 5 10.5 “
Appendix 4. Site coordinates information for Type 2
Red. Sec.
No. Customer Col. Center Rec.Center Center Market
X y X y X y X y X y
1 504 19.1 245 272 599 575 195 362 7.5 284
2 142 18.1 50.5 33,5 76.0 393 749 379 284 409
3 533 350 713 524 87 419 503 12.7 23.6 0.8
4 24 728 1.0 417 564 47.6 586 442 284 726
5 451 55 600 722 450 31.8 524 1.9
6 13.9 10.7 30.3 30.6 147 16.1
7 65.6 26.1 13.4 69.0 753 5.6
8 347 382 71.0 183
9 789 16.7 36.0 26.3
10 518 364 644 143
11 74 258
12 476 20.3
13 453 76.3
14 783 349
15 744 527
16 64 7.0
17 542 782
18 578 12.7
19 373 551
20 579 428
21 85 71.0
22 140 112
23 82 718
24 70.8 54.2
25 297 5.7
26 253 412
27 593 358
28 347 328
29 94 283
30 257 24.6
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Appendix 5. Fixed cost and unit handling cost for Type 3

Fixed cost Unit handling cost
Col. Center 1 20.5 2.5
Col. Center 2 25.5 «
Col. Center 3 18.9 “
Col. Center 4 15.8 “
Col. Center 5 12.4 “
Col. Center 6 14.5 “
Col. Center 7 20.6 “
Col. Center 8 22.7 “
Col. Center 9 21.8 “
Col. Center 10 19.3 “
Col. Center 11 22.4 «
Col. Center 12 25.2 “
Col. Center 13 24.1 “
Col. Center 14 22.4 «
Col. Center 15 24.1 “
Rec. Center 2 33.9 5.2
Rec. Center 2 34.7 “
Rec. Center 3 35.5 “
Rec. Center 4 22.2 “
Rec. Center 5 35.1 «
Rec. Center 6 36.2 “
Red. Center 1 22.5 4.8
Red. Center 2 25.4 “
Red. Center 3 26.3 «
Red. Center 4 22.1 “
Red. Center 5 25.2 “
Red. Center 6 26.4 “
Red. Center 7 18.5 “
Red. Center 8 23.6 “
Red. Center 9 22.7 “
Sec. Market 1 22.4 3.8
Sec. Market 2 24.6 «
Sec. Market 3 25.7 “
Sec. Market 4 27.8 “
Sec. Market 5 23.3 “
Sec. Market 6 24.3 «
Sec. Market 7 21.1 “
Appendix 6. Site coordinates information for Type 3
Red. Sec.
No. Customer Col. Center Rec.Center Center Market
X y X vy X y X y X vy
1 30.1 45.6 30.5 455 205 67.5 705 705 45.0 50.6
2 345 18.5 504 40.6 405 205 405 702 22.0 50.2
3 454 350 522 185 50.6 342 483 172 18.0 189
4 58.7 392 133 399 227 618 552 146 64 63.0
5 99 754 458 13 688 125 455 129 61.5 63.0
6 303 545 762 83 99 572 643 199 11.1 464
7 31.8 12.0 64.8 58.6 754 162 41.6 73.6
8 60.2 153 356 164 124  65.0
9 61.5 31.0 18.7 21.5 58.0 33.0
10 712 784 149 49.6
11 26.5 18.5 16.0 144
12 369 554 141 59.3
13 676 612 76.0 785
14 76.1 413 768 20.2
15 504 598 53.8 482
16 379 132
17  71.1 61.2
18 622 51.1
19 64 509

Red. Sec.

No. Customer Col. Center Rec.Center Center Market

20 509 432

21 413 504

22 733 95

23 363 479

24  30.8 589

25 253 59.8

26 605 243

27 489 313

28 485 44.1

29 595 305

30 255 155
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