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Abstract: This paper proposes an adaptive genetic algorithm (FLC-aGA) approach based on fuzzy logic controller (FLC) for 

evaluating the reverse logistics (RL) networks with centralized centers. For the FLC-aGA approach, an adaptive scheme using 

a fuzzy logic controller is applied to GA loop. Five components which are composed of customers, collection centers, recovery 

centers, redistribution centers, and secondary markets are used to design the RL networks. For the RL with centralized centers 

(RLCC), collection center, recovery center, redistribution center and secondary market will be opened alone. The RLCC will 

be formulated as a mixed integer programming (MIP) model and its objective function is to minimize the total cost of unit 

transportation costs, fixed costs, and variable costs under considering various constraints. The MIP model for the RLCC is 

solved by using the FLC-aGA approach. Three test problems with various sizes of collection centers, recovery centers, 

redistribution centers, and secondary markets are considered and they are compared the FLC-aGA approach with other 

competing approaches. Finally, the optimal solutions by the FLC-aGA and other competing approaches are demonstrated each 

other using some measures of performance. 
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1. Introduction 

In general, supply chain management (SCM) considers two 

ways of its flow. First flow is a forward logistics network and 

it considers various components such as row material supply 

firms, manufacturing firms, distribution centers, retailers and 

customers. On the other hand, second flow is called as a 

backward (or reverse) logistics network and it consists of 

customers, collection centers, recovery centers, redistribution 

centers, and secondary markets. Of the two flows, especially, 

reverse logistics (RL) network have recently focused on many 

researchers since increasing interests in exhaustion of 

resources and environmental regulation have caused the 

effective treatment of used products [1-5].  

The European working group on reverse logistics defined 

the RL as “the propose of planning, implementing and 

controlling flows of raw materials, in process inventory, and 

finished goods, from the point of use back to point of recovery 

or point of proper disposal” [1]. In a broader sense, the RL 

refers to the distribution activities involved in product return, 

source reduction, conservation, recycling, reuse, repair, 

disposal, refurbishment, and remanufacturing [6]. Various 

sides of the RL fields have been investigated by many 

researchers [7-12]. Of the sides, a few studies have addressed 

the problem of determining the optimal locations and numbers 

of the RL components such as collection centers, recovery 

centers, etc. [2, 5, 13].  

Min et al. [2] proposed a nonlinear mixed integer 

programming (MIP) model to determine the optimal numbers 

and locations of initial collection centers and centralized 

return centers among RL components. The MIP model was 

solved using genetic algorithm (GA) approach. A similar 

study was performed by Aras and Aksen [13]. They suggested 

a mixed integer nonlinear programming (MINP) to determine 

the optimal numbers and locations of collection centers in the 

RL network. The MINP was solved by Tabu search method. 

Yun et al. [5] developed an aGA approach to solve the RL 

network which determines the optimal numbers and locations 
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of collection center, remanufacturing centers, redistribution 

center and secondary markets. Two types of RL network were 

taken into consideration. One is to consider the single RL 

network with collection center, remanufacturing centers, 

redistribution center and secondary markets alone and the 

other is to use the multiple RL networks which collection 

center, remanufacturing centers, redistribution center and 

secondary markets can be opened more than one. They 

compared the single RL network with the multiple RL network 

using various measures of performance. Finally, the single RL 

network outperformed the multiple RL network. 

The above studies concerning the optimal location and 

selection problem of RL components can be classified into 

two ways; the RL with centralized center (RLCC) and the RL 

with decentralized center (RLDC). In the 

products are sent to each central facility, where they are 

collected, processed, and finally shipped to secondary markets. 

On the other word, in the RLCC, collection center

centers, redistribution centers and secondary market

opened alone. In the RLDC, however, all used products are 

sent to at least more than one facility, that is, several 

centers, recovery centers, redistribution center

secondary markets can be opened. Between the RLCC and 

the RLDC, the performance of the former has been proved to 

be more effective than that of the latter [5]. 

Therefore, in this paper, we use the concept of the RLCC 

and its detailed components consist of collection center

recovery centers, redistribution centers

markets. The RLCC will be formulated by a MIP model and 

its objective is to minimize the total cost

costs, fixed costs, and variable costs under considering 

various constraints. The MIP model will be solved by the 

proposed FLC-aGA approach with a fuzzy logic controller 

(FLC). Based on the above procedures, the objective of this 

paper is to develop an efficient MIP model and the FLC

approach for the RLCC. 

The focus of this paper is to design an adaptive genetic 

In Figure 1, the used products collected from customers are 

sent to a collection center, and after classifying them, the 
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Therefore, in this paper, we use the concept of the RLCC 

collection centers, 

s and secondary 

s. The RLCC will be formulated by a MIP model and 

minimize the total cost of transportation 

under considering 

The MIP model will be solved by the 

proach with a fuzzy logic controller 

(FLC). Based on the above procedures, the objective of this 

paper is to develop an efficient MIP model and the FLC-aGA 

The focus of this paper is to design an adaptive genetic 

algorithm (FLC-aGA) approach based on fuzzy logic 

controller (FLC) for evaluating the reverse logistics (RL) 

networks with centralized centers.

follows: Section 2 introduces 

reverse logistics networks with centralized centers (

mixed integer programming (MIP

RLCC problem in Section 3. For solving the RLCC problem,

the FLC-aGA is proposed in Section 4. Three types of 

numerical experiments with 

problems are considered and they are solved for

by the FLC-aGA approach with

in Section 5. Finally, conclusion and some remarks are 

outlined in Section 6. 

2. Reverse Logistics Network with 

Centralized Center

Since the RLCC is more efficient than the RLDC 

first define the correct status of the RLCC. Generally, the 

RLCC network consists of various components such as 

collection centers, recovery centers, etc. In the previous 

studies, Min et al. [2] considered only two components of 

initial collection centers and centralized return centers. 

and Aksen [13] used one component of collection centers. On 

the other hand, Yun et al. [5] considered various components 

of collection centers, recovery ce

and secondary markets.  

Among the conventional studies mentioned above, we use 

the basic concept of the RLCC network introduced in Yun et 

al. [5], since they considered various components in the flow 

of the RL network, but Min et al. 

used only a few components in it. Therefore, the former is 

more acceptable concept in the RLCC 

latters. Figure 1 shows a conceptual model

network used in this paper. 

Figure 1. Conceptual model for the RLCC network 
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products available for reuse are sent to 
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ailable for reuse are sent to a recovery center. The 

or repairs them through proper 
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treatments. The revived or repaired products are sent to a 

secondary market via a redistribution center and are then 

resold them to customers. The considerations under the RLCC 

network in Figure 1 are as follows: 

� The locations of collection centers should be determined 

for effectively sending the used products collected from 

customers. The locations of recovery centers, 

redistribution centers, and secondary markets should also 

be determined for revival (or repair), redistribution and 

resale of the used products.  

� The fixed costs required for the opening of the 

determined collection center, recovery center, 

redistribution center and secondary market, and their 

operation costs for treating unit product should be 

determined.  

� The unit transportation costs required for transporting the 

products at each stage (customers � collection center � 

recovery center � redistribution center � secondary 

market) should be determined. 

3. Mathematical Formulation 

Before designing a mathematical model for the RLCC 

problem, several assumptions considered are as follows: 

� This paper only considers the RL network for a single 

product. 

� The number of customers is already known and each of 

them sends only one used product to a collection center 

opened. Therefore, the capacity of all customers is 

identical with the number of customers. 

� The locations of customers, collection centers, recovery 

centers, redistribution centers, and secondary markets are 

displayed as site coordinates and their values of each 

location are known in advance. 

� The fixed costs required for the opening of collection 

center, recovery center, redistribution center and 

secondary market are different each other and are already 

known.  

� For the RLCC problem, the collection centers, recovery 

centers, redistribution centers and secondary markets 

will be opened alone respectively.  

� Unit handling cost at same stage is identical, since each 

center (or market) at same stage performs same function. 

� Unit transportation costs at each stage are calculated by 

the site coordinates of the collection center, recovery 

center, redistribution center and secondary market 

opened at each stage. For instance, if the site coordinates 

of the j
th

 recovery center and the k
th

 redistribution center 

are (xj, yj) and (xk, yk) respectively, then the unit 

transportation cost between the recovery center and the 

redistribution center is calculated by using the Euclidian 

distance as follows: 

22
)()( jkjkjk yyxxd −+−=              (1) 

Based on the assumptions mentioned above, we develop a 

mathematical model effectively representing the RLCC 

problem. The objective of this paper is to design their optimal 

networks which can minimize the total cost composed of fixed 

costs, variable costs and transportation costs. The 

minimization of the total cost is considered as an objective 

function and various constraints. The indices, parameters and 

decision variables used in the objective function and various 

constraints are set as follows: 

Indices: 

i : index of customer; Ii ∈  

j : index of collection center; Jj ∈  

k : index of recovery center; Kk ∈  

l : index of redistribution center; Ll ∈  

m : index of secondary market; Mm ∈  

Parameters: 

jFC : fixed cost at collection center j  

kFM : fixed cost at recovery center k  

lFD : fixed cost at redistribution center l  

mFS : fixed cost at secondary market m  

VC : unit handling cost at collection center 

VM : unit handling cost at recovery center 

VD : unit handling cost at redistribution center  

VS : unit handling cost at secondary market  

ijCC : unit transportation cost from customer i  to 

collection center j  

jkCM : unit transportation cost from collection center j  

to recovery center k  

klMD : unit transportation cost from recovery center k  to 

redistribution center l  

lmDS : unit transportation cost from redistribution center l  

to secondary market m  

iCU : capacity at customer l  

Decision variables: 

jc : collection capacity at collection center j  

km : treatment capacity at recovery center k  

ld : treatment capacity at redistribution center l   

ms : treatment capacity at secondary market m  
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Using the parameters and decision variables described 
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above, we develop a mathematical model for effectively

representing the RLCC as follows: 

C C C

ij i j j j j j

i j j j

M M M

jk j k k k k k

j k k k

D D D

kl k l l l l l

k l l l
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The objective function (2) minimizes the sum of fixed costs, 

variable costs, and transportation costs resulting from each 

stage. Equation (3) ensures that the sum of the used products 

collected in whole collection centers is the same as that treated 

in whole recovery centers. As the same meaning, equations (4) 

and (5) ensure that the sums treated in whole re

and redistribution centers are the same as those in 

redistribution centers and secondary markets, respectively. 

Equations (6), (7), (8) and (9) show that 

recovery centers, redistribution centers and secondary markets 

should be opened alone. Equations (10), (1

restrict the variables to integers 0 and 1. Equation (1

non-negativity.  

The mathematical model formulated in this paper 

represented as a mixed integer programming (MIP) and 

FLC-aGA approach is proposed in next Section.
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bjective function (2) minimizes the sum of fixed costs, 

variable costs, and transportation costs resulting from each 

Equation (3) ensures that the sum of the used products 

collected in whole collection centers is the same as that treated 

centers. As the same meaning, equations (4) 

and (5) ensure that the sums treated in whole recovery centers 

and redistribution centers are the same as those in 

redistribution centers and secondary markets, respectively. 

Equations (6), (7), (8) and (9) show that collection centers, 

centers, redistribution centers and secondary markets 

), (11), (12) and (13) 

restrict the variables to integers 0 and 1. Equation (14) means 

ted in this paper is 

represented as a mixed integer programming (MIP) and the 

proposed in next Section. 

4. FLC-aGA Approach

Since the network design such as 

has been known as NP-complete 

approaches are difficult to effectively find the optimal solution. 

Recently, a methodology using GA approach has been 

successfully adopted to effectively solve 

design problems [2, 4-5]

conventional GA approaches have some weakness in the 

correct setting of genetic parameters such as crossover and 

mutation rates. Identifying the correct setting values of genetic 

parameters is not an easy task, because GA performance 

considerately relies on their setting values. Therefore, many 

studies have been performed to locate the correct setting 

values [16-20]. 

Most of the conventional studies 

recommended the use of adaptive scheme which can 

automatically regulate GA parameters. 

balance between exploitation and exploration in genetic 

search process highly affects locating the 

has been generally known that, during its search process, the 

approach both with a moderate and various increasing and 

decreasing trends in its parameter values is more efficient than 

the approach with rapid increasing or decreasing tr

approach with a constant value. 

correct setting of the genetic parameters can be saved, and the 

search ability of GA can be improved in finding global optimal 

solution [21].  

In this Section, therefore, we de

algorithm approach based on fuzzy logic controller 

(FLC-aGA) approach. Firstly,

and GA operators will be suggested. Secondly, an adaptive 

scheme based on a FLC will be followed.

4.1. Representation and Initialization

The most important thing when designing 

by GA is how to set a correct representation scheme, since 

whether collection centers, re

centers and secondary markets are open

automatically determined during 

Therefore, we design a new representation scheme as shown 

in Figure 2 to correctly represent the structure of 

proposed in this paper.  

Figure 2. An example of representation for 

In Figure 2, the collection center 3 

the collection centers 1 and 2 are 

As a same meaning, the recovery

center 2, and the secondary market 

respectively. Therefore, whether collection center, re

center, redistribution center and secondary market are open

or not is determined by randomly having 0 or 1 
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complete [14-15], conventional 
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search ability of GA can be improved in finding global optimal 
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The most important thing when designing the RL network 

correct representation scheme, since 

whether collection centers, recovery centers, redistribution 

centers and secondary markets are opened or not should be 

determined during genetic search process. 

Therefore, we design a new representation scheme as shown 

2 to correctly represent the structure of the RLCC 

 
An example of representation for the RLCC 

he collection center 3 is opened ( 13 =C
x ) and 

are not opened ( 021 == CC
xx ). 

covery center 1, the redistribution 

center 2, and the secondary market 3 are also opened, 

ively. Therefore, whether collection center, recovery 

center, redistribution center and secondary market are opened 

or not is determined by randomly having 0 or 1 in order that 
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the total cost should be minimized.

representation scheme, we can easily produce initial 

population. If population size is 5, then initial population can 

be generated as shown in Figure 3.   

Figure 3. An example of initial population for the RLCC

4.2. Genetic Operators 

4.2.1. Selection  

The selection strategy is to choose the respective 

individuals from the current population. Therefore, the chosen 

individuals are considered as the population of the next 

generation. For selection, the elitist selection strategy in an 

enlarged sampling space [15] is used. 

4.2.2. Crossover 

For improving the solution quality during genetic search 

process, a crossover operator is needed for exchanging some 

genes between individuals. In this paper, we develop 

crossover operator for the RLCC. The detailed 

implementation procedure is as follows:  

Step 1: two individuals are randomly selected in population. 

Step 2: two genes in the selected individuals are randomly 

selected.  

Step 3: the values of the selected genes are exchanged with 

each other. If the value of the selected gene is exchanged with 

1 (the third genes of V4* in Figure 4), then the gene with the 

value 1 among the other genes should have the value 0 instead 

of 1 (the second genes of V4** in Figure 4). On the other hand, 

if the value of the selected gene is exchanged with 0 (the third 

genes of V1* in Figure 4), then select randomly a gene among 

the other genes and then the value of the selected gene is 

exchanged with 1 (the second genes of V1** in Figure 4).

These procedures of the crossover operators for the RLCC 

are summarized in Figure 4.  

Figure 4. An example of crossover operator for the RLCC

International Journal of Intelligent Information Systems 2015; 4(2-1): 25-38
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4.2.3. Mutation 

A new mutation operator for the RLCC

developed as follows: 

Step 1: an individual is randomly selected in population. 

Step 2: a gene in the selected individual 

selected.  

Step 3: If the value of the selected gene is 0, then the value 

is exchanged with 1(the fifth genes of 

case, the gene with the value 1 among the other genes should 

have the value 0 instead of 1 (the forth genes of 

5). On the other hand, if the value of the selected gene is 1, 

then the value is exchanged with 0. In this

the other genes is randomly selected and then the value of the 

selected gene is exchanged with 1.

These procedures of the mutation operators for the RLCC 

are summarized in Figure 5.  

4.2.4. Repair Strategy for Infeasible Link

The physical link at each stage

individuals after crossover and mutation operators

infeasible, if the values of the genes of the 

changed (e.g., 0 � 1, or 1 �

strategy that the link at each 

individuals with the changed values of 

developed. In this paper, the following heuristic procedure is 

used for the repair strategy. 

Figure 5. An example of mutation operator for the RLCC

Figure 6. Repair strategy for infeasible link in the RLCC
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he selected individual is randomly 
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case, the gene with the value 1 among the other genes should 

have the value 0 instead of 1 (the forth genes of V5** in Figure 

5). On the other hand, if the value of the selected gene is 1, 

then the value is exchanged with 0. In this case, a gene among 

the other genes is randomly selected and then the value of the 

selected gene is exchanged with 1. 

of the mutation operators for the RLCC 

 

Repair Strategy for Infeasible Link 

al link at each stage, representing the new 

individuals after crossover and mutation operators, may be 

if the values of the genes of the new individuals are 

� 0). Therefore, a new repair 

 stage can be feasible for the 

individuals with the changed values of the genes should be 

developed. In this paper, the following heuristic procedure is 
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Step 1: Select one individual with the changed values of the 

gene among the individuals resulting from crossover and 

mutation operators 

Step 2: The gene with value 1 at previous stage is linked to 

the gene newly having value 1 at current stage. The linked 

gene at current stage is also linked to the gene with value 1 at 

the next stage. If all individuals have feasible links, then stop, 

otherwise go to Step 1. 

These procedures of the repair strategy are summarized in 

Figure 6. The feasible link of the individual (V5) is described 

in the representation (a) of Figure 6. If the newly generated 

individual after crossover and mutation operators is the V5
**

of 

Figure 6, then the link (a) is changed into infeasible one. 

Therefore, we have to generate a new feasible link using the 

V5
**

. The new generated feasible link (b) is just obtained by 

connecting the genes with the value 1 at each stage. 

4.2.5. Fitness test 

Each individual of the population in the FLC-aGA 

approach should be evaluated by measuring its fitness. The 

fitness values of each individual are computed by using the 

objective functions in the equation (2) under satisfying all 

constraints from the equations (3) through (14) for the 

RLCC. 

4.3. Adaptive scheme by a FLC 

The adaptive scheme used in the FLC-aGA approach is to 

automatically regulate the rates of the crossover and mutation 

operators. Many conventional studies have developed various 

adaptive schemes for regulating the rate [16-19, 22-26]. Of 

them, several adaptive schemes using FLCs have been 

successfully adopted for improving the performance of GAs 

[16,18, 27]. Gen and Cheng [18] surveyed various adaptive 

schemes using several FLCs. Subbu et al. [27] developed a 

fuzzy logic-controlled genetic algorithm (FLC-GA) using a 

fuzzy knowledge base. The developed FLC-GA 

automatically regulates the rates of the crossover and 

mutation operators. Song et al. [16] suggested the two FLCs 

to automatically regulate the rates of the crossover and 

mutation operators. The suggested two FLCs are used as the 

input variables of the GA. For successfully applying FLCs to 

GAs, Subbu et al. [27] and Song et al. [16] proposed the 

production of well-formed fuzzy sets and rules. Therefore, 

the GAs which are controlled by these types of FLCs are 

more efficient in terms of the search speed and solution 

quality than the GAs without them [16, 18, 27]. 

Based on the conventional studies using FLCs, we also use 

an FLC to adaptively regulate the rates of the crossover and 

mutation operators in this paper. We use the basic concept of 

Song et al. [16] and improve it in some aspects. The main 

idea behind the concept is to use the crossover FLC and the 

mutation FLC. These two FLCs are implemented 

independently to automatically regulate the rates of the 

crossover and mutation operators during the genetic search 

process. The heuristic updating strategy for regulating the 

rates is to consider the changes of the average fitness values 

over two successive generations in the FLC-aGA populations. 

That is, the rate of the crossover operator (
CP ) and that of the 

mutation operator (
MP ) should be increased, if better 

offspring through the changes are consistently yield. However, 

the
CP  and 

MP should also be decreased, if poorer offspring 

are continuously produced. This scheme encourages 

well-performing operators to produce more individuals, while 

also reducing the chance for poorly performing operators to 

destroy the respective individuals during genetic search 

process. 

For example, when a minimization problem is assumed, we 

can set the change of the average fitness value at generation t,

)(_ tAvgFitChange , as follows: 

_ _

_ __

_ 11

_ ( ) ( ( ) ( ))

( )( )
( )

_ _

par size off size

par size off sizepar size

kk k par sizek

Change AvgFit t Fit t Fit t

Fit tFit t

par size off size

α

α
+

= +=

= − ×

= − ×
∑∑  (15) 

where k is the generation index and α  is a scaling factor 

to normalize the average fitness value for applying 

defuzzification in the FLC. The α is varied according to the 

problem under consideration. The parameter, α , was not 

used in the original study [16]. However, the α  is 

definitely required for normalizing the average fitness value 

since it is varied according to the problem under 

consideration. Both )1(_ −tAvgFitChange and 

)(_ tAvgFitChange are used to regulate 
Cp and 

Mp , as 

shown in Figure 7. 

 
Figure 7. Regulation of 

Cp and 
Mp  using average fitness value. 

In the above, β is a given real number in the proximity of 

zero, and γ and γ−  are given maximum and minimum 

values of a fuzzy membership function, respectively. The 

implementation strategy for the crossover FLC is as follows. 

� Input and output for the crossover FLC. 

The inputs for the crossover FLC are

)1(_ −tAvgFitChange  and )(_ tAvgFitChange . The 

output is the change in the crossover rate, )(tc∆ . 

� Membership functions of )1(_ −tAvgFitChange , 

)(_ tAvgFitChange , and )(tc∆ . 
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The membership functions of the fuzzy input

linguistic variables are shown in Fig

respectively. Both _ AvgFitChange

)(_ tAvgFitChange  are respectively normalized in the 

range, [-1.0, 1.0]. )(tc∆ is also normalized in the range 

of [-0.1, 0.1] with respect to the corresponding maximum 

values. 

� Fuzzy decision table 

The fuzzy decision table developed in 

study (Song et al. 1997) is used. 

� Defuzzification table for control actions

The defuzzification table to simply represent the 

action for the crossover FLC should be required. 

defuzzification table developed in 

study [16] is used. 

Figure 8. Membership functions of 
Change AvgFit t

_ ( )Change AvgFit t
 

Figure 9. Membership function of ∆

In the Figures 8 and 9, NR means Negative larger, NL 

Negative large, NM Negative medium, NS Negative small, ZE 

Zero, PS Positive small, PM Positive medium, PL Positive 

large, and PR Positive larger. 

 

The inputs of the mutation FLC are the same as th

crossover FLC and the output is the change in the mutation 

rate, ( )m t∆ . The regulating strategy of 

mutation FLCs in the FLC-aGA is summarized in Figure 1

Figure 10. Regulation strategy of the crossover and mutation 

The detailed procedure for its application is as follows.

Step 1: The input variables of the FLC for regulating the 

rates of the crossover and mutation operators are the changes 

in the average fitness value in two successive generations as 

follows: 
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The membership functions of the fuzzy input and output 

linguistic variables are shown in Figures 8 and 9, 

)1( −tAvgFit  and 

re respectively normalized in the 

normalized in the range 

the corresponding maximum 

in the conventional 

Defuzzification table for control actions 

to simply represent the control 

should be required. The 

in the conventional 

 
_ ( 1)Change AvgFit t −

,

 
( )c t∆  

Negative larger, NL 

Negative large, NM Negative medium, NS Negative small, ZE 

Zero, PS Positive small, PM Positive medium, PL Positive 

the same as those of the 

the output is the change in the mutation 

 the crossover and 

is summarized in Figure 10. 

 

crossover and mutation FLCs 

The detailed procedure for its application is as follows. 

Step 1: The input variables of the FLC for regulating the 

rates of the crossover and mutation operators are the changes 

o successive generations as 

_ ( 1)Change AvgFit t −

Step 2: After normalizing

)(_ tAvgFitChange , assign these values to the indexes 

j corresponding to the control actions in the defuzzification 

table [16].  

Step 3: Calculate )(tc∆ and 

02.0),()( ×=∆ jiZtc    

where the contents of ),( jiZ
of )1(_ −tAvgFitChange and 

the defuzzification table [16]. The values of 0.02 and 0.002 

are given to regulate the increasing and decreasing ranges of 

the rates of the crossover and mutation 

Step 4: Update the changes in the rates of the crossover 

and the mutation operators by using the following equations:

( ) ( 1) ( )
C C

p t p t c t= − + ∆

( ) ( 1) ( )M Mp t p t m t= − + ∆

The adjusted rates should lie between 0.5 and 1.0 for 

)(tpC
and between 0.0 and 0.1 for 

4.4. Overall Procedure of the FLC

The detailed metaheuristic procedure

approach is as follows. 

Step 1: Representation 

The representation method as shown in Figure 2 

to effectively represent the RLCC

Step 2: Initialization  

The initial population is co

obtained by the representation procedur

this paper. 

Step 3: Fitness test 

Equation (2) is used for the fitness test.

Step 4: Genetic operators 

Selection: The elitist strategy in an enlarged sampling 

space [18]. 

Crossover: The crossover operator

is used. 

Mutation: The mutation operator

is used. 

Step 5: Adaptation by FLC 

The adaptive scheme using the FLC shown in Section 

is used for automatically regulating the rates of crossover 

and mutation operators. 

Step 6: Termination condition

If a pre-defined maximum number of generations is 

reached during the genetic search process

steps are terminated; otherwise, g

5. Numerical Experiments

Three types of the RLCC problem scales 

numerical experiments. Each problem 
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_ ( 1)Change AvgFit t − , )(_ tAvgFitChange   (16) 

Step 2: After normalizing
 

)1(_ −tAvgFitChange  and 

assign these values to the indexes i and 

corresponding to the control actions in the defuzzification 

and )(tm∆  as follows: 

   002.0),()( ×=∆ jiZtm  (17) 

 are the corresponding values 

and )(_ tAvgFitChange  in 

. The values of 0.02 and 0.002 

are given to regulate the increasing and decreasing ranges of 

the rates of the crossover and mutation operators. 

anges in the rates of the crossover 

and the mutation operators by using the following equations: 

( ) ( 1) ( )p t p t c t= − + ∆ , 

( ) ( 1) ( )M Mp t p t m t= − + ∆          (18) 

The adjusted rates should lie between 0.5 and 1.0 for the

and between 0.0 and 0.1 for the )(tpM
. 

of the FLC-aGA Approach 

heuristic procedure for the FLC-aGA 

method as shown in Figure 2 is used 

the RLCC. 

The initial population is consisted of the individuals 

obtained by the representation procedure developed in 

d for the fitness test. 

Selection: The elitist strategy in an enlarged sampling 

Crossover: The crossover operator shown in Section 4.2.2 

operator shown in Section 4.2.3 

 

he adaptive scheme using the FLC shown in Section 4.3 

for automatically regulating the rates of crossover 

: Termination condition 

maximum number of generations is 

during the genetic search process, then all the 

steps are terminated; otherwise, go to Step 3. 

Numerical Experiments 

problem scales are considered in 

problem type has various sizes 
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of collection centers, recovery centers, redistribution centers 

and secondary markets. Table 1 summarizes t

types. For each type, the fixed costs, unit handling costs and 

the site coordinate information at customers, collection 

Type No. of Customer No. of collection center

1 30 5 

2 30 10 

3 30 15 

 

Figure 11. Graphical representation using site coordinate 

Type 1 

For various comparisons, two conventional approaches are 

used here and their performances are compared with the 

FLC-aGA approach. They are summarized in Table 2. The 

aGA approach shown in Table 2 has a heuristic for adaptive 

scheme (Mak et al. 2000). 

Table 2. Approaches for comparison

Approach Description 

GA 

aGA 

Conventional GA without any adaptive scheme

aGA with the adaptive scheme used in 

All the approaches shown in Table 2 were

Visual Basic version 6.0 and ran on the environment of 

compatible PC Pentium 4 processor, CPU 3

and Window-XP. The parameter settings for the two 

conventional approaches (GA and aGA) and the FLC

approach are as follows: total generation number is

population size is 20, crossover rate is 0.5, and mutation rate is 

0.05. The crossover and mutation rates in the GA approach are 

fixed, but the rates in the aGA and the FLC

are automatically regulated, during genetic search process.

Altogether 20 independent runs are made to eliminate the 

randomness of each approach. All the approaches are 

compared with each other using some measures of 

performance shown in Table 3. 

In Table 3, the CPU time is averaged over 20 

runs. The optimal solution and the optimal setting mean the 

best result when each approach reaches to a

maximum number of generations. 

 

Reverse Logistics Networks with Centralized Centers: An Adaptive Genetic 

Algorithm Approach Based on Fuzzy Logic Controller 

centers, redistribution centers 

Table 1 summarizes the sizes of these 

unit handling costs and 

the site coordinate information at customers, collection 

centers, recovery centers, redistribution centers and secondary 

markets are listed in Appendixes 1 

representation using site coordinate information for Type 1 is 

displayed Figure 11. 

Table 1. Three types of the RLCC 

No. of collection center No. of recovery center No. of redistribution center

2 3 

4 7 

6 9 

 
Graphical representation using site coordinate information for 

For various comparisons, two conventional approaches are 

used here and their performances are compared with the 

aGA approach. They are summarized in Table 2. The 

aGA approach shown in Table 2 has a heuristic for adaptive 

Approaches for comparison 

Conventional GA without any adaptive scheme 

aGA with the adaptive scheme used in Mak et al. [19] 

ere programmed in 

the environment of IBM 

.2GHz, 2GB RAM 

settings for the two 

conventional approaches (GA and aGA) and the FLC-aGA 

as follows: total generation number is 10,000, 

population size is 20, crossover rate is 0.5, and mutation rate is 

The crossover and mutation rates in the GA approach are 

fixed, but the rates in the aGA and the FLC-aGA approaches 

are automatically regulated, during genetic search process. 

are made to eliminate the 

. All the approaches are 

compared with each other using some measures of 

, the CPU time is averaged over 20 independent 

ptimal solution and the optimal setting mean the 

best result when each approach reaches to a pre-defined 

Table 3. Measures

Measure Description 

CPU time Average CPU time (in Sec.)

Optimal Solution 

The value of minimizing the sum of fixed cost, 

variable cost, and transportation cost resulting from 

each stage. 

Optimal setting 

Fixed cost, variable cost, transportation cost, 

opening/closing decision at collection centers, 

recovery centers, redistribution centers, secondary 

markets in the optimal solution

Table 4. Performance results 

   

CPU Time  

Optimal solution  

Optimal Col. Center Fixed Cost 

Setting  Var. Cost 

  Transp. Cost 

 Rec. Center Fixed Cost 

  Var. Cost 

  Transp. Cost 

 Red. Center Fixed Cost 

  Var. Cost 

  Transp. Cost 

 Sec. Market Fixed Cost 

  Var. Cost 

  Transp. Cost 

 Col. Center 1 
Opening/Closi

ng 

 Col. Center 2 ” 

 Col. Center 3 ” 

 Col. Center 4 ” 

 Col. Center 5 ” 

 Rec. Center 1 ” 

 Rec. Center 2 ” 

 Red. Center 1 ” 

 Red. Center 2 ” 

 Red. Center 3 ” 

 Sec. Market 1 ” 

 Sec. Market 2 ” 

 Sec. Market 3 ” 

Table 4 shows various performance results of each 

approach for Type 1. Especially, for more detailed comparison, 

various costs and opening/closing decisions at each collection 

center, recovery center, redistribution center, and secondary 

market are shown in terms of the optimal setting.

In terms of the CPU time of Table 4, the GA approach is the 

slowest, but the aGA and the FLC

almost the same result and the quickest, which means that the 

aGA and the FLC-aGA approaches appropriately con

search processes rather than the GA approach since the 

Adaptive Genetic  

istribution centers and secondary 

markets are listed in Appendixes 1 through 6. The graphical 

representation using site coordinate information for Type 1 is 

No. of redistribution center No. of secondary market 

3 

5 

7 

easures of performance 

Average CPU time (in Sec.) 

of minimizing the sum of fixed cost, 

variable cost, and transportation cost resulting from 

Fixed cost, variable cost, transportation cost, 

pening/closing decision at collection centers, 

centers, redistribution centers, secondary 

markets in the optimal solution 

erformance results for Type 1 

GA aGA FLC-aGA 

0.47 0.38 0.39 

3272.5 3020.4 3020.4 

25.5 25.5 25.5 

75.0 75.0 75.0 

 1227.8 1227.8 1227.8 

32.5 32.5 32.5 

135.0 135.0 135.0 

 210.0 210.0 210.0 

23.2 20.1 20.1 

96.0 96.0 96.0 

 1080.0 834.0 834.0 

25.5 25.5 25.5 

48.0 48.0 48.0 

 294.0 291.0 291.0 

Opening/Closi
Closing Closing Closing 

Closing Closing Closing 

Opening Opening Opening 

Closing Closing Closing 

Closing Closing Closing 

Closing Closing Closing 

Opening Opening Opening 

Closing Closing Closing 

Opening Closing Closing 

Closing Opening Opening 

Closing  Closing Closing 

Closing Closing Closing 

Opening Opening Opening 

Table 4 shows various performance results of each 

approach for Type 1. Especially, for more detailed comparison, 

various costs and opening/closing decisions at each collection 

center, redistribution center, and secondary 

n terms of the optimal setting.  

In terms of the CPU time of Table 4, the GA approach is the 

slowest, but the aGA and the FLC-aGA approaches have 

almost the same result and the quickest, which means that the 

aGA approaches appropriately control their 

search processes rather than the GA approach since the 
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formers have adaptive schemes to automatically regulate a 

balance between exploitation and exploration during genetic 

search process. The appropriate control of the search process 

in the aGA and the FLC-aGA approaches has influence on 

their performances, that is, the performances of the aGA and 

the FLC-aGA approaches are more efficient in terms of the 

optimal solution than that of the GA approach. In terms of the 

optimal setting, except for the fixed cost and the transportation 

cost at the redistribution center and the transportation cost at 

the secondary market, all of the costs in the GA, the aGA and 

the FLC-aGA approaches have the same values, since the 

redistribution center 2 in the GA approach is opened, whereas, 

the redistribution center 3 in the aGA and the FLC

approaches are opened. 

Figure 12. Graphical representation according to opening/closing decision

of the GA approach for Type 1 

Figure 13. Graphical representation according to opening/closing decision

of the aGA and the FLC-aGA approaches for Type 1 

Figures 12 and 13 show the graphical representation 

according to the opening and closing decisions 

collection center, recovery center, redistribution center, and 

secondary market, when each approach reach to the optimal 

solution. 

In Figures 12 and 13, the opening decisions of collection 

centers, recovery centers, redistribution centers and secondary 

markets are represented as a link among them. 

In Figs 12 and 13, the used products collected from all the 

customers are sent to the collection center 3, the recovery 
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formers have adaptive schemes to automatically regulate a 

balance between exploitation and exploration during genetic 

search process. The appropriate control of the search process 

aGA approaches has influence on 

their performances, that is, the performances of the aGA and 

aGA approaches are more efficient in terms of the 

optimal solution than that of the GA approach. In terms of the 

he fixed cost and the transportation 

cost at the redistribution center and the transportation cost at 

the secondary market, all of the costs in the GA, the aGA and 

aGA approaches have the same values, since the 

roach is opened, whereas, 

the redistribution center 3 in the aGA and the FLC-aGA 

 
opening/closing decisions 

 
opening/closing decisions 

 

13 show the graphical representation 

opening and closing decisions of each 

center, redistribution center, and 

reach to the optimal 

opening decisions of collection 

nters, redistribution centers and secondary 

ink among them.  

In Figs 12 and 13, the used products collected from all the 

customers are sent to the collection center 3, the recovery 

center 2 and the secondary market 3 for classifying, repairing 

and selling them, respectively, which process is happene

under the same situation regardless of the GA, the aGA and 

the FLC-aGA approaches. However, in the opening and 

closing decision of redistribution centers, the GA approach 

opens the redistribution center 2, while, the aGA and the 

FLC-aGA approaches open the redistribution center 3, thus, 

the former and the latter show different graphical 

representation. These different site coordinates highly affect 

the fixed cost and transportation cost. Finally, the optimal 

solutions of the GA and the two adaptive GAs (a

FLC-aGA) approaches have different results.

Table 5. Performance results 

   

CPU Time  

Optimal solution  

Optimal Col. Center Fixed Cost 

Setting  Var. Cost 

  Transp. Cost 

 Rec. Center Fixed Cost 

  Var. Cost 

  Transp. Cost 

 Red. Center Fixed Cost 

  Var. Cost 

  Transp. Cost 

 Sec. Market Fixed Cost 

  Var. Cost 

  Transp. Cost 

 Col. Center 1 
Opening/Closin

g 

 Col. Center 2 ” 

 Col. Center 3 ” 

 Col. Center 4 ” 

 

Col. Center 5 

Col. Center 6 

Col. Center 7 

Col. Center 8 

Col. Center 9 

Col. Center 10 

” 

” 

” 

” 

” 

” 

 Rec. Center 1 ” 

 

Rec. Center 2 

Rec. Center 3 

Rec. Center 4 

” 

” 

” 

 Red. Center 1 ” 

 Red. Center 2 ” 

 

Red. Center 3 

Red. Center 4 

Red. Center 5 

Red. Center 6 

Red. Center 7 

” 

” 

” 

” 

” 

 Sec. Market 1 ” 

 Sec. Market 2 ” 

 

Sec. Market 3 

Sec. Market 4 

Sec. Market 5 

” 

” 

” 

Table 5 shows the performance results for Type 2. In terms 

of the CPU time, the aGA and the FLC

slightly quicker than the GA approach. In terms of the optimal 

setting, the GA and the aGA approaches open the collection 
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center 2 and the secondary market 3 for classifying, repairing 

and selling them, respectively, which process is happened 

under the same situation regardless of the GA, the aGA and 

aGA approaches. However, in the opening and 

closing decision of redistribution centers, the GA approach 

opens the redistribution center 2, while, the aGA and the 

he redistribution center 3, thus, 

the former and the latter show different graphical 

representation. These different site coordinates highly affect 

the fixed cost and transportation cost. Finally, the optimal 

solutions of the GA and the two adaptive GAs (aGA and 

aGA) approaches have different results. 

erformance results for Type 2 

GA aGA FLC-aGA 

0.98 0.70 0.72 

5614.3 5498.4 4927.2 

 12.8 12.5 10.2 

105.0 105.0 105.0 

 1482.0 913.4 974.5 

 36.5 36.5 36.5 

324.0 324.0 324.0 

 825.0 1278.0 648.0 

 10.5 10.5 10.5 

192.0 192.0 192.0 

 795.0 795.0 795.0 

 10.5 10.5 10.5 

75.0 75.0 75.0 

 1746.0 1746.0 1746.0 

Opening/Closin
Closing Closing Opening 

Closing Opening Closing 

Closing Closing Closing 

Closing Closing Closing 

Closing 

Closing 

Opening 

Closing 

Closing 

Closing 

Closing 

Closing 

Closing 

Closing 

Closing 

Closing 

Closing 

Closing 

Closing 

Closing 

Closing 

Closing 

Closing Closing Closing 

Closing 

Opening 

Closing 

Closing 

Opening 

Closing 

Closing 

Opening 

Closing 

Closing Closing Closing 

Closing Closing Closing 

Closing 

Closing 

Closing 

Opening 

Closing 

Closing 

Closing 

Closing 

Opening 

Closing 

Closing 

Closing 

Closing 

Opening 

Closing 

Closing Closing Closing 

Closing Closing Closing 

Closing 

Opening 

Closing 

Closing 

Opening 

Closing 

Closing 

Opening 

Closing 

Table 5 shows the performance results for Type 2. In terms 

of the CPU time, the aGA and the FLC-aGA approaches are 

slightly quicker than the GA approach. In terms of the optimal 

setting, the GA and the aGA approaches open the collection 
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centers 7 and 2, respectively, whereas, the FLC-aGA approach 

opens the collection center 1. Each collection center opened 

has different fixed costs and different site coordinates. 

Therefore, the fixed costs at each approach are different each 

other, and the transportation costs between all the customers 

and each collection center opened are also different. The 

difference of the transportation costs between each collection 

center opened and each recovery center opened is interpreted 

by the difference among the site coordinates at each collection 

center opened. These differences on the fixed cost, 

transportation cost, and site coordinates at each approach have 

greatly influence on the optimal solution, that is, the 

performance of the FLC-aGA approach is superior to those of 

the GA and the aGA approaches. 

For Type 3, the performance results of each approach are 

shown in Table 6. Similar to the result analysis of Table 5, the 

aGA and the FLC-aGA approaches are slightly quicker than 

the GA approach in terms of the CPU time. The optimal 

solutions of each approach are greatly influenced by the fixed 

costs, variable costs, and transportation costs resulting from 

the collection centers, recovery centers, redistribution centers 

and secondary markets opened. By the influence, the 

performance of the FLC-aGA approach has the best result in 

terms of the optimal solution.  

 
Figure 14. Graphical representation according to opening/closing decisions 

of the GA approach for Type 3 

 
Figure 15. Graphical representation according to opening/closing decisions 

of the aGA approaches for Type 3 

 
Figure 16. Graphical representation according to opening/closing decisions 

of the FLC-aGA approaches for Type 3 

Figures 14, 15 and 16 show the graphical representation 

according to opening and closing decisions of each collection 

center, recovery center, redistribution center, and secondary 

market, when each approach reach to the optimal solution. In 

the Figures, the GA, the aGA and the FLC-aGA approaches 

open the collection centers 10, 1 and 12, respectively. 

Therefore, the former and the latter have different site 

coordinates and show different graphical representation in 

Figures 14, 15 and 16, which has greatly influence on the fixed 

cost and transportation cost at the collection centers and 

recovery centers opened. By the influence, the optimal 

solutions of each approach have different results as shown in 

Table 6. 

Figure 17 shows the convergence process of each approach 

for Type 3, until each approach reaches a pre-defined 

maximum number of generations (in our case, 10,000). Each 

approach show fast convergence processes during the initial 

generations. However, after these generations, the GA and the 

aGA approaches does not show any convergence behaviors, 

whereas, the FLC-aGA approach shows a convergence 

behavior after about the generations of 2,200. By the 

difference of these convergence behaviors, we can confirm 

that the performance of the FLC-aGA approach is 

significantly superior to those of the GA and the aGA 

approaches as shown in Table 6. 

 
Figure 17. Convergence processes of each approach for Type 3  
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Table 6. Performance results for Type 3 

   GA aGA FLC-aGA 

CPU Time  1.20 0.91 0.92 

Optimal Solution  3039.5 2941.0 2787.1 

Optimal Col. Center Fixed Cost 19.3 20.5 25.2 

Setting  Var. Cost 75.0 75.0 75.0 

  Transp. Cost 1147.1 832.4 1246.8 

 Rec. Center Fixed Cost 22.2 36.2 36.2 

  Var. Cost 156.0 156.0 156.0 

  Transp. Cost 432.0 711.0 138.0 

 Red. Center Fixed Cost 23.6 23.6 23.6 

  Var. Cost 144.0 144.0 144.0 

  Transp. Cost 324.0 246.0 246.0 

 Sec. Market Fixed Cost 24.3 24.3 24.3 

  Var. Cost 114.0 114.0 114.0 

  Transp. Cost 558.0 558.0 558.0 

 Col. Center 1 
Opening/Cl

osing 
Closing Opening Closing 

 Col. Center 2 ” Closing Closing Closing 

 Col. Center 3 ” Closing Closing Closing 

 Col. Center 4 ” Closing Closing Closing 

 Col. Center 5 ” Closing Closing Closing 

 Col. Center 6 ” Closing Closing Closing 

 Col. Center 7 ” Closing Closing Closing 

 Col. Center 8 ” Closing Closing Closing 

 Col. Center 9 ” Closing Closing Closing 

 Col. Center 10 ” Opening Closing Closing 

 Col. Center 11 ” Closing Closing Closing 

 Col. Center 12 ” Closing Closing Opening 

 Col. Center 13 ” Closing Closing Closing 

 Col. Center 14 ” Closing Closing Closing 

 Col. Center 15 ” Closing Closing Closing 

 Rec. Center 1 ” Closing Closing Closing 

 Rec. Center 2 ” Closing Closing Closing 

 Rec. Center 3 ” Closing Closing Closing 

 Rec. Center 4 ” Opening Closing Closing 

 Rec. Center 5 ” Closing Closing Closing 

 Rec. Center 6 ” Closing Opening Opening 

 Red. Center 1 ” Closing Closing Closing 

 Red. Center 2 ” Closing Closing Closing 

 Red. Center 3 ” Closing Closing Closing 

 Red. Center 4 ” Closing Closing Closing 

 Red. Center 5 ” Closing Closing Closing 

 Red. Center 6 ” Closing Closing Closing 

 Red. Center 7 ” Closing Closing Closing 

 Red. Center 8 ” Opening Opening Opening 

 Red. Center 9 ” Closing Closing Closing 

 Sec. Market 1 ” Closing Closing Closing 

   GA aGA FLC-aGA 

 Sec. Market 2 ” Closing Closing Closing 

 Sec. Market 3 ” Closing Closing Closing 

 Sec. Market 4 ” Closing Closing Closing 

 Sec. Market 5 ” Closing Closing Closing 

 Sec. Market 6 ” Opening Opening Opening 

 Sec. Market 7 ” Closing Closing Closing 

According to the above mentioned various analysis results 

using Types 1, 2 and 3, we can conclude the following:  

� The aGA and the FLC-aGA approaches with adaptive 

schemes are more efficient in terms of the CPU times and 

the optimal solutions than the GA approach without any 

adaptive scheme, since the formers are well regulate the 

genetic search process to reach their optimal solutions 

rather than the latter does. 

� Of the aGA and the FLC-aGA, the adaptive scheme using 

the FLC in the FLC-aGA approach outperforms that 

using the heuristic in the aGA approach. 

� The FLC-aGA approach more effectively represents 

various types of the RLCC than the GA and the aGA 

approaches. 

6. Conclusion 

This paper has proposed a FLC-aGA approach to 

effectively solve various types of the RLCC problems. For the 

FLC-aGA approach, a new representation, crossover operator, 

mutation operator and repair strategy have been employed, 

and a FLC has been used for an adaptive scheme. The used 

FLC can automatically regulate the rates of crossover and 

mutation operators during genetic search process. 

For designing the RLCC network model, four stage 

networks have been considered and they are composed of 

customers, collection centers, recovery centers, redistribution 

centers, and secondary markets. Various constraints including 

unit transportation costs, fixed costs, and variable costs have 

been considered at each stage. Since the objective of designing 

the RLCC network model is to minimize the total cost 

resulting from each stage, we have suggested a mathematical 

model using mixed integer programming.   

In numerical experiment, three types of the RLCC problem 

with various sizes of collection centers, recovery centers, 

redistribution centers, and secondary markets have been 

suggested and they have been solved using the GA approach 

without any adaptive scheme, the aGA with an adaptive 

scheme using the conventional heuristic, and the proposed 

FLC-aGA approach with an adaptive scheme using the FLC. 

Some measures of performance have been used for comparing 

the efficiency among each approach. Finally, the FLC-aGA 

approach has been proved to be more efficient than other 

competing approaches (GA and aGA). 

For our future study, much larger sized problems of the 

RLCC network model will be considered to compare the 

performance the FLC-aGA with other competing approaches. 
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Appendix 

Appendix 1. Fixed cost and unit handling cost for Type 1 

 
Fixed cost Unit handling cost 

Col. Center 1 32.0 2.5 

Col. Center 2 28.1 ” 

Col. Center 3 25.5 ” 

Col. Center 4 29.2 ” 

Col. Center 5 20.0 ” 

Rec. Center 1 35.3 4.5 

Rec. Center 2 32.5 ” 

Red. Center 1 28.4 3.2 

Red. Center 2 23.2 ” 

Red. Center 3 20.1 ” 

Sec. Market 1 20.8 1.6 

Sec. Market 2 28.2 ” 

Sec. Market 3 25.5 ” 

Appendix 2. Site coordinates information for Type 1 

No. Customer Col. Center Rec.Center 
Red. 

Center 

Sec. 

Market 

 
x y x Y x y x y x y 

1 31.9 64.4 56.6 30.7 59.7 10.2 13.4 32.0 24.7 52.6 

2 12.6 57.1 44.6 17.2 18.7 38.6 22.1 2.7 64.4 76.6 

3 39.7 22.9 12.2 36.0   7.1 13.3 16.5 10.8 

4 75.9 54.5 47.1 46.7       

5 1.3 57.3 33.4 23.7       

6 32.9 8.9         

7 67.4 36.7         

8 38.6 18.6         

9 24.0 11.9         

10 41.0 61.3         

11 38.6 70.1         

12 66.2 10.7         

13 40.7 51.2         

14 73.1 58.2         

15 41.4 54.4         

16 56.0 54.6         

17 55.4 16.2         

18 70.3 39.9         

19 17.2 6.0         

20 67.5 45.0         

21 26.4 24.4         

22 7.4 68.2         

23 20.1 54.3         

24 74.5 12.1         

25 30.7 66.5         

26 76.6 23.4         

27 5.8 49.0         

28 68.1 65.3         

29 20.2 30.1         

30 59.9 24.4         

Appendix 3. Fixed cost and unit handling cost for Type 2 

 
Fixed cost Unit handling cost 

Col. Center 1 10.2 3.5 

Col. Center 2 12.5 “ 

Col. Center 3 13.6 “ 

Col. Center 4 11.8 
“ 

“ 

Col. Center 5 

Col. Center 6 

Col. Center 7 

Col. Center 8 

Col. Center 9 

Col. Center 10 

12.1 

11.5 

12.8 

11.4 

12.0 

11.1 

“ 

“ 

“ 

“ 

“ 

“ 

Rec. Center 2 

Rec. Center 2 

Rec. Center 3 

Rec. Center 4 

35.2 

36.5 

36.5 

35.1 

10.8 

“ 

“ 

“ 

Red. Center 1 10.5 6.4 

Red. Center 2 11.6 “ 

Red. Center 3 

Red. Center 4 

Red. Center 5 

Red. Center 6 

Red. Center 7 

10.4 

11.1 

11.8 

10.5 

10.5 

“ 

“ 

“ 

“ 

“ 

Sec. Market 1 10.5 2.5 

Sec. Market 2 10.2 “ 

Sec. Market 3 

Sec. Market 4 

Sec. Market 5 

10.8 

10.5 

10.5 

“ 

“ 

“ 

Appendix 4. Site coordinates information for Type 2 

No. Customer Col. Center Rec.Center 
Red. 

Center 

Sec. 

Market 

 
x y X y x y x y x y 

1 50.4 19.1 24.5 27.2 59.9 57.5 19.5 36.2 7.5 28.4 

2 14.2 18.1 50.5 33.5 76.0 39.3 74.9 37.9 28.4 40.9 

3 53.3 35.0 71.3 52.4 8.7 41.9 50.3 12.7 23.6 0.8 

4 2.4 72.8 1.0 41.7 56.4 47.6 58.6 44.2 28.4 72.6 

5 45.1 5.5 60.0 72.2   45.0 31.8 52.4 1.9 

6 13.9 10.7 30.3 30.6   14.7 16.1   

7 65.6 26.1 13.4 69.0   75.3 5.6   

8 34.7 38.2 71.0 18.3       

9 78.9 16.7 36.0 26.3       

10 51.8 36.4 64.4 14.3       

11 7.4 25.8         

12 47.6 20.3         

13 45.3 76.3         

14 78.3 34.9         

15 74.4 52.7         

16 6.4 7.0         

17 54.2 78.2         

18 57.8 12.7         

19 37.3 55.1         

20 57.9 42.8         

21 8.5 71.0         

22 14.0 11.2         

23 8.2 71.8         

24 70.8 54.2         

25 29.7 5.7         

26 25.3 41.2         

27 59.3 35.8         

28 34.7 32.8         

29 9.4 28.3         

30 25.7 24.6         
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Appendix 5. Fixed cost and unit handling cost for Type 3 

 
Fixed cost Unit handling cost 

Col. Center 1 20.5 2.5 

Col. Center 2 25.5 “ 

Col. Center 3 18.9 “ 

Col. Center 4 15.8 “ 

Col. Center 5 

Col. Center 6 

Col. Center 7 

Col. Center 8 

Col. Center 9 

Col. Center 10 

Col. Center 11 

Col. Center 12 

Col. Center 13 

Col. Center 14 

Col. Center 15 

12.4 

14.5 

20.6 

22.7 

21.8 

19.3 

22.4 

25.2 

24.1 

22.4 

24.1 

“ 

“ 

“ 

“ 

“ 

“ 

“ 

“ 

“ 

“ 

“ 

Rec. Center 2 

Rec. Center 2 

Rec. Center 3 

Rec. Center 4 

Rec. Center 5 

Rec. Center 6 

33.9 

34.7 

35.5 

22.2 

35.1 

36.2 

5.2 

“ 

“ 

“ 

“ 

“ 

Red. Center 1 22.5 4.8 

Red. Center 2 25.4 “ 

Red. Center 3 

Red. Center 4 

Red. Center 5 

Red. Center 6 

Red. Center 7 

Red. Center 8 

Red. Center 9 

26.3 

22.1 

25.2 

26.4 

18.5 

23.6 

22.7 

“ 

“ 

“ 

“ 

“ 

“ 

“ 

Sec. Market 1 22.4 3.8 

Sec. Market 2 24.6 “ 

Sec. Market 3 

Sec. Market 4 

Sec. Market 5 

Sec. Market 6 

Sec. Market 7 

25.7 

27.8 

23.3 

24.3 

21.1 

“ 

“ 

“ 

“ 

“ 

Appendix 6. Site coordinates information for Type 3 

No. Customer Col. Center Rec.Center 
Red. 

Center 

Sec. 

Market 

 
x y X y x y x y X y 

1 30.1 45.6 30.5 45.5 20.5 67.5 70.5 70.5 45.0 50.6 

2 34.5 18.5 50.4 40.6 40.5 20.5 40.5 70.2 22.0 50.2 

3 45.4 35.0 52.2 18.5 50.6 34.2 48.3 17.2 18.0 18.9 

4 58.7 39.2 13.3 39.9 22.7 61.8 55.2 14.6 6.4 63.0 

5 9.9 75.4 45.8 1.3 68.8 12.5 45.5 12.9 61.5 63.0 

6 30.3 54.5 76.2 8.3 9.9 57.2 64.3 19.9 11.1 46.4 

7 31.8 12.0 64.8 58.6   75.4 16.2 41.6 73.6 

8 60.2 15.3 35.6 16.4   12.4 65.0   

9 61.5 31.0 18.7 21.5   58.0 33.0   

10 71.2 78.4 14.9 49.6       

11 26.5 18.5 16.0 14.4       

12 36.9 55.4 14.1 59.3       

13 67.6 61.2 76.0 78.5       

14 76.1 41.3 76.8 20.2       

15 50.4 59.8 53.8 48.2       

16 37.9 13.2         

17 71.1 61.2         

18 62.2 51.1         

19 6.4 50.9         

No. Customer Col. Center Rec.Center 
Red. 

Center 

Sec. 

Market 

20 50.9 43.2         

21 41.3 50.4         

22 73.3 9.5         

23 36.3 47.9         

24 30.8 58.9         

25 25.3 59.8         

26 60.5 24.3         

27 48.9 31.3         

28 48.5 44.1         

29 59.5 30.5         

30 25.5 15.5         
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