

International Journal of Intelligent Information Systems
2015; 4(2-1): 13-17

Published online January 28, 2015 (http://www.sciencepublishinggroup.com/j/ijiis)

doi: 10.11648/j.ijiis.s.2015040201.13

ISSN: 2328-7675 (Print); ISSN: 2328-7683 (Online)

On-line scheduling algorithm for real-time multiprocessor
systems with ACO

Cheng Zhao, Myungryun Yoo, Takanori Yokoyama

Department of Computer Science, Tokyo City University, Tokyo, Japan

Email address:
zcs88122@gmail.com (Cheng Zhao), yoo@cs.tcu.ac.jp (Myungryun Yoo), yokoyama@cs.tcu.ac.jp (Takanori Yokoyama)

To cite this article:
Cheng Zhao, Myungryun Yoo, Takanori Yokoyama. On-Line Scheduling Algorithm for Real-Time Multiprocessor Systems with ACO.

International Journal of Intelligent Information Systems. Special Issue: Logistics Optimization Using Evolutionary Computation Techniques.

Vol. 4, No. 2-1, 2015, pp. 13-17. doi: 10.11648/j.ijiis.s.2015040201.13

Abstract: The Ant Colony Optimization algorithms (ACO) are computational models inspired by the collective foraging

behavior of ants. By looking at the strengths of ACO, they are the most appropriate for scheduling of tasks in soft real-time

systems. In this paper, ACO based scheduling algorithm for real-time operating systems (RTOS) has been proposed. During

simulation, results are obtained with periodic tasks, measured in terms of Success Ratio & Effective CPU Utilization and

compared with Kotecha’s algorithm in the same environment. It has been observed that the proposed algorithm is equally optimal

during underloaded conditions and it performs better during overloaded conditions.

Keywords: Real-Time Systems, Scheduling, ACO, EDF

1. Introduction

In recent year, applications of real-time systems are

spreading. For example, the automotive, mobile phone, plant

monitoring systems and air traffic control systems.

There are two types of real-time systems: Hard real-time

systems and Soft real-time systems. Hard real-time systems

are defined as those systems in which the correctness of the

system depends not only on the logical result of computation,

but also on the time at which the results are produced[1]. Soft

real-time systems are missing an occasional deadline is

undesirable, but nevertheless tolerable. Our interest in this

question stems from the increasing prevalence of applications

such as networking, multimedia, and immersive graphics

systems that have only Soft real-time systems.

The objective of real-time task scheduler is to reduce the

deadline of tasks in the system as much as possible when we

consider soft real time system. To achieve this goal, vast

researches on real-time task scheduling have been conducted.

Mostly all the real time systems in existence use preemption

and multitasking. Real time scheduling techniques can be

broadly divided into two categories: Off-line and On-line.

Off-line algorithms assign all priorities at design time, and

it remains constant for the lifetime of a task. On-line

algorithms assign priority at runtime, based on execution

parameters of tasks. On-line scheduling can be either with

static priority or dynamic priority. RM (Rate Monotonic) and

DM (Deadline Monotonic) are examples of On-line

scheduling with static priority [2]. EDF (Earliest Deadline

First) and LST (Least Slack Time First) are examples of

On-line scheduling with dynamic priority. EDF and LST

algorithms are optimal under the condition that the jobs are

preemptable, there is only one processor and the processor is

not overloaded [3][4]. But the limitation of these algorithms is,

their performance decreases exponentially if system becomes

slightly overloaded [5].

Several characteristics make ACO a unique approach: it is

constructive, population-based meta-heuristic which exploits

an indirect form of memory of previous performance. [6][7].

Therefore in this paper, the same approach has been applied

for real-time operating systems.

The rest of this paper is organized as follows. In Sec. 2, our

system model is presented. In Sec. 3, our proposed algorithm

is described and discussed. In Sec. 4, a simulation-based

evaluation of proposed algorithm and kotecha’s algorithm[8] .

Sec. 5 is conclusions.

2. System Model

The system knows about the deadline and required

computation time of the task when the task is released. The

task set is assumed to be preemptive. We have assumed that

14 Cheng Zhao et al.: On-Line Scheduling Algorithm for Real

the system is not having resource contention problem.

Moreover, preemption and the scheduling algorithm incur no

overhead.

In soft real-time systems, each task has a positive value. The

goal of the system is to obtain as much value as possible. If a

task succeeds, then the system acquires its value. If a task fails,

then the system gains less value from the task [8

case of soft real-time systems, called a firm real

there is no value for a task that has missed its deadline, but

there is no catastrophe either [9]. Here, we propose an

algorithm that applies to firm real-time system. The value of

the task has been taken same as its computation time required

[10].

3. Related Work

3.1. Ant Colony Optimization

Social insects that live in colonies, such as ants, termites,

wasps, and bees, develop specific tasks according to

in the colony. One of the main tasks is the search for food.

Real ants, when searching for food, can find such resources

without visual feedback, and they can adapt to changes in the

environment, optimizing the path between the nest and the

food source. This fact is the result involves positive feedback,

given by the continuous deposit of a chemical substance,

known as pheromone.

Figure 1. Ant colony optimization

A classic example of the construction of a pheromone trail

in the search for a shorter path is shown in Fig. 1

presented by Colorni[11]. In Fig. 1A there is a path between

food and nest established by the ants. In Fig.

inserted in the path. Soon, ants spread to both sides of the

obstacle, since there is no clear trail to follow (Fig.

ants go around the obstacle and find the previous pheromone

trail again, a new pheromone trail will be formed around the

obstacle. This trail will be stronger in the shortest path than in

the longest path, as shown in Fig. 1D.

3.2. Kotecha’s Algorithm

The scheduling algorithm is required to execute when a new

task arrives or presently running task completes. The main

steps of the proposed algorithm are given as following and the

flowchart of the algorithm has been shown in Fig.2

� Construct tour of different ants and prod

Line Scheduling Algorithm for Real-Time Multiprocessor Systems with ACO

the system is not having resource contention problem.

uling algorithm incur no

time systems, each task has a positive value. The

goal of the system is to obtain as much value as possible. If a

task succeeds, then the system acquires its value. If a task fails,

s value from the task [8]. In a special

called a firm real-time system,

there is no value for a task that has missed its deadline, but

]. Here, we propose an

time system. The value of

the task has been taken same as its computation time required

Social insects that live in colonies, such as ants, termites,

wasps, and bees, develop specific tasks according to their role

in the colony. One of the main tasks is the search for food.

Real ants, when searching for food, can find such resources

, and they can adapt to changes in the

environment, optimizing the path between the nest and the

involves positive feedback,

given by the continuous deposit of a chemical substance,

Ant colony optimization.

A classic example of the construction of a pheromone trail

horter path is shown in Fig. 1 and was first

A there is a path between

tablished by the ants. In Fig. 1B an obstacle is

inserted in the path. Soon, ants spread to both sides of the

low (Fig. 1C). As the

ants go around the obstacle and find the previous pheromone

trail again, a new pheromone trail will be formed around the

obstacle. This trail will be stronger in the shortest path than in

scheduling algorithm is required to execute when a new

task arrives or presently running task completes. The main

steps of the proposed algorithm are given as following and the

een shown in Fig.2:

Construct tour of different ants and produce the task

execution sequence

� Analyze the task execution sequences generated for

available number of processor

� Update the value of pheromone

� Decide probability of each task an

execution

The detailed description of four main steps

Figure 2. Flowchart of algorithm

3.2.1. Tour Construction

First, find probability of each node using (

schedulable task is considered as a node and probability of

each node to be selected for execution is decided using

pheromone τ and heuristic value η.

����� �
� �	 �

∑ � ��∈
�

where,

pi(t) is the probability of ith node at time t; i

set of schedulable tasks at time t.

τi(t) is pheromone on ith node at time t.

ηi is heuristic value of i
th

node at t, which can bedetermined

by (2)

η� �

Here, t is current time ,K is constant and Di is absolute

deadline of ith node.

α and β are constants which decide importance of τ and η.

Ants construct their tour based on the value of p of each

Time Multiprocessor Systems with ACO

Analyze the task execution sequences generated for

available number of processor

Update the value of pheromone

Decide probability of each task and select the task for

etailed description of four main steps is as follows:

Flowchart of algorithm

lity of each node using (1). Each

schedulable task is considered as a node and probability of

to be selected for execution is decided using

pheromone τ and heuristic value η.

����α∗��	����β

�	 ����α∗��	����β
 (1)

pi(t) is the probability of ith node at time t; i∈ �� and N1 is

tasks at time t.

τi(t) is pheromone on ith node at time t.

node at t, which can bedetermined

�

����
 (2)

Here, t is current time ,K is constant and Di is absolute

constants which decide importance of τ and η.

Ants construct their tour based on the value of p of each

 International Journal of Intelligent Information Systems 2015; 4(2-1): 13-17 15

node as per following:

Ant 1. Highest p > second highest p > third highest p >….

Ant 2. Second highest p > highest p > third highest p >….

Ant 3. Third highest p > second highest p > highest p >….

…

Suppose at time t, there are 4 schedulable tasks. As shown

in Figure 1, each task will be considered as a node and from

each node; one ant will start its journey. If we consider the

priorities of all the nodes are in decreasing order of A, B, C, D;

ants will traverse different nodes as per following:

Ant 1. A > B > C > D

Ant 2. B > A > C > D

Ant 3. C > A > B > D

Ant 4. D > A > B > C

3.2.2. Analyze the Journey

After all ants have completed their tour, evaluate the

performance of different ants’s travel. We have analyzed this

based on ratio of number of success tasks and number of

missed tasks. Find out maximum two best journeys of ants and

update the value of pheromone accordingly.

3.2.3. Pheromone Update

Pheromone updating on each node is done in two steps:

� Pheromone Evaporation :Pheromone evaporation is

required to forget bad travel of ants and to encourage new

paths. Value of τ is updated using(3)

τ��� + 1� � �1 − ��τ���� (3)

where,

� is a constant.

� ∈ !; ! is set of all tasks.

� Pheromone Laying: Pheromone will be laid only for two

best journeys of ants. Select the best journey and put

pheromone depending on their order of visited node.

Amount of pheromone (∆τ) laid will be different at each

node i.e. the nearest node will get highest amount of

pheromone and far most node will get least.

"�(� + 1) = "�(�) + Δ"� (4)

where, � ∈ �$; �$ is set of tasks executed by the ant.

Δ"＝ %&
' (5)

Here,

�ℎ =) ∗ *+,-./ 01 2+33.''.4 50-'
*+,-./ 01 6�''.4 50-'7� (6)

s is sequence number of node visited by the ant during the best

travel.

Value of C is constant (preferably 0.1)

3.2.4. Selection of Task for Execution

After updating pheromone, again find out probability of

each node using (1) and select the task for execution having

the highest probability value.

3.2.5. Important Points about the Algorithm

Each schedulable task is considered as a node, and it stores

the value of τ i.e. pheromone. Initial value of τ is taken as one

for all nodes.

Value of α and β decide importance of τ and η. During

simulation, both values are taken as one.

Number of ants which construct the tour, is important

design criteria. During simulation, number of ants taken is

same as number of executable tasks the system is having at

that time.

3.3. Proposed Algorithm

In Kotecha’s algorithm ,The part of Tour Construction, the

heuristic value ηi depend on absolute deadline that is most

similar to EDF algorithm. However, EDF’s performance

decreases exponentially if system becomes slightly

overloaded[12]. Since we consider the heuristic value should

be depend on a ratio of remain execute time and absolute

deadline at time t. This can make more helpful heuristic value

to increase the Success ratio of jobs .

And in the part of pheromone evaporation, executable tasks

and executed tasks without distinction when the stage of

updating pheromone. We consider the search history of a

previous time when scheduler startup is a reference value. The

tasks are periodic, they are released by each period, when they

exit run once , they should be released in the near future,

Therefore, selected tasks have high probability be selected

again. At the pheromone evaporation stage, we only chose the

schedulable tasks to evaporate. The selected tasks are still with

high pheromone until next period.

We proposed a new pheromone evaporation that don’t

make all tasks forget traveled nodes, only the task which

schedulable at time t. It as follows :

3.3.1. New Tour Construction

First, find probability of each node using (7). Each

schedulable task is considered as a node and probability of

each node to be selected for execution is decided using

pheromone τ and heuristic value η.

��(�) = (�	 (�))α∗(�	(�))β
∑ (�	 (�))α∗(�	(�))β�∈
�

 (7)

where,

pi(t) is the probability of ith node at time t; i∈ �� and N1 is

set of schedulable tasks at time t.

τi(t) is pheromone on ith node at time t.

ηi is heuristic value of ith node at t, which can be

determined by (8),

8� = 9 0, <�ℎ=>?�@=A∗B	
 C	(D) , �E B	

C	(D) ≤ 1G (8)

Here, t is current time, K is constant and Di is absolute

deadline of ith node, H�(�) is remain execute time of ith node.

α and β are constants which decide importance of τ and η.

16 Cheng Zhao et al.: On-Line Scheduling Algorithm for Real-Time Multiprocessor Systems with ACO

3.3.2. New Pheromone Evaporation

Pheromone evaporation is required to forget bad travel of

ants and to encourage new paths. Value of τ is updated using

(9).

τ�(� + 1) = (1 − �)τ�(�) (9)

where, � is a constant. � ∈ ��; �� is set of schedulable tasks at time t.

4. Simulation and Results

We have implemented our algorithm & Kotecha’s algorithm

and have run simulations to accumulate empirical data. We

have considered periodic tasks for taking the results. For

periodic tasks, load of the system can be defined as summation

of ratio of executable time and period of each task. For taking

result at each load value, we have generated 200 task sets each

one containing 3 to 9 tasks. The results for 5 different values

of load are taken (0.7 ≤ load ≤ 2.5) and tested on more than

35,000 tasks. Results are shown in Table 1 and Fig. 2.

The system is said to be overloaded when even a

clairvoyant scheduler cannot feasibly schedule the tasks

offered to the scheduler. A reasonable way to measure the

performance of a scheduling algorithm during an overload is

by the amount of work the scheduler can feasibly schedule

according to the algorithm. The larger this amount the better

the algorithm. Because of this, we have considered following

two as our main performance criteria:

1) In real-time systems, deadline meeting is most important

and we are interested in finding whether the task is

meeting the deadline. Therefore the most appropriate

performance metric is the Success Ratio and defined as

(10) [5],

I = *+,-./ 01 50-' 2+33.''.1+!!J '3&.4!.4
K0DL! M+,-./ 01 50-' L//�N.4 (10)

2) It is important that how efficiently the processors are

utilized by the scheduler especially during overloaded

conditions. Therefore, the other performance metric is

Effective CPU Utilization (ECU) and defined as (11):,

H)O = ∑ P	
K�∈Q (11)

Where,

V is value of task and

� value of a task = Computation time of a task, if the task

completes within its deadline.

� value of a task = 0, if the task miss the deadline.

R is set of tasks, which are completed within their deadline.

T is total time of scheduleing.

An on-line scheduler has a competitive factor Cf if and only

if the value of the schedule of any finite sequence of tasks

produced by the algorithm is at least Cf times the value of the

schedule of the tasks produced by an optimal clairvoyant

algorithm [7]. Since maximum value obtained by a

clairvoyant scheduling algorithm is a hard problem, we have

instead used a rather simplistic upper bound on this maximum

value, which is obtained by summing up the value of all tasks

[14]. Therefore, we have considered value of ECU for

clairvoyant scheduler is 100%.

Finally, the results are obtained, compared with Kotecha’s

algorithm in the same environment and shown in Fig.3 and

Fig.4.

Table 1. Results: Success Ratio of job

Load Kotecha’s Algo New Algo.

0.7 100% 100%

1.0 100% 100%

1.5 61.60% 66.70%

2.0 47.30% 54.70%

2.5 36.70% 48.80%

Fig.3 and Table1 shows the results achieved by the

proposed algorithm and Kotecha’s algorithm. We can obseve

that the proposed Algorithm have a same performance with

Kotecha’s algorithm. However, we find that proposed

algorithm is definitely more than 5% and12% when load

values are 1.5 and 2.5.

Figure 3. Success ratio of jobs

Figure 4. Effective CPU Utilization.

Fig. 4 and Table2 shows the results of Effective CPU

Utilization achieved by the proposed algorithm and Kotecha’s

algorithm. We can observe that the proposed Algorithm have a

same performance with Kotecha’s algorithm. However, we

 International Journal of Intelligent Information Systems 2015; 4(2-1): 13-17 17

find that proposed algorithm is definitely more than 5% and12%

when load values are 1.5 and 2.5.

Table 2. RESULTS: Effective CPU Utilization

Load Kotecha’s Algo New Algo.

0.7 100% 100%

1.0 100% 100%

1.5 61.60% 66.70%

2.0 47.30% 54.70%

2.5 36.70% 48.80%

5. Conclusions

The algorithm discussed in this paper is for scheduling of

soft real-time system with single processor and preemptive

task sets. For scheduling, the concept of ACO has been

introduced. The algorithm is simulated with periodic task sets;

results are obtained and compared with Kotecha’s algorithm.

From the results of simulation we can conclude that the

proposed algorithm performs equally optimal for single

processor, preemptive environment when the system is

underloaded. We can also observe that the proposed algorithm

during overloaded conditions performance is better than

Kotecha’s algorithm.

Acknowledgements

This work is supported in part by JSPS KAKENHI Grant

Number 24500046.

References

[1] K. Ramamritham and J. A. Stankovik, “Scheduling algorithms
and operating support for real-time systems”, Proceedings of
the IEEE, vol. 82, pp. 56-76, January 1994.

[2] C. L. Liu and L. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment”, Journal
of ACM, vol.20, pp: 46-61, January 1973.

[3] M. Dertouzos and K. Ogata, “Control robotics: The procedural
control of physical process,” Proc. IFIP Congress, pp. 807-813,
1974.

[4] A. Mok, “Fundamental Design Problems of Distributed
Systems for the Hard-Real-Time Environment,” Ph.d. thesis,
MIT, Cambridge, Massachusetts, May 1983.

[5] G. Saini, “Application of Fuzzy logic to Real-time scheduling”,
Real-Time Conference, 14th IEEE-NPSS.pp.113-116, 2005.

[6] M. Dorigo and G. Caro, “The Ant Colony Optimization
Metaheuristic in D. Corne, M. Dorigo and F. Glover(eds)”,
New Ideas in Optimization, McGraw Hill, 1999.

[7] V. Ramos, F. Muge, and P. Pina, “Self-organized data and
image retrieval as a consequence of inter-dynamic synergistic
relationships in artificial ant colonies”, In Second International
Conference on Hybrid Intelligent System, IOS Press, Santiago,
2002.

[8] Kotecha and A Shah, “Scheduling Algorithm for Real-Time
Opeating Systems using ACO”, 2010 Intelligence and
Communication Networks, pp. 617–621, Nov 2010.

[9] C. D. Locke, “Best Effort Decision Making for Real-Time
Scheduling”, Ph.d. thesis, Computer Science Department,
Carnegie-Mellon University, 1986.

[10] G. Koren and D. Shasha, “Dover: An optimal on-line
scheduling algorithm for overloaded real-time systems”, SIAM
Journal of Computing, 24(2): 318-339 April 1995.  

[11] A Shah, K Kotecha and D Shah, “Adaptive scheduling
algorithm for real-time distributed systems”, To appear in
International Journal of Intelligent Computing and
Cybernetics.

[12] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed
optimization by ant colonies,” In: Proceedings of European
Conf. on Artificial Life. Elsevier, Amsterdam, pp. 134-142,
1991.

[13] K. Ramamritham, J. A. Stankovik, and P. F. Shiah, “Efficient
scheduling algorithms for real-time multiprocessor systems”,
IEEE Transaction on Parallel and Distributed Systems, vol. 1,
April 1990.

[14] S. Baruah, G. Koren, B. Mishra, A. Raghunath, L. Roiser, and
D. Shasha, “On-line scheduling in the presence of overload,” In
FOCS, pp. 100–110 1991.

