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Abstract: The Ant Colony Optimization algorithms (ACO) are computational models inspired by the collective foraging 

behavior of ants. By looking at the strengths of ACO, they are the most appropriate for scheduling of tasks in soft real-time 

systems. In this paper, ACO based scheduling algorithm for real-time operating systems (RTOS) has been proposed. During 

simulation, results are obtained with periodic tasks, measured in terms of Success Ratio & Effective CPU Utilization and 

compared with Kotecha’s algorithm in the same environment. It has been observed that the proposed algorithm is equally optimal 

during underloaded conditions and it performs better during overloaded conditions. 
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1. Introduction 

In recent year, applications of real-time systems are 

spreading. For example, the automotive, mobile phone, plant 

monitoring systems and air traffic control systems.   

There are two types of real-time systems: Hard real-time 

systems and Soft real-time systems. Hard real-time systems 

are defined as those systems in which the correctness of the 

system depends not only on the logical result of computation, 

but also on the time at which the results are produced[1]. Soft 

real-time systems are missing an occasional deadline is 

undesirable, but nevertheless tolerable. Our interest in this 

question stems from the increasing prevalence of applications 

such as networking, multimedia, and immersive graphics 

systems that have only Soft real-time systems.  

The objective of real-time task scheduler is to reduce the 

deadline of tasks in the system as much as possible when we 

consider soft real time system. To achieve this goal, vast 

researches on real-time task scheduling have been conducted. 

Mostly all the real time systems in existence use preemption 

and multitasking. Real time scheduling techniques can be 

broadly divided into two categories: Off-line and On-line.  

Off-line algorithms assign all priorities at design time, and 

it remains constant for the lifetime of a task. On-line 

algorithms assign priority at runtime, based on execution 

parameters of tasks. On-line scheduling can be either with 

static priority or dynamic priority. RM (Rate Monotonic) and 

DM (Deadline Monotonic) are examples of On-line 

scheduling with static priority [2]. EDF (Earliest Deadline 

First) and LST (Least Slack Time First) are examples of 

On-line scheduling with dynamic priority. EDF and LST 

algorithms are optimal under the condition that the jobs are 

preemptable, there is only one processor and the processor is 

not overloaded [3][4]. But the limitation of these algorithms is, 

their performance decreases exponentially if system becomes 

slightly overloaded [5]. 

Several characteristics make ACO a unique approach: it is 

constructive, population-based meta-heuristic which exploits 

an indirect form of memory of previous performance. [6][7]. 

Therefore in this paper, the same approach has been applied 

for real-time operating systems.  

The rest of this paper is organized as follows. In Sec. 2, our 

system model is presented. In Sec. 3, our proposed algorithm 

is described and discussed. In Sec. 4, a simulation-based 

evaluation of proposed algorithm and kotecha’s algorithm[8] . 

Sec. 5 is conclusions. 

2. System Model 

The system knows about the deadline and required 

computation time of the task when the task is released. The 

task set is assumed to be preemptive. We have assumed that 
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the system is not having resource contention problem. 

Moreover, preemption and the scheduling algorithm incur no 

overhead.  

In soft real-time systems, each task has a positive value. The 

goal of the system is to obtain as much value as possible. If a 

task succeeds, then the system acquires its value. If a task fails, 

then the system gains less value from the task [8

case of soft real-time systems, called a firm real

there is no value for a task that has missed its deadline, but 

there is no catastrophe either [9]. Here, we propose an 

algorithm that applies to firm real-time system. The value of 

the task has been taken same as its computation time required 

[10]. 

3. Related Work 

3.1. Ant Colony Optimization 

Social insects that live in colonies, such as ants, termites, 

wasps, and bees, develop specific tasks according to

in the colony. One of the main tasks is the search for food. 

Real ants, when searching for food, can find such resources 

without visual feedback, and they can adapt to changes in the 

environment, optimizing the path between the nest and the 

food source. This fact is the result involves positive feedback, 

given by the continuous deposit of a chemical substance, 

known as pheromone. 

Figure 1. Ant colony optimization

A classic example of the construction of a pheromone trail 

in the search for a shorter path is shown in Fig. 1

presented by Colorni[11]. In Fig. 1A there is a path between 

food and nest established by the ants. In Fig.

inserted in the path. Soon, ants spread to both sides of the 

obstacle, since there is no clear trail to follow (Fig.

ants go around the obstacle and find the previous pheromone 

trail again, a new pheromone trail will be formed around the 

obstacle. This trail will be stronger in the shortest path than in 

the longest path, as shown in Fig. 1D. 

3.2. Kotecha’s Algorithm 

The scheduling algorithm is required to execute when a new 

task arrives or presently running task completes. The main 

steps of the proposed algorithm are given as following and the 

flowchart of the algorithm has been shown in Fig.2

� Construct tour of different ants and prod
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Ant colony optimization. 

A classic example of the construction of a pheromone trail 

horter path is shown in Fig. 1 and was first 

A there is a path between 

tablished by the ants. In Fig. 1B an obstacle is 

inserted in the path. Soon, ants spread to both sides of the 

low (Fig. 1C). As the 

ants go around the obstacle and find the previous pheromone 

trail again, a new pheromone trail will be formed around the 

obstacle. This trail will be stronger in the shortest path than in 

scheduling algorithm is required to execute when a new 

task arrives or presently running task completes. The main 

steps of the proposed algorithm are given as following and the 

een shown in Fig.2:  

Construct tour of different ants and produce the task 

execution sequence 

� Analyze the task execution sequences generated for 

available number of processor

� Update the value of pheromone

� Decide probability of each task an

execution 

The detailed description of four main steps 

Figure 2. Flowchart of algorithm

3.2.1. Tour Construction 

First, find probability of each node using (

schedulable task is considered as a node and probability of 

each node to be selected for execution is decided using 

pheromone τ and heuristic value η.

����� �
� �	 �

∑ � ��∈
�

where, 

pi(t) is the probability of ith node at time t; i

set of schedulable tasks at time t.

τi(t) is pheromone on ith node at time t.

ηi is heuristic value of i
th 

node at t, which can bedetermined 

by (2)  

η� �

Here, t is current time ,K is constant and Di is absolute 

deadline of ith node. 

α and β are constants which decide importance of τ and η.

Ants construct their tour based on the value of p of each 

Time Multiprocessor Systems with ACO 

Analyze the task execution sequences generated for 

available number of processor 

Update the value of pheromone 

Decide probability of each task and select the task for 

etailed description of four main steps is as follows: 

 

Flowchart of algorithm 

lity of each node using (1). Each 

schedulable task is considered as a node and probability of 

to be selected for execution is decided using 

pheromone τ and heuristic value η. 

����α∗��	����β

�	 ����α∗��	����β
           (1) 

pi(t) is the probability of ith node at time t; i∈ �� and N1 is 

tasks at time t. 

τi(t) is pheromone on ith node at time t. 

node at t, which can bedetermined 

�

����
                   (2) 

Here, t is current time ,K is constant and Di is absolute 

constants which decide importance of τ and η. 

Ants construct their tour based on the value of p of each 
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node as per following: 

Ant 1. Highest p > second highest p > third highest p >…. 

Ant 2. Second highest p > highest p > third highest p >…. 

Ant 3. Third highest p > second highest p > highest p >…. 

… 

Suppose at time t, there are 4 schedulable tasks. As shown 

in Figure 1, each task will be considered as a node and from 

each node; one ant will start its journey. If we consider the 

priorities of all the nodes are in decreasing order of A, B, C, D; 

ants will traverse different nodes as per following:  

Ant 1. A > B > C > D 

Ant 2. B > A > C > D 

Ant 3. C > A > B > D 

Ant 4. D > A > B > C 

3.2.2. Analyze the Journey 

After all ants have completed their tour, evaluate the 

performance of different ants’s travel. We have analyzed this 

based on ratio of number of success tasks and number of 

missed tasks. Find out maximum two best journeys of ants and 

update the value of pheromone accordingly.  

3.2.3. Pheromone Update 

Pheromone updating on each node is done in two steps:  

� Pheromone Evaporation :Pheromone evaporation is 

required to forget bad travel of ants and to encourage new 

paths. Value of τ is updated using(3)  

τ��� + 1� � �1 − ��τ����            (3) 

where, 

� is a constant. 

� ∈  !;  ! is set of all tasks. 

� Pheromone Laying: Pheromone will be laid only for two 

best journeys of ants. Select the best journey and put 

pheromone depending on their order of visited node. 

Amount of pheromone (∆τ) laid will be different at each 

node i.e. the nearest node will get highest amount of 

pheromone and far most node will get least.  

"�(� + 1) = "�(�) + Δ"�           (4) 

where, � ∈ �$; �$ is set of tasks executed by the ant. 

Δ"＝ %&
'                    (5) 

Here, 

�ℎ = ) ∗ *+,-./ 01 2+33.''.4 50-'
*+,-./ 01 6�''.4 50-'7�           (6) 

s is sequence number of node visited by the ant during the best 

travel. 

Value of C is constant (preferably 0.1) 

3.2.4. Selection of Task for Execution 

After updating pheromone, again find out probability of 

each node using (1) and select the task for execution having 

the highest probability value.  

3.2.5. Important Points about the Algorithm 

Each schedulable task is considered as a node, and it stores 

the value of τ i.e. pheromone. Initial value of τ is taken as one 

for all nodes. 

Value of α and β decide importance of τ and η. During 

simulation, both values are taken as one. 

Number of ants which construct the tour, is important 

design criteria. During simulation, number of ants taken is 

same as number of executable tasks the system is having at 

that time. 

3.3. Proposed Algorithm 

In Kotecha’s algorithm ,The part of Tour Construction, the 

heuristic value ηi depend on absolute deadline that is most 

similar to EDF algorithm. However, EDF’s performance 

decreases exponentially if system becomes slightly 

overloaded[12]. Since we consider the heuristic value should 

be depend on a ratio of remain execute time and absolute 

deadline at time t. This can make more helpful heuristic value 

to increase the Success ratio of jobs . 

And in the part of pheromone evaporation, executable tasks 

and executed tasks without distinction when the stage of 

updating pheromone. We consider the search history of a 

previous time when scheduler startup is a reference value. The 

tasks are periodic, they are released by each period, when they 

exit run once , they should be released in the near future, 

Therefore, selected tasks have high probability be selected 

again. At the pheromone evaporation stage, we only chose the 

schedulable tasks to evaporate. The selected tasks are still with 

high pheromone until next period.  

We proposed a new pheromone evaporation that don’t 

make all tasks forget traveled nodes, only the task which 

schedulable at time t. It as follows : 

3.3.1. New Tour Construction 

First, find probability of each node using (7). Each 

schedulable task is considered as a node and probability of 

each node to be selected for execution is decided using 

pheromone τ and heuristic value η. 

��(�) = ( �	 (�))α∗(�	(�))β
∑ ( �	 (�))α∗(�	(�))β�∈
�

                (7) 

where, 

pi(t) is the probability of ith node at time t; i∈ �� and N1 is 

set of schedulable tasks at time t. 

τi(t) is pheromone on ith node at time t. 

ηi is heuristic value of ith node at t, which can be 

determined by (8),  

8� = 9                    0,                 <�ℎ=>?�@=A∗B	
 C	(D) ,                    �E    B	

C	(D) ≤ 1G     (8) 

Here, t is current time, K is constant and Di is absolute 

deadline of ith node, H�(�) is remain execute time of ith node. 

α and β are constants which decide importance of τ and η. 
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3.3.2. New Pheromone Evaporation 

Pheromone evaporation is required to forget bad travel of 

ants and to encourage new paths. Value of τ is updated using 

(9). 

τ�(� + 1) = (1 − �)τ�(�)            (9) 

where, � is a constant. � ∈ ��; �� is set of schedulable tasks at time t. 

4. Simulation and Results 

We have implemented our algorithm & Kotecha’s algorithm 

and have run simulations to accumulate empirical data. We 

have considered periodic tasks for taking the results. For 

periodic tasks, load of the system can be defined as summation 

of ratio of executable time and period of each task. For taking 

result at each load value, we have generated 200 task sets each 

one containing 3 to 9 tasks. The results for 5 different values 

of load are taken (0.7 ≤ load ≤ 2.5) and tested on more than 

35,000 tasks. Results are shown in Table 1 and Fig. 2.  

The system is said to be overloaded when even a 

clairvoyant scheduler cannot feasibly schedule the tasks 

offered to the scheduler. A reasonable way to measure the 

performance of a scheduling algorithm during an overload is 

by the amount of work the scheduler can feasibly schedule 

according to the algorithm. The larger this amount the better 

the algorithm. Because of this, we have considered following 

two as our main performance criteria:  

1) In real-time systems, deadline meeting is most important 

and we are interested in finding whether the task is 

meeting the deadline. Therefore the most appropriate 

performance metric is the Success Ratio and defined as 

(10) [5],  

I = *+,-./ 01 50-' 2+33.''.1+!!J '3&.4!.4
K0DL! M+,-./ 01 50-' L//�N.4      (10) 

2) It is important that how efficiently the processors are 

utilized by the scheduler especially during overloaded 

conditions. Therefore, the other performance metric is 

Effective CPU Utilization (ECU) and defined as (11):, 

H)O = ∑ P	
K�∈Q                 (11) 

Where, 

V is value of task and 

� value of a task = Computation time of a task, if the task 

completes within its deadline. 

� value of a task = 0, if the task miss the deadline. 

R is set of tasks, which are completed within their deadline. 

T is total time of scheduleing. 

An on-line scheduler has a competitive factor Cf if and only 

if the value of the schedule of any finite sequence of tasks 

produced by the algorithm is at least Cf times the value of the 

schedule of the tasks produced by an optimal clairvoyant 

algorithm [7]. Since maximum value obtained by a 

clairvoyant scheduling algorithm is a hard problem, we have 

instead used a rather simplistic upper bound on this maximum 

value, which is obtained by summing up the value of all tasks 

[14]. Therefore, we have considered value of ECU for 

clairvoyant scheduler is 100%.  

Finally, the results are obtained, compared with Kotecha’s 

algorithm in the same environment and shown in Fig.3 and 

Fig.4. 

Table 1. Results: Success Ratio of job 

Load Kotecha’s Algo New Algo. 

0.7 100% 100% 

1.0 100% 100% 

1.5 61.60% 66.70% 

2.0 47.30% 54.70% 

2.5 36.70% 48.80% 

Fig.3 and Table1 shows the results achieved by the 

proposed algorithm and Kotecha’s algorithm. We can obseve 

that the proposed Algorithm have a same performance with 

Kotecha’s algorithm. However, we find that proposed 

algorithm is definitely more than 5% and12% when load 

values are 1.5 and 2.5. 

 

Figure 3. Success ratio of jobs 

 

Figure 4. Effective CPU Utilization. 

Fig. 4 and Table2 shows the results of Effective CPU 

Utilization achieved by the proposed algorithm and Kotecha’s 

algorithm. We can observe that the proposed Algorithm have a 

same performance with Kotecha’s algorithm. However, we 
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find that proposed algorithm is definitely more than 5% and12% 

when load values are 1.5 and 2.5. 

Table 2. RESULTS: Effective CPU Utilization 

Load Kotecha’s Algo New Algo. 

0.7 100% 100% 

1.0 100% 100% 

1.5 61.60% 66.70% 

2.0 47.30% 54.70% 

2.5 36.70% 48.80% 

5. Conclusions 

The algorithm discussed in this paper is for scheduling of 

soft real-time system with single processor and preemptive 

task sets. For scheduling, the concept of ACO has been 

introduced. The algorithm is simulated with periodic task sets; 

results are obtained and compared with Kotecha’s algorithm.  

From the results of simulation we can conclude that the 

proposed algorithm performs equally optimal for single 

processor, preemptive environment when the system is 

underloaded. We can also observe that the proposed algorithm 

during overloaded conditions performance is better than 

Kotecha’s algorithm. 
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